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How to deal with non-linear count data? 
Macro-invertebrates in wetlands 

 
In this session we will recognize the advantages of making an effort to better identify the proper 
error distribution of data and choose the most informative type of model to assess our 
hypotheses. We use data collected by Bohlen et al. (2014) aimed at understanding the effect of 
hydrology on species abundance to evaluate government policies encouraging water retention. 
They used a stratified random sampling method to gather data on abundance of several 
organisms in wetlands within four ranches in Highlands and Okeechobee Counties in Florida, 
USA (Figure 1). Here, we focus on the abundance of macro-invertebrates. We do not use their 
whole wealth of data, and instead focus on a subset of relevant variables.  
 

 
Figure 1. Sampling design within a wetland and example macro-invertebrates 
 

Bohlen et al. (2014) proposed hypotheses on the shape of the responses of organisms to wetland 
water depth. In particular they expected that macro-invertebrate abundance may increase with 
water depth to a maximum and then decline (Figure 2). They also predicted that macro-
invertebrate abundance may covariate with that of other organisms, and that this variation may 
vary among ranches because of management history and local attributes.    
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Hypothesis of change of macro-invertebrate abundance with water depth 
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Model validation: identification of the proper error distribution.  
 

In this demo we evaluate an additive model including water depth, abundance of fish, and ranch 
as explanatory variables of macro-invertebrate abundance. The first variable is continuous, the 
second corresponds to counts and the third is categorical including four ranches. We start with a 
linear model with Gaussian errors; followed by a generalized linear model with negative 
binomial errors and then a general additive model with negative binomial errors. These models 
represent a sample of possible ways to assess the data. We emphasize validation of these models 
as a protocol to compare the quality and amount of information that can be obtained from them. 
You may wonder how we chose this model; please consider previous sessions with model 
selection approaches that addresses this question. Here we focus on the importance of proper 
error distribution. For simplicity, in this analysis we ignore that data was nested within wetlands 
by ranch.  

 
Figure 3. Histogram of macro-invertebrate and fish abundances 

 

The numbers of macro-invertebrate caught were extremely variable. Most frequently none were 
caught but once there were 18 captured (Figure 3).  Fish were even more variable (Figure 3). For 
a moment, we ignore the distribution of the data and proceed to evaluate a linear model with 
Gaussian error. We will see that this is not a good decision but it is, sadly, a relatively common 
procedure among many ecologists.  
 

We start by subsetting the data to remove missing values. We identify macro-invertebrates as the 
dependent variable y, and depth, fish and ranch as independent variables. We include the variable 
depth2 to characterize the non-linear nature of the response as hypothesized. We transform fish 
abundance to its natural logarithm to reduce the leverage of extreme values. We change the 
variable that identifies the ranches from strings of names to strings of numbers to facilitate the 
reading of the output. We also create some plots to visualize the data (code in the R script).  
 
dataforstats <- read.table("dataforstats_final_BB121613.txt", header=T) 
sub1 <-subset(dataforstats,!is.na(upland_elev_m )) 
 
y <- as.numeric(sub1$macroct) 
depth <- sub1$depth 
depth2 <- depth^2  
fish <- log(sub1$fishct) 
rancho <- rep(1,length(sub1$ranch)) 
rancho[sub1$ranch=="bir"] <- 2 
rancho[sub1$ranch=="pal"] <- 3 
rancho[sub1$ranch=="wil"] <- 4 
rancho <- factor(rancho) 
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Macro-invertebrate abundance did appear to be higher in intermediate depths, to co-vary with 
fish and be variable among ranches (Figure 4).  
 

 
Figure 4. Observed macro-invertebrate abundance with water depth and fish abundance in 
four ranches in South Florida.  
 

We use the function lm to obtain a linear model with Gaussian errors (default error distribution).  
 
lm(formula = y ~ depth + depth2 + rancho + fish) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-3.7797 -1.7483 -0.9956  0.7213 16.4276  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  1.1577935  0.3775342   3.067  0.00225 **  
depth        0.0955440  0.0341426   2.798  0.00529 **  
depth2      -0.0017283  0.0006599  -2.619  0.00903 **  
rancho2     -0.4303603  0.2725263  -1.579  0.11479     
rancho3     -0.3762514  0.3586106  -1.049  0.29448     
rancho4     -0.8806389  0.3227926  -2.728  0.00654 **  
fish         0.4980347  0.1336034   3.728  0.00021 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 2.807 on 651 degrees of freedom 
Multiple R-squared: 0.04372,    Adjusted R-squared: 0.03491  
F-statistic: 4.961 on 6 and 651 DF,  p-value: 5.592e-05 
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Figure 5. Macro-invertebrate abundance with water depth in four ranches in South 
Florida. The size of the dots relates to the amount of samples with a given 
combination of macro-invertebrates and depth. Samples with no fish are in blue, those 
with fish in black. The models were fit for fish abundance = 5. Linear model with 
Gaussian errors in green, generalized linear model with negative binomial errors in 
red and general additive model in black. 

 

 
 
 
Figure 6. Macro-invertebrate abundance with fish abundance in four ranches in South 
Florida. The size of the dots relates to the amount of samples with a given 
combination of macro-invertebrates and fish. The models were fit for depth = 10. 
Linear model with Gaussian errors in green, generalized linear model with negative 
binomial errors in red and general additive model in black. 
 

The shape of our linear model with Gaussian errors, represented with a green line in Figures 5-6 
is consistent with the hypothesis of Bohlen et al. (2014). The output of the model allows the 
rejection of the null hypothesis of no evidence of an association with depth and that of no 
covariance with fish. It also indicates some differences among ranches. However, it explains less 
than 3% of the variance, and its residuals have a strong pattern suggesting increasing positive 
deviations from predicted values as abundance of macro-invertebrates increases (Figure 7). This 
model also indicates increasing number of macro-invertebrates with fish that appear not to be 
consistent with the data. We should not trust this model. 
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Now we recognize that nature of the data as counts and the nonlinear relationship with fish. We 
evaluate a generalized linear model with negative binomial errors and allow for non-linearity in 
the covariance with fish adding the variable fish2. We call the function glmmadmb from the 
package glmmADMB. Notice that we do not include zero-inflation even though the nature of the 
data may require this procedure.  
 
glmmadmb(formula = y ~ depth + depth2 + fish + fish2 + rancho, data = sub1, family = 
"nbinom", zeroInflation = FALSE) 
 
AIC: 2446.1  
 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)  0.028111   0.204410    0.14   0.8906     
depth        0.055513   0.018151    3.06   0.0022 **  
depth2      -0.000949   0.000348   -2.73   0.0064 **  
fish         0.770460   0.187250    4.11  3.9e-05 *** 
fish2       -0.207537   0.071678   -2.90   0.0038 **  
rancho2     -0.196297   0.139040   -1.41   0.1580     
rancho3     -0.085909   0.182590   -0.47   0.6380     
rancho4     -0.479517   0.168690   -2.84   0.0045 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Number of observations: total=658 
Negative binomial dispersion parameter: 0.66195 (std. err.: 0.059911) 
 
Log-likelihood: -1214.04 
 

The generalized linear model with negative binomial errors and quadratic response to fish 
abundance is more consistent with the data (Figures 6 and 7) and has better patterns in the 
residuals (Figure 7; less marked departures of the predicted values with increasing abundance of 
macro-invertebrates and fish). However, this departure from the assumptions still does not give 
strong support to this model.   
 
Finally, we asses a general additive model allowing for more flexible association patterns for the 
response to depth and fish abundance. This approach allows evaluating nonlinear patterns using a 
piece by piece fitting across the range of the data. We call the function gam from the package 
mgcv. 
 
Family: Negative Binomial(0.669)  
Link function: log  
 
Formula: 
y ~ s(depth, fx = FALSE, k = -1, bs = "cr") + s(fish, fx = FALSE,  
    k = -1, bs = "cr") + rancho 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  0.78273    0.09806   7.983 1.43e-15 *** 
rancho2     -0.18269    0.13997  -1.305  0.19182     
rancho3     -0.07754    0.18172  -0.427  0.66961     
rancho4     -0.48909    0.17044  -2.870  0.00411 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Approximate significance of smooth terms: 



PCB 6468 - Methods in Experimental Ecology II  Spring 2016 
Pedro F. Quintana-Ascencio, David G. Jenkins & Lina M. Sánchez-Clavijo 04/06/2016 
 
           edf Ref.df Chi.sq  p-value     
s(depth) 3.161  3.954  11.52   0.0207 *   
s(fish)  2.817  3.361  25.31 2.68e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
R-sq.(adj) =  0.0361   Deviance explained = 6.64% 
UBRE score = 0.047136  Scale est. = 1         n = 658 
 
 

 
 
Figure 7. Residuals for the linear model with Gaussian errors (left), generalized 
linear model with negative binomial errors (center) and general additive model 
(right). 

 
The general additive model with negative binomial errors was consistent with the data and has 
almost removed any pattern in the residuals (Figure 7). This model has the smallest AIC value 
(lm (8 df) AIC= 3234.416; GLM (9 df) AIC= 2446.080; GAM (edf=9.978163) AIC= 2443.411) 
and the best association between observed and predicted values (Figure 8). We concur with 
Bohlen et al. (2014) supporting a non-linear association among water depth and micro-
invertebrate abundance which, in the studied wetlands, reached maximum abundances around 20 
cm. We also found that fish and macro-invertebrates co-varied, and identified significant 
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variation among ranches (Figure 9). The causes of ecological patterns are diverse and rarely 
follow linear relationships. We can benefit from assessing models with more realistic and 
flexible assumptions allowing us to better describe these patterns.  

 
Figure 8. Association among observed and predicted values for the linear model with 
Gaussian errors (left), generalized linear model with negative binomial errors 
(center)and general additive model(right). 

 
Figure 9. Predicted number of macro-invertebrates with depth and fish (natural 
logarithmic transformed) after the GAM model with negative binomial errors, range: 
white= 4 organisms, black 0 organisms. 
 

Patrick J. Bohlen, Elizabeth Boughton, John E. Fauth, David Jenkins, Greg Kiker, Pedro F. 
Quintana-Ascencio, Sanjay Shukla, and Hilary M. Swain. 2014. Assessing Trade-Offs 
among Ecosystem Services in a Payment-for-Water Services Program on Florida 
Ranchlands Final Report. USA Environmental Protection Agency. 
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