tomeet theIUCN-proposed 10\% expansion target of protected areas, would bethemassivesequestration of newly accessiblepublic lands intostrictly protected areas, extractivereserves and sustainableforestry areas (National F orests). This would reducethesupply of free-for-all forest resources in public lands, which arelikely to continueto attract ‘cut and run' logging operations. A recent study has shown that nature reserves greatly reduce local deforestation rates, even if they exist only 'on paper'and areyet to beimplemented in practice ${ }^{15}$. Zoning regulations in theAmazon urgently need to bereorganized from a historically messy land titling system and need to includemany morelargeforest reserves under varying degrees of protection ranging from people-freeparks toareas under benign forms of exploitation. The privatetimber industry al so needs to be severely restricted through steeper taxes and enforceable penalties, which could help fund field operations deployed by financially frail environmental agencies.

Although Brazilian legislators can pridethemselves in having a highly sophisticated set of environmental laws, such laws tend tolack teeth in the vast Amazonian frontier. Haphazard frontier expansion without commensurate investments in government institutions to effectively enforce conservation legislation only perpetuates the boom and bust cycle that will continue to impoverish both the biota and rural population of theAmazon.

References

1 INPE (2000) Deforestation Estimates for the Brazilian Amazon. Instituto Nacional de Pesquisas Espaciais
2 Nepstad, D.C. et al. (1999) Large-scale impoverishment of Amazonian forests by logging and fire. Nature 398, 505-508
3 Houghton, R.A. et al. (2000) Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon. Nature403, 301-304
4 Timmerman, A. et al. (1999) Increased EI Niño frequency in a climate model forced by future greenhouse warming. Nature395, 694-697
5 Holdsworth, A.R. and Uhl, C. (1997) Firein Amazonian selectively logged rain forest and the potential for firereduction. Ecol. Appl. 7, 713-725
6 Cochrane, M.A. (1999) Positivefeedbacks in the fire dynamic of closed canopy tropical forests. Science284, 1832-1835

7 Peres, C.A. (1999) Ground fires as agents of mortality in a Central Amazonian forest. J .Trop. Ecol. 15, 535-541
8 MPOG (2000) Eixos Nacionais deI ntegraçãoe Desenvol vimento: Avança Brasil, Ministériodo Planejamento, OrçamentoeGestão (http://www.eixos.gov.br and www.abrasil.gov.br) 9 IPAM (2000) Avança Brasil: os Custos Ambientais para a Amazônia. Instituto dePesquisa Ambiental daAmazônia
10 Carvalho, G. et al. (2001) Sensitive development could protect Amazonia instead of destroying it. Nature409, 131
11 Laurance, W.F. et al. (2001) Thefuture of the Brazilian Amazon. Science291, 438-439
12 Schneider, R.R. et al. (2000) Amazônia Sustentável: Limitantes eOportunidades para o Desenvolvimento Rural. BancoMundial and IMAZON
13 Peres, C.A. (2000) Effects of subsistencehunting on vertebrate community structure in Amazonian forests. Conserv. Biol. 14, 240-253
14 Folha deSãoPaulo(2001) ParanóiaAmazônica. Folha deSãoPaulo23J an
15 Bruner,A.G. etal. (2001)Effectiveness of parksin protectingtropical biodiversity. Science291, 125-128

Carlos A. Peres

School of Environmental Sciences, University of East Anglia, Norwich, UK NR4 7TJ.
e-mail: C.Peres@uea.ac.uk

The use and abuse of population viability analysis

Tim Coulson, Georgina M. Mace, Elodie Hudson and Hugh Possingham

Abstract

A recent study by Brook et al. empinically tested the performance of population viability analysis (PVA) using data from 21 populations across a wide range of species. The study concluded that PVAs are good at predicting the future dynamics of populations. We suggest that this conclusion is a result of a bias in the studies that Brook et al. included in their analyses. We present arguments that PVAs can only be accurate at predicting extinction probabilities if data are extensive and reliable, and if the distribution of vital rates between individuals and years can be assumed stationary in the future, or if any changes can be accurately predicted. In particular, we note that although catastrophes are likely to have precipitated many extinctions, estimates of the probability of catastrophes are unreliable.

Population viability analysis (PVA) is a modelling tool that estimates the future sizeand risk of extinction for populations of organisms ${ }^{1,2}$. PVA works by using
life-history or population growth-rate data to parameterizea population model that is then used to project dynamics and estimatefuturepopulation size and structure ${ }^{3}$. User-friendly PVA software packages allow conservation managers to predict future population sizes and risks of extinction for any population they choose ${ }^{3}$. Because of this ease of application of PVAs, it is important to determine and understand the limits to their predictive accuracy ${ }^{1,4-6}$. Brook et al. havetested the predictive accuracy of PVA using data from many populations and conclude that PVA is not a usel ess tool, and that it should not bedispensed with in favour of alternative untested methods.

Do PVAs work?

Thepredictiveaccuracy of a PVA will depend on the purpose to which it is being applied. In practice, therehas been a range of alternative uses. PVAs can be used to: (1) predict the futuresize of a population ${ }^{1,5,6 ;}$ (2) estimatethe
probability of a population going extinct over a given time ${ }^{5}$; (3) assess which of a suite of management or conservation strategies is likely tomaximizethe probability of a population persisting7; and (4) explorethe consequences of different assumptions on population dynamics for small populations ${ }^{8}$. In reality, only the predictive accuracy of the first two cases is estimable, as there are rarely sufficient replicate populations from which to collect data to determine whether the comparative predictions of the third use areaccurate, and the fourth use has not generated testable predictions.

There are two ways that the predictive accuracy of PVAs can be assessed. Thefirst approach is to use historical data and, at a point in the future, predict the population size and compare this to what actually happened. To avoid circularity, the data used to parameterizethemodel should not include data from the time-period over which predictions aremade. The
observed population size (or sizes where the whole population exists as a suite of spatially structured local populations) can then be compared tothe distribution of predicted population sizes from the model projections. As well as comparing population sizes, thedistribution of observed and predicted population growth rates can also beexamined. Therearehowever potential problems with thesemethods ${ }^{9}$.

A second approach is to compare the observed distribution of population sizes with theestimated distribution of quasiextinction rates. Extinctions arerare, and any individual population can go extinct only once, so it is not possibleto compare a probability of extinction with whether a population went extinct. However, quasi-extinction events can be assessed, both in theory and in practice ${ }^{10}$, when the population falls bel ow a specified threshold. Many different thresholds can be defined for the same population. In a sufficiently long time series, the observed distribution of population sizes can be compared with the observed distribution of quasiextinctions from PVA models generating multiple simulated time-series of the samelength ${ }^{1}$.

There have been few empirical attempts to verify theaccuracy of PVAs; the analysis using the most populations (and species) was that of Brook \&al. ${ }^{1}$. Here, 21 populations from many taxa (eight bird species, nine mammal species represented by 11 populations, one reptile species and one fish species) for which ten or moreyears of data existed, wereselected. Data from the first half of each study were used to construct age-structured population models that were used to generate predicted dynamics
for the second half of each study. Brook et al. used a comparison of observed and predicted quasi-extinction risks for each population, the simulated mean and observed population growth rate and theobserved and mean predicted population sizefor the last point in each time-series to test the performance of PVAs. Thefinal sentence of their abstract concludes, 'PVA is a valid and sufficiently accuratetool for categorizing and managing endangered species'. The case studies they chosefor their analyses were long term and not typically from populations of endangered species, data
were of high quality and only one population went extinct; given this biased sample, therefore, this statement is too strongly worded. A statement towards the end of the paper does provide the caveat that 'PVA predictions aresurprisingly accurate, given adequate data'; however, there is a risk that a myth stating that PVA nearly al ways works will become established. So what are the necessary conditions for thepredictions of PVAsto be accurate?

Circumstances when PVAs could predict future dynamics

Brook etal.'s condusions ${ }^{1}$ could only bevalid if two criteria aremet - the authors briefly mention both in their paper but do not discuss them in detail. First, data haveto be of sufficiently high quality that theestimates of the shape, mean, temporal variance and autocorrelation (that could becaused by density-dependent processes) of the distribution of vital rates, or the population growth rate, areaccurate. Second, thefuturemean and variation of vital rates or the population growth rate will haveto be similar tothose observed during the period when the data were collected.

Criterion one: data quality

Thefirst of these criteria will only bemet in a handful of cases where a large amount of information is known about the biol ogy of thetarget species and population. The amount of data required will vary among species and among populations experiencing different biotic and abiotic factors. Consider how much data would berequired to model a longlived species in which high recruitment events may only occur once every two to three decades or more(e.g. radiated tortoises, Geocheloneradiata). A distribution of recruitment rates parameterized from a ten-year period when a high recruitment event did not occur would lead to an overestimate of the probability of quasi-extinction and the population growth rate. However, a distribution parameterized from an equivalent period when a high recruitment event did occur, would lead to an underestimate.

For populations embedded in a spatially heterogeneous environment, spatial variation in vital rates can also be important ${ }^{11}$. To make matters worse,
spatial and temporal variation in the distribution of vital rates could interact. Becausewedo not know how important spatial and temporal variation in life-history rates are, a useful exercise would beto look for systematic variation in thedistributions of population growth rates and vital rates across species and populations using data from long-term studies.

By only selecting long-termstudies, Brook et al. meet this first criterion. However, many conservation managers do not havetheluxury of such data but they still use PVAs that might produce unreliable predictions on which flawed conservation strategies arebased.

Criterion two: future distributions

 The second criterion is that if good estimates of the distribution of vital rates can be made, arethe shapes, means, temporal variances and autocorrelation of these distributions likely to apply into thefuture? Usually, it is impossibleto know the answer to this in most cases. There are biotic and abiotic phenomena that can lead to changes in the shape, mean, temporal variance and autocorrelation of these distributions over time ${ }^{11-13}$. Such processes can be classified into two categories: (1) those that arethe result of a catastrophe ${ }^{5}$; and (2) those that result in a longer-term change in the processes and vital rates that limit the population growth rate ${ }^{12}$. In theexamples that Brook et al. use, there appears to have been constant dynamics over at least ten years. However, their sample cannot be assumed to represent all cases and, in principle, it seems probable that small and endangered populations are more likely to show changed dynamics over time as a result of either environmental, anthropogenic or intrinsic processes than arelarge and unendangered populations.Catastrophic events rapidly decrease the size of a population and could have precipitated themajority of extinctions ${ }^{14}$. Thefrequency distribution and consequence of such events is rarely known ${ }^{15}$; consequently, parameterizing a population model toincludethe probability of a catastrophe occurring in a specified time period is little morethan guesswork. Thereareexceptions; for example, the distribution of catastrophic fires can beestimated from
palaeontological data ${ }^{16}$. Even in cases when the distribution of catastrophes is unknown, it is sensibleto model the potential impact of catastrophes of known effect, to devise management or conservation strategies that could cope with such eventualities ${ }^{3}$.

Many processes can lead to a change in the key vital rates and factors limiting the growth rate of a population. F or example, a population released from predation, possibly by the local extinction of a predator, could increase at a ratelimited only by the maximum reproductive potential of each adult femalebut, once the population approaches carrying capacity, density-dependent processes will begin tolimit the population through resource availability. Such a shift in the dynamics does more than affect the distribution of vital rates. The change from predator limitation, through limitation by reproductive potential, to limitation by resource availability, shifts the key vital ratefrom juvenile survival, to the birth rate, to adult survival ${ }^{12,13}$. Many processes can have profound effects that lead tochanges in the factors regulating a population and the distribution of vital rates. For example, changes in the habitat resulting from succession, anthropogenicland use or some habitat-modifying catastrophes, changes in the structure of the community resulting from species col onization or extinction, the introduction of noncatastrophic diseases, changes in hunting pressureand changes in the weather as a result of global climate change. Many PVA models allow changes in habitat tobeincorporated through dumsy mechanisms, such as increasingK deterministically.
Considerably more work needs to be done to allow more sophisticated habitat dynamics to be included in models, as has been attempted in the metapopulation modelling programALEX (Analysis of the Likelihood of Extinction) (Ref. 17).

Conclusions

Sohow and when should PVAs be used? We conclude that predictions of futurepopulation sizes and quasiextinction events can only beaccurate if managers are confident that their data adequately capture the distribution of population growth rates and/or vital rates. If their data arepoor, the predictions of PVAs should betreated
with extremecaution and possibly even ignored entirely.

Predictions will only beuseful if it is known that the distributions of the population growth rateand vital rates will not change in thefuture. As ecol ogical systems aredynamic, regulating processes can change, but it is usually impossibleto predict how or when. Research is required toestimatehow changes from one regulating factor to another influence the distribution of vital rates and population growth rates. In such cases, PVA models could be devel oped to be adaptive. Data on the population growth rateand/or vital rates should be collected following the initiation of a management or conservation strategy, and theresults and predictions of PVAs should be reassessed, and if necessary strategies altered, following the addition of these data. In our view, PVAs could be useful for comparing the consequences of different management or conservation strategies, and for exploring theoretically the implication of model assumptions on extinction probabilities and population dynamics ${ }^{18}$. However, we doubt the general claim that they can be accurate in their ability to predict the futurestatus of wild populations.

Acknowledgements

The authors thank Barry Brook, Rhys Green, MikeMcCarthy, Drew Tyre and BrigitteTenhumberg for their help and comments on this article. Some of the ideas in this articlearose from the 'Managing Variability' Working Group supported by theNational Center for Ecological Analysis and Synthesis, a Centrefunded by National Science Foundation (Grant \#DE B-94-21535), the University of California at Santa Barbara, and the State of California.

References

1 Brook, B.W. et al. (2000) Predictive accuracy of population viability analysis in conservation biology. Nature404, 385-387
2 Brook, B.W. etal. (1997) Does population viability analysis softwarepredict the behaviour of real populations? A retrospectivestudy on the Lord Howe Island woodhen Tricholimnas sylvestris (Sclater). Biol. Conserv. 82, 119-128
3 Ludwig, D. (1999) Is it meaningful toestimatea probability of extinction? Ecol ogy 80, 298-310
4 Fieberg, J . and Ellner, S.P. (2000) When is it meaningful to estimate an extinction probability? Ecology 81, 2040-2047
5 Boyce, M.S. (1992) Population viability analysis. Annu. Rev. Ecol. Syst. 23, 481-506

6 Lacy, R.C. (1993) Vortex: a computer simulation model for population viability analysis. WildI. Res. 20, 45-65
7 Lindenmayer, D.B. and Possingham, H.P. (1996) Ranking conservation and timber management options for Leadbeater's Possum in southeastern Australia using population viability analysis. Conserv. Biol. 10, 235-251
8 Lindenmayer, D.B. et al. (1995)A Review of thegeneric computer-programsALEX, Ramas/Space and Vortex for modeling the viability of wildlifemetapopulations. Ecol. Model. 82, 161-174
9 McCarthy, M.A. and Broome, L.S. (2000)A method for validating stochastic models of population viability: a casestudy of the mountain pygmy-possum (Burramys parvus). J . Anim. Ecol. 69, 599-607
10 Engen, S. and Saether, B.E. (2000) Predicting the timeto quasi-extinction for populations far below their carrying capacity.J . Theor. Biol. 205, 649-658
11 Coulson, T. et al. (1999) Small-scalespatial dynamics in a fluctuating ungulate population. J. Anim. Ecol. 68, 658-671

12 Albon, S.D. et al. (2000) Temporal changes in the key factors influencing the population dynamics of red deer.J . Anim. Ecol. 69, 1096-1109
13 Eberhardt, L.L. (1977) Optimal policies for the conservation of largemammals, with special referenceto marineecosystems. Env. Conserv. 4, 205-212
14 Mangel, M. and Tier, C. (1994) 4 facts every conservation biologist should know about persistence. Ecology 75, 607-614
15 Ludwig, D. (1998) Management of stocks that may collapse. Oikos 83, 397-402
16 McCarthy, M.A. and Lindenmayer, D.B. (2000) Spatially-correlated extinction in a metapopulation model of Leadbeater's Possum. Biodiv. Conserv. 9, 47-63
17 Possingham, H.P. and Davies, I. (1995)ALEX - a Model for the viability analysis of spatially structured populations. Biol. Conserv. 73, 143-150
18 Possingham, H.P. et al. (1993)A framework for the improved management of threatened species based on PVA. Pacific Conserv. Biol. 1, 39-45

Tim Coulson*

Large Animal Research Group, Dept of Zoology, Downing Street, Cambridge, UK CB2 3EJ.
*e-mail: tnc20@cam.ac.uk

Georgina M. Mace

Institute of Zoology, Zoological Society of London, Regent's Park, London, UK NW1 4RY.

Elodie Hudson

Renewable Resources Assessment Group, T.H. Huxley School of Environment, Earth Sciences and Engineering, Royal School of Mines, Imperial College London, Prince Consort Road, London, UK SW7 2BP.

Hugh Possingham

Centre for Conservation Biology, Depts of Zoology and Mathematics, The University of Queensland, St Lucia, QLD 4072, Australia.

