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Although population viability analysis (PVA) is widely used
in setting conservation policy, there is disagreement about
the usefulness of this method. Objections have been raised
concerning the precision of predictions in view of the
short time series of data available and the sensitivity of esti-
mates of extinction risk to estimated parameters (Hamil-
ton & Moller 1995; Taylor 1995; Groom & Pascual 1998;
Ludwig 1999). Beissinger and Westphal (1998) reviewed
the use of demographic models for endangered-species
management. They pointed out that poor data cause diffi-
culties in parameter estimation, which in turn lead to un-
reliable estimates of extinction risk. There are additional
problems with model validation, especially if all available
data have been used to estimate parameters. Beissinger
and Westphal (1998) recommend that PVA be used to
evaluate relative rather than absolute extinction risk, that
projections be made only over short time periods, and that
simple models be used rather than complicated ones. Fie-
berg and Ellner (2000) showed that values of the quasi-
extinction probability—the probability of decline to a
lower population threshold—for a simple model range
between 80% and 5% as the value of the intrinsic growth
rate 

 

r

 

 varies between 

 

�

 

0.03 and 

 

�

 

0.02. Such a range in
estimates of 

 

r

 

 is common for data sets of moderate size.
They also show that a precise estimate of extinction prob-
ability over a horizon of 

 

t

 

 years requires between 5

 

t

 

 and
10

 

t

 

 years of data, and that similar results hold for age-
structured models. In a recent article, Brook et al. (2000)
used field data on declining species to test the accuracy
and bias of PVA models for predicting extinction risk
and concluded that “PVA is a valid and sufficiently accu-
rate tool for categorizing and managing endangered spe-
cies.” We examined the reasons for these differing as-
sessments of the value of PVA.

Brook et al. (2000) considered 21 long-term data sets
(11–57 years, mean 

 

�

 

 24.9). They used the first half of
each set to estimate parameters, with a variety of PVA
software packages. They used the second half of each
set to test the predictions of each package. The predic-
tions were tested by comparing the actual and predicted
numbers of species that declined below a given thresh-
old abundance, which was defined by specifying a target
risk level and using the PVA model to identify the corre-
sponding threshold. They applied a significance test to
these differences between the predicted and actual num-
ber of species falling below the thresholds, and failed to
detect any significant differences (their Table 1 & Fig.
1). They applied similar tests to final population sizes
with analogous results.

Brook et al. (2000) tested PVA models only on actual
field data, whereas other authors used simulated data.
Various methods for testing PVA predictions with field
data are reviewed by McCarthy and Broome (2000) and
McCarthy et al. (2001). As McCarthy et al. (2001) empha-
size, a valid test must be based on data that were not
used to fit the model. In view of the amount and quality
of data necessary for parameterizing a complex popula-
tion model, field data sets adequate for both parameteriz-
ing and testing a model will generally be scarce. In con-
trast, simulated data allow for the replication necessary
to evaluate the precision of model-derived estimates rela-
tive to the true extinction risk or population growth rate,
which are known exactly for a simulated population. Simu-
lated data may also have shortcomings. Taylor et al. (2000)
discuss the merits of using simulated data for model testing.

Modern statistical practice requires that every statisti-
cal estimate be accompanied by a measure of its preci-
sion if inferences are to be drawn from these estimates
(Sokal & Rohlf 1981). This general principle has special
force for extinction-risk estimates based on PVA, for
which investigations have repeatedly shown lack of pre-
cision. For complicated statistical models such as those
used in PVAs, there may be no way to derive confidence
intervals analytically, but they are readily obtained from
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simulations. White (2000) and Sæther et al. (2000) show
how to use simulations to obtain confidence intervals for
complicated models. Alternatively, confidence intervals
can be obtained for some models by repeatedly resam-
pling real data (Sokal & Rohlf 1981). Brook et al. (2000)
do not estimate confidence intervals for their extinction-
risk estimates, leaving the precision of their estimates un-
clear.

The tests of Brook et al. (2000) are applied to an ensem-
ble of species rather than to individual species. Such a
test provides information about the bias in the risk esti-
mates, but it provides little information about their pre-
cision because the expected total number of extinctions
depends only on the average risk over the ensemble. We
illustrate this distinction with two models ( Fig. 1) based

on Tables 2 and 3 in the supplementary material of Brook
et al. (2000). The first model ( Fig. 1a & 1b) is the unstruc-
tured density-independent growth model 
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)) (the model used for theoretical analyses by
Dennis et al. [1991] and Fieberg & Ellner [2000]), with
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) a Gaussian(

 

�

 

,

 

�

 

2

 

) random variable with 
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0.044,
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�

 

 0.3. The value of 

 

�

 

 is a rounded average over spe-
cies of the values in Brook et al.’s Table 2, and the abso-
lute value of 

 

�

 

 (0.044) equals the average of |

 

�

 

| over
species. The second model (Fig. 1c & 1d) is an age-struc-
tured Leslie matrix model with logistic density depen-
dence in neonate survival. The mean and coefficient of
variation of each vital rate for this model were derived
by taking the average of the corresponding values for
each species in Brook et al.’s Table 3, and rounding

Figure 1. Results from simulated 
population viability analyses 
(PVA) using parameters based on 
Tables 2 and 3 in the supplemen-
tary material of Brook et al. 
(2000). (a) Comparison of ob-
served and predicted total number 
of extinctions for a set of 21 spe-
cies, as in Fig. 1 of Brook et al. 
(2000), based on the unstructured 
model described in the text. Five 
replicates are plotted. For each of 
the 105 trials (21 species � 5 repli-
cates), we simulated a PVA as de-
scribed in the text. (b) Comparison 
of actual and estimated extinction 
risks for each of the 105 trials used 
in panel (a). Actual extinction risks 
were calculated by running 25,000 
simulations of the model using the 
true parameter values and record-
ing the fraction of runs crossing be-
low each estimated threshold from 
(a). Dashed lines show the tenth 
and ninetieth percentiles of the dis-
tributions of estimated extinction 
risks. (c) Comparison of observed 
and predicted total number of ex-
tinctions, as in panel (a), based on 
the age-structured, density-depen-
dent model described in the text. All 
simulations began with a popula-
tion in stable age distribution for 
the mean matrix with a population 
density of 500. (d) Comparison of 
actual and estimated extinction 
risks, as in panel (b), for the 105 
trials with the age-structured, den-
sity-dependent model.
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slightly. Our model species had juvenile and adult
stages, with first breeding at 2 years of age and a maxi-
mum age of 15 years. The mean (coefficient of variation) of
vital rates were as follows: adult annual fecundity, 0.6
(40%), juvenile survival, 0.6 (15%), adult survival, 0.75
(20%). Gaussian distributions truncated at 0 were used for
random variations in vital rates. We assumed that neonate
survival (or, equivalently, adult fecundity) was a function
of adult density, with the value given above holding at
500 adults and decreasing linearly to zero at 1000
adults—hence, a maximum adult fecundity of 1.2/year at
low adult densities. We assumed that this form of density
dependence was known a priori, but the mean and vari-
ance of the survival rates and maximum fecundity had to
be estimated from data.

For each model we simulated a PVA as follows. We as-
sumed 

 

n

 

 

 

�

 

 24 years of data and generated 12 simulated
years of data to simulate the data-collection process (i.e.,
12 simulated 

 

r

 

(

 

t

 

) values for the unstructured model, 12
values each of adult survival, juvenile survival, and maxi-
mum adult fecundity for the age-structured model). We pa-
rameterized the models by computing the sample mean
and standard deviation of the simulated data for each vital
rate. We then simulated the parameterized model 25,000
times to determine a series of quasi-extinction thresholds
yielding extinction risks of 5%, 10%, 20%, and so forth, over
a 12-year time period. We performed one model run with
the true parameter values for each species, and we recorded
the total number of species crossing below each threshold.

Figures 1a and 1c are analogous to Fig. 1 of Brook et
al., showing good agreement between actual and PVA–
estimated total number of extinctions over ensembles of
21 test cases. Figures 1b and 1d compare the actual and
estimated risks for each species individually. The spread
in individual risk estimates is wide, so these estimates would
not be reliable for assessing or comparing individual spe-
cies. Fig. 1d illustrates that using a more realistic (and there-
fore more complicated) model only aggravates the prob-
lem, even though the amount of data was increased in
exact proportion to the larger number of parameters in
the more complex model and the density dependence
was assumed to be known a priori. These results show
that the ensemble-level tests of Brook et al. (2000) were
inadequate to assess the precision of PVA risk estimates.
The results of Fieberg and Ellner (2000) suggest that
PVA will not be precise unless the sample size greatly
exceeds the prediction interval.

There is an additional reason for caution in applying
the results of Brook et al. (2000): their conclusions were
drawn from failure to reject null hypotheses. In such a
case, proper inference requires that the size of the Type
II error be examined by a power analysis (Peterman 1990;
Thompson et al. 2000), but Brook et al. do not provide such
an analysis. The bottom line of their Table 1, where errors
of a factor of two too high or too low are not statistically sig-
nificant, suggests that extremely large differences would be

required to reject the null hypothesis for the 5% extinction
risk typical of published PVAs. This lack of power is not due
to poor choice of methods but is an unavoidable conse-
quence of the scarcity of long-term data sets.

How useful is PVA, in view of its limitations? Thompson
et al. (2000) provide an example to be emulated. They use
PVA and power analysis to explore the consequences of
some management strategies. They base their analysis on a
range of assumptions about the rate of population decline,
rather than relying on a single estimated rate. They use
power analysis to determine the length of data series re-
quired to detect the decline. An important feature of this
analysis and others presented in the same special section
of 

 

Conservation Biology

 

 is careful accounting for uncer-
tainty and its consequences for management.

Similar uses of PVA for comparative purposes take ad-
vantage of its ability to summarize diverse data and ex-
plore the consequences of alternative actions (Groom &
Pascual 1998; Burgman & Possingham 2000). For exam-
ple, Lindenmayer and Possingham (1996) used PVA to
compare timber-management options for conservation
of Leadbetter’s possum (

 

Gymnobelideus leadbeateri

 

) in
southeastern Australia and found that the ranking among
the options was robust to parameter and model uncer-
tainties. This is quite different from attempting to make
quantitative predictions of extinction risk based on
small data sets. It is limited, however, to within-species
comparisons of relative risk under different management
scenarios. When a comparison between species is at-
tempted—for example, to assay which has the greatest
need for immediate intervention—the uncertainties in
the absolute risk estimates for each species are likely to
be too high for such comparisons to be meaningful.

Brook et al. (2000) tested predictions over an average
time interval of about 13 years, so their results are rele-
vant to 10- and 20-year time frames used for World Con-
servation Union listing of critically endangered and en-
dangered species. Such short-term predictions can be
important for formulating a management framework. But
published PVAs generally have used much longer time in-
tervals, 50–200 years, with 100 years the most common
( Beissinger & Westphal 1998; Fieberg & Ellner 2001). As
our results indicate, risk estimates for longer time inter-
vals are increasingly imprecise, with most estimates near
zero or 1 because the predicted long-term risk is extremely
sensitive to the estimated mean growth rate (Dennis et al.
1991; Ludwig 1999; Fieberg & Ellner 2000).

Coulson et al. (2001) raise additional concerns about the
conclusions of Brook et al. (2000). They caution that
data for most threatened or endangered species will be
sparse and of lower quality than the data sets analyzed
by Brook et al. Furthermore, they argue that predictions
are likely to be accurate only if future mean and varia-
tion of vital rates or population growth will be similar to
the data used to parameterize the model. Populations
that are subject to rare high-recruitment events or cata-
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strophic mortalities will therefore provide additional dif-
ficulties with regard to model parameterization and reli-
ability. In summary, the results of Brook et al. (2000) are
not sufficient to justify PVA as an accurate tool for cate-
gorizing individual species, even for short (10- to 20-
year) time intervals. Their results provide evidence (sub-
ject to concerns about power) that risk and growth rate
estimates are unbiased, which implies that PVA could be
useful in predicting the total loss rate for a large group
of species.

For assessment of individual species, it is essential to
account for imprecision in parameter estimates and its con-
sequences for risk assessment. A variety of tools are avail-
able. We have already mentioned confidence intervals on
the risk of extinction within a given time horizon. An analo-
gous tool is prediction intervals for the time to extinc-
tion ( Engen & Sæther 2000), but methods to compute
these are available only for very simple models. Alterna-
tively, extinction probabilities can be calculated for the
range of plausible parameter values by Bayesian methods
( Ludwig 1996). Similarly, using frequentist methodology,
one can calculate the level of confidence that the true
probability of extinction is less than any value (essentially
a 

 

p

 

 value associated with the true probability of extinc-
tion). One may then display the range of likely extinction
probabilities or weight them by a measure of their plausi-
bility in light of the data. A weighting procedure has the
merit of producing a single measure of risk, but this mea-
sure is sensitive to various assumptions made in the assess-
ment process. Perhaps a better strategy would be to pro-
duce a prediction interval for the population size over the
entire time horizon of interest, taking into account uncer-
tainty in parameter estimates (as described by Sæther et al.
2000). This eliminates the subjective choices of a specific
time horizon and quasi-extinction threshold for computing
an extinction risk. Population viability analysis may then
be one useful tool among a variety of decision-making aids,
which might include historical and predicted future habitat
losses, recent population trends, and genetic considerations.
As is often the case with important environmental problems,
even the best available science may be unable to provide the
level of predictability and accuracy we might wish.
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