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Animals are often attracted to one another when selecting habitats, but little is known about the rules governing conspecific
attraction. We use Akaike Information Criterion to evaluate alternative models of the effects of conspecifics on individual choice
in the context of habitat selection. One set of models was tested using data collected on virgin female flies, Drosophila melanogaster,
selecting habitats in the laboratory; a second set of models was tested using data collected on crabs, Ocypode rotundata, selecting
foraging patches in the field. Patterns of space use in the flies were most consistent with models indicating that individuals were
attracted to other females that selected traps during the same hour, as well as to cues left by females that had entered traps during
the previous hour. Results for the crabs were most consistent with a model which assumes that individuals preferred to join the
patch with the most crabs but that their ability to assess the number of crabs in alternative patches was constrained by basic
psychophysical principles (Weber’s law). These results provide support for hypotheses about the functional significance of
conspecific attraction in the flies and the crabs and illustrate the richness of information about conspecific attraction that
can be obtained when the same data set is confronted with alternative models of the ways that animals respond to one another
when selecting habitats. Key words: AIC, alternative models, conspecific attraction, Weber’s law. [Behav Ecol 16:974–980 (2005)]

Functional explanations for conspecific attraction fall into
two general categories: individuals benefit from the pres-

ence of conspecifics after arriving at a location (i.e., Allee
effects; Stamps, 2001; Stephens and Sutherland, 1999) or in-
dividuals use the presence of conspecifics as a source of in-
formation about the quality of habitats, food, or other salient
items in a given area (Danchin et al., 2004; Stamps,1988;
Stamps and Krishnan, in press). Thus far, however, most stud-
ies of conspecific attraction focus on whether or not it occurs,
rather than exploring hypotheses about the adaptive signifi-
cance of this behavior (e.g., see Muller et al., 1997; Schuck-
Paim and Alonso, 2001; Ward and Schlossberg, 2004).
One reason is that empirical studies of conspecific attrac-

tion traditionally rely on standard statistical approaches, in
which an alternative hypothesis (namely, that animals are
attracted to conspecifics in a given situation) is tested against
a null hypothesis (that individuals are not attracted to con-
specifics in that situation). Alternative statistical techniques
allow more sophisticated analyses of this phenomenon. These
approaches involve identifying several different models of bi-
ologically reasonable hypotheses, testing these models using
the same data set, and then selecting the model which best fits
the data (Anderson et al., 2000; Burnham and Anderson,
2002; Hilborn and Mangel, 1997).
The advantages and disadvantages of null hypothesis statis-

tical approaches versus multimodel approaches have been the
subject of lively discussion and debate for a number of years
(review in Gigerenzer et al., 2004). Some authors, including
Anderson et al. (2000), Burnham and Anderson (2002), and
Hilborn and Mangel (1997), strongly encourage multimodel
approaches, while others suggest that these new approaches
complement, but do not replace, null hypothesis testing (e.g.,

see Chow, 1998; Mogie, 2004). One indication that biologists
have found multimodel approaches useful is the recent
upsurge in these statistical techniques in ecology, psychology,
and other fields related to animal behavior. However, with
a few notable exceptions (e.g., Luttbeg and Langen, 2004;
Skalski and Gilliam, 2002), behavioral ecologists have not
taken advantage of these techniques. The current study dem-
onstrates how confronting the same data with alternative mod-
els can be used to study conspecific attraction in two contexts:
habitat selection by flies (Drosophila melanogaster) and foraging
patch selection by ghost crabs (Ocypode rotundata).
Conspecific attraction in adult D. melanogaster is usually as-

sumed to function in the location of mates or oviposition sites
(e.g., Amrein, 2004; Lefranc et al., 2001). This assumption is
based on observations suggesting that mature adult males and
mated females are attracted to one another (Lefranc et al.,
2001; Osses, 1998) and evidence that mature males produce
an aggregation pheromone, cis-vaccenyl acetate (cVA), which
is passed to females during mating and released with the eggs
(Bartelt et al., 1985).
Recently, however, Wertheim et al. (2002) demonstrated

that the growth and survivorship of larvae in a freshly cut fruit
is enhanced if multiple virgin females have previously been
allowed access to that fruit. He suggested that groups of
female Drosophila might inoculate fresh fruits with beneficial
yeasts and other microbes, thereby encouraging the develop-
ment of microbial communities which will eventually provide
high-quality food for their offspring. In turn, if multiple
females improve habitat quality for their offspring, one would
predict that virgin females would be attracted to other virgin
females at a fresh food substrate and that virgin females would
be sensitive to a range of cues (visual, olfactory, etc.) indicat-
ing the presence of other virgin females at a fresh food source.
Because females associated with a particular fruit spend a large
proportion of their time perched at locations away from that
fruit (Stamps et al., in press), we were particularly interested
in the possibility that virgin females might be able to detect

Address correspondence to J. Stamps. E-mail: jastamps@ucdavis.edu.
Received 2 February 2005; revised 25 May 2005; accepted 4 July

2005.

Behavioral Ecology
doi:10.1093/beheco/ari083

Advance Access publication 8 September 2005

� The Author 2005. Published by Oxford University Press on behalf of
the International Society for Behavioral Ecology. All rights reserved.
For permissions, please e-mail: journals.permissions@oupjournals.org



cues left behind by other females that had previously visited
a fruit. Hence, the hypothesis that Allee effects occur in
D. melanogaster yields several predictions about conspecific at-
traction in virgin females.
Preliminary observations of ghost crabs indicated that new-

comers were strongly attracted to other individuals at food
items (Eason P, unpublished data), so in this case, we focused
on the rules that individuals might use to determine which
foraging patch to join. Joining rules for conspecific attraction
are important because they determine the functional relation-
ship between the number of animals in a patch and the
chances that a new arrival will join that patch. For instance,
observations that the tendency of foraging individuals to join
a group increases as a function of group size (Krebs, 1974;
Murton et al., 1966; Pöysä, 1991; Wood, 1985) are consistent
with two hypotheses: new arrivals use the number of conspe-
cifics in a patch to assess patch quality or individuals benefit by
foraging in larger groups. Interestingly, however, when groups
of very different sizes co-occur within the same study area, the
relationship between attractiveness and group size is asymp-
totic (Krebs, 1974; Murton et al., 1966; Wood, 1985), for rea-
sons that are currently obscure (Pöysä, 1991).
One possible explanation for an asymptotic relationship

between attractiveness and group size is that animals prefer
to join larger groups but the ability of animals to count con-
specifics is constrained by general laws of psychophysics. In
particular, linear increments in sensation are proportional to
the logarithm of stimulus magnitude, a relationship known as
Weber’s law, or the Weber-Fechner law. Animal estimates of
numerosity conform to this law (Shettleworth, 1998), and re-
cent studies indicate that the nonlinear, compressed ‘‘number
scale’’ of animals may be directly related to the nonlinear
system by which neurones code numerical values (Dehaene,
2003; Piazza et al., 2004). Hence, we studied several plausible
joining rules for crabs, one of which specifies that the attrac-
tiveness of a patch increases as a function of the number of
individuals in the patch but that the ability of crabs to count
conspecifics is constrained by Weber’s law.

METHODS

Flies

Experiments
The experimental subjects were five recurrent F1s, each of
which was produced by crossing two different female isolines
(for details, see Stamps et al., in press). Each F1 is here in-
dicated by X/Y, where X is the maternal isoline and Y the
paternal isoline.
In order to determine whether patterns of conspecific at-

traction for virgin females varied as a function of conditions
at their natal site or conditions at postdispersal sites, we con-

ducted five experiments. These experiments varied with respect
to the food situation and structural features at the natal and/or
the postdispersal sites. The experiments were conducted in an
animal room (2.6 3 2.6 3 3.6 m), under a 11:13 h light:dark
cycle (lights on at 0900 h, off at 2000 h), with an average tem-
perature and humidity of 25�C and 68%, respectively.
Female pupae from one of the F1s were collected from vials

in which they had been raised in laboratory medium and al-
lowed free access to a ‘‘natal habitat’’ for their first day of adult
life, as described in Stamps et al. (in press). In brief, on the
evening of Day 0, two vials were either provisioned with 10ml of
‘‘conditioned food’’ or left empty (no food). Conditioned food
consisted of kiwi fruit, banana, or dextrose medium, which had
previously been used for foraging, oviposition, and larvae de-
velopment by flies from a single isoline (#755). Eleven female
pupae from one of the five genotypes were lightly painted with
liquid from the conditioned food and then placed on netting
within each vial. Then, the two vials were placed side by side in
structural features located in the animal room. Three types of
structural features were used: Leaf, a 1000-ml beaker with
green plastic leaves and wooden dowels; Wire, a 1000-ml beaker
with brown plastic wire and dowels; or Shavings, pine shavings
with short sections of wooden dowels. The food and structural
features to which the newly emerged females were exposed
during their first day of adult life in each of the five experi-
ments are indicated in Table 1.
At 0830 h on Day 2, any females remaining in the vials or the

surrounding structural features were induced to leave by gentle
shaking, the vials and structural features were removed from
the room, and two new ‘‘postdispersal’’ habitats were placed 3
m apart on a table in the room. Each new habitat included
a trap with clear plastic walls and a netted funnel at the top,
within which was a single piece of fruit. Three types of fruit were
used in the experiments: a freshly cut slice of banana, a freshly
cut slice of kiwi, or an ‘‘aged’’ slice of banana (cut 48 h before
being placed in the trap). Each trap was surrounded by struc-
tural features, either Leaf (green plastic leaves supported on
a framework of wooden dowels) or Wire (lengths of brown
plastic wire supported by a framework of wooden dowels).
The types of food and structural features used for the postdis-
persal habitats in each experiment are indicated in Table 1.
We counted the number of females entering each of the two

traps in each experiment each hour from 0900 to 2000 h on
Day 2 and Day 3 and from 0900 to 1700 h on Day 4. After
females had been counted, they were released outside of the
animal room, and the traps were replaced in their original
positions. At the end of each trial, the vials, structural features,
and traps were thoroughly washed with water prior to the
beginning of the next trial. For Experiments 1–4, the five
F1s were tested on a rotating basis, and each of the F1s con-
tributed approximately the same number of trials to the final
results. Experiment 5 focused on two F1s: 17/15 and 147/148.

Table 1

Protocols for experiments of conspecific attraction using virgin female Drosophila melanogaster

Postdispersal habitats
Number
of trialsExperiment Natal habitat Trap 1 Trap 2

1 Kiwi-Leaf Kiwi-Leaf Banana-Wire 17
2 Banana-Wire Kiwi-Leaf Banana-Wire 22
3 No food-Shavings Kiwi-Leaf Banana-Wire 9
4 Laboratory medium-Shavings Kiwi-Leaf Banana-Wire 6
5 Banana-Wire Aged banana-Wire Fresh banana-Wire 8

For natal and the postdispersal habitats, we first indicate the food at the site, followed by the type of
structural features at that site.
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Models
For each of the five experiments, we tested four different
models of conspecific attraction. These logit models predict
the probability that a fly would / enter Trap 1, based on other
parameters specific to each model.

Model 1: Independent Search (IND). This model assumes that
thedecisionsmadeby eachfly are independent of thosemadeby
other flies. For fly i, the probability of enteringTrap 1 is given by:

Prið1Þ ¼
1

11 expðpÞ ¼ /;

where p is fit from the data and reflects the relative attractive-
ness of Trap 1 versus Trap 2 for all the flies in the experiment.

Model 2: Follow First (FF). This model assumes that the flies in
each trial were attracted to the first fly that selected a trap in
their trial. A new parameter b captures this attraction. Let
the probability of fly i entering Trap 1 after the first fly has
entered Trap 1 be:

Prið1j1Þ ¼
1

11 expðp 1 bÞ ¼ /1: ð1Þ

Likewise, the probability that fly i enters Trap 1 after the first
fly has entered Trap 2 is:

Prið1j0Þ ¼
1

11 expðp � bÞ ¼ /�: ð2Þ

The unconditional probability of fly i entering Trap 1 is now:

Prið1Þ ¼
1

N
/1

N � 1

N

n1 � ci

N � 1
/1 1

n2 � ð1� ciÞ
N � 1

/�
� �

;

where nj is the number of flies that was observed to enter Trap
j during the interval under consideration, N ¼ n1 1 n2 is the
total number of flies in the interval and ci is the trap fly i
actually chose, ¼1 for Trap 1 and ¼0 for Trap 2.
The first term of this equation captures the movement of the

first fly that cannot be influenced by any of the others. The first
fly is therefore governed by the independent search model
(IND). Because any of the N flies could have been the first
(we do not know), there is a chance 1/N that fly i was the first.
The second term is the remainingN � 1 flies. For each of these,
we first consider what the first fly did. The first fly could have
been either inTrap 1or inTrap 2.We select a fly at random from
all theflies collected in thehour, except fly i. Thus, for example,
if there were three flies collected, and two entered Trap 1 and
one entered Trap 2, then either fly that entered Trap 1 could
have followed either a first fly in Trap 1 or Trap 2. Thus, there is
a half chance of either. The fly that entered Trap 2, however,
must have followed a fly in Trap 1, if she was not the first fly.
When b, 0; flies are attracted to the first fly. When b. 0;

flies avoid the first fly.
Model 3: Hour-lag Attraction (HL). This model assumes that

the decisions of flies in a given hour are affected by cues left
behind by flies that visited traps the previous hour. In partic-
ular, we assumed that the ratio of flies in Trap 1:Trap 2 the
previous hour affected the choices of flies during the current
hour. We model the influence of the ratio as:

h ¼ 2dðT� � 0:5Þ;

where T� ¼ n�
1 =N � is the proportion of flies from the pre-

vious hour that entered Trap 1 (the hour-lagged proportion of
flies in Trap 1). The parameter d measures the strength of the
influence of T�, which is assumed to depend on the ratio, not
the absolute difference in numbers (see discussion on Weber’s
law, Introduction). If the proportion from the previous hour

was 0.5, then there is no net influence of behavior from the
previous hour. Similarly, when d ¼ 0; flies ignore cues from
the previous hour.
The probability of a fly i entering Trap 1 is then:

Prið1Þ ¼
1

11 expðp � hÞ:

Thus, when h . 0; more flies in Trap 1 from the previous hour
attract flies to Trap 1. When h , 0; flies in Trap 1 from pre-
vious hour repel flies from Trap 1.

Model 4: Follow First 1 Hour-lag (FF-HL). This model com-
bines Models 2 and 3. h is computed as in Model 3, and p in
Model 2 becomes p# ¼ p � h: Thus, just substitute for / in
Model 2:

/# ¼ 1

11 expðp � hÞ:

Model fitting
In preliminary analyses, we fitted models by experiment and
genotype (F1). These analyses confirmed earlier suspicions
that each experiment type needed to be fit separately because
the parameter p varied across the experiments (see Table 2).
In other words, the attractiveness of Trap 1 relative to Trap 2
varied as a function of conditions in the natal habitat and
conditions at the new postdispersal habitats. However, we were
unable to detect any sizeable or consistent effect of genotype
on any of the results. Accordingly, in this study, we combined
data from the different F1s and then determined model fits
separately for each of the five experiments.
For each experiment and model, we computed the log

likelihood that each of the four models correctly described
the choices made by the individuals in that experiment. These
log-likelihood values were then used to compute the value of
Akaike’s information criterion (AIC) for each experiment and
model (see Burnham and Anderson, 2002). An AIC value (de-
fined as twice the negative log likelihood plus twice the num-
ber of parameters in the model) provides an estimate of the
relative distance between a fitted model and the unknown
true mechanisms that generated the observed data. For any
given data set, models with smaller AIC values are more likely
to reflect the true underlying mechanisms than models with
larger AIC values.
Note that in addition to varying as a function of log-

likelihood values, AIC values also depend on the number of
parameters in a model. This is because adding extra parameters
to a model virtually always improves the fit of a model to the
data. Hence, the issue is whether adding a parameter to a model
increases its fit to the data, over and above the extent of im-
provement expected even if that parameter captured no actual
structure in the data. Looking at it another way, differences in
AIC values reflect differences in the ability of the models to
predict the results in the data set, after adjusting for the degree
of fit expected on the basis of the complexity of each model.
As with many statistics, the absolute magnitude of AIC is less

informative than the relative values across different candidate
explanatory models. Thus, statisticians compare the relative
magnitudes of AIC. This is most easily done with ‘‘Akaike
weights.’’ The Akaike weight wx for a model x in a set of n
models given by:

wx ¼ exp½�0:5ðAICx � AICminÞ�
+n

i¼1exp½�0:5ðAICi � AICminÞ�
:

This quantity ranges from zero to one, higher values indicating
better comparative fit to data. Akaike weights quantify relative
support of each model (Burnham and Anderson, 2002).
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After AIC values have been computed for all the models
which are fit to a given data set, Akaike weights associated with
each model are used to evaluate which of these models best
represents the underlying processes. Some statisticians inter-
pret Akaike weights in a probabilistic fashion: the number
indicates the approximate number of times the model would
have the lowest AIC in a large number of repeat trials (experi-
ments) on the same population. Bootstrap analysis supports
this interpretation (Burnham and Anderson, 2002).
In addition to using AIC to compare models of the effects

of conspecifics on choice, we also compute a measure, D,
which reflects the overall predictive value of each model. D
is analogous to the measure R2 provided by linear regression.
In the current study, D reflects the predictive power of each
model, relative to a model in which individuals were assumed
to select traps entirely at random. Given the design of the
current study, the probability that a fly would randomly select
Trap 1 rather than Trap 2 was 0.5, so that the fit of a random
model is given by LLrandom ¼ N logð0:5Þ, where N ¼ the total
number of observations. Hence, the value of D for model x is

Dx ¼ 1� LLx

LLrandom
:

D is a useful accessory to AIC because a model may be the
best in a given set but still explain only a small fraction of
variance in behavior. D ranges from zero, when model x has
the same fit as the random model (the worst any model can
do), to one, when model x perfectly predicts all the variance
in the data. Thus, in the current study, D provides an indica-
tion of how well each model predicted the choices made by all
the individuals in the experiment. Like R2, D should not be
used to rank or select models because it almost always in-
creases as one adds additional parameters to a model.

Crabs

Ghost crabs O. rotundata were studied at a beach near Ras as
Sawadi, Sultanate of Oman (23� 45# N, 57� 48# E). This beach

supports a high density of crabs (more than 550 individuals per
100 m of shoreline [Eason P, unpublished data]). The crabs
emerge from their burrows when large areas of wet sand are
available (Vannini, 1976) and primarily forage by deposit feed-
ing and scavenging on larger resources that wash up on to the
beaches (e.g., dead fish or turtles) (Eason P, unpublished data).
We ran trials between 1500 and 1830 h on 7 days between 31

May 2003 and 29 June 2003. As a food source, we used pieces
of dry cat food moistened with chicken broth. For each ex-
periment, we set out two 1 3 1–m patches located 6 m apart
from one another from center to center. The two patches
were oriented parallel to the shoreline and approximately
15 m from the water; the Right patch was to the right for
a human observer facing the water and the Left patch to
the left. Within each patch, we placed two pieces of cat food
every 10 cm, so that there were 11 rows and 11 columns of cat
food in each patch. New arrivals were considered to have
chosen one of the two patches when they moved inside of
a circle located 1 m from the center of the food patch.
In order to avoid sampling the same individuals, after we

finished one trial, we moved approximately 50 m along the
beach before setting up the next trial. This practice, com-
bined with the large numbers of crabs present in the study
area (see above), made it unlikely that any individuals were
sampled in more than one trial.
In each of 13 trials, the food patch visited by the first crab was

videotaped, while an observer sitting approximately 15 m away
from the food patches recorded data for the crabs that arrived at
the other patch. Preliminary observations indicated that crabs
ignored a still human; indeed, crabs frequently walked right
next to the observer. For each crab, we recorded which patch
it chose (Left or Right), the time at which it reached that patch,
and the number of crabs in each of the two patches when the
crab arrived at the patch it selected. All crabs within 1 m of the
center of the patch were considered to be in the patch.

Models
The basic model assumes that the chance that a crab will
select a patch is independent of the decisions made by other

Table 2

Models fitted to fly experimentsa

Measures of fit Parameter estimates

Experiment N Model AIC w D p b d

1 345 IND 294.535 0.018 0.39 �1.7289
FF 287.706 0.541 0.41 �1.4174 �1.2078
HL 293.195 0.035 0.40 �1.5235 0.4301
FF-HL 288.280 0.406 0.41 �1.2919 �1.0793 0.3047

2 455 IND 632.498 4.52 3 10�28 0.00 .0484
FF 514.305 0.021 0.19 �.0177 �3.2603
HL 570.574 1.26 3 10�14 0.10 �.0052 1.0327
FF-HL 506.612 0.979 0.21 �.0046 �2.2605 0.6179

3 129 IND 175.956 0.006 0.03 �.3926
FF 167.546 0.419 0.09 �.4156 �1.7481
HL 174.113 0.016 0.05 �.3178 0.5813
FF-HL 166.968 0.559 0.10 �.3149 �1.6789 0.5985

4 104 IND 53.297 0.032 0.64 �2.6288
FF 50.892 0.108 0.67 �1.9505 �2.3089
HL 49.047 0.271 0.69 �2.1283 1.5150
FF-HL 47.496 0.589 0.71 �1.4783 �2.2949 1.4278

5 139 IND 194.688 1.37 3 10�10 0.00 .0144
FF 153.072 0.149 0.23 �.1285 �4.2808
HL 167.932 8.86 3 10�05 0.15 .1712 1.3468
FF-HL 149.595 0.850 0.25 .0124 �2.4791 0.9142

a The table presents the model fitting results from each of the five experiments, with sample sizes (N). For each model, we show three measures of
fit: AIC, Akaike weight (w), and D (fit relative to random model). Maximum likelihood parameter estimates follow for each model. See text.
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crabs but is simply affected by the change in odds, a, that
a crab will select the Left rather than the Right food patch.
To control for potential variation in the attractiveness of Left
and Right patches, we allowed a to vary as a free parameter
and included an estimate of a in each model.

Model 1: Independent Choice (IND). This model assumes that
crabs select patches independently of one another. The prob-
ability that crab i chooses the Left (L) patch is given by:

PriðLÞ ¼
1

11 expðaÞ:

This is a simple logit, as was used for the fly data. The four
other models assume that the chances that a crab will select
the Left patch depend not only on a but also on cues derived
from other crabs. In these cases, the equation becomes:

PriðLÞ ¼
1

11 expða1 bV Þ;

where different rules yield different values of V. Details of the
four models of conspecific attraction are provided below.

Model 2: Lag1. This model assumes that individuals which
selected a patch at time step t observed other crabs and fol-
lowed the crab that selected a patch during the previous time
step (t � 1). For this model, for each crab that selected a patch
at time t, V ¼ 1 if the crab that selected a patch at (t � 1) went
Left, V ¼ �1 if the previous crab went Right, and V ¼ 0 if no
crab selected a patch during the time interval t � 1.

Model 3: MajorityLR. This model assumes that when select-
ing a patch, crabs estimate which of the two patches currently
contains the most crabs and then use this estimate when de-
ciding which patch to join. For this model, V ¼ 1 if there were
more crabs on the Left, V ¼ �1 if there were more crabs on
the Right, and V ¼ 0 if the number of crabs on the Left and
Right was the same or if the crab was the first arrival at either
patch.

Model 4: DiffLR. This model assumes that when individuals
select a patch, they estimate the number of crabs in the Left
and Right patches and use the difference between these num-
bers when selecting one of the two patches. In this case, V ¼
the difference in the number of crabs at the Left and the
Right patch when each individual selected a patch.

Model 5: RatioLR. This model assumes that crabs follow the
Weber’s law when estimating the number of crabs in the Left
and Right patches. The ratio of the number of crabs on the
Left and the Right (L/R) ¼ (logL � logR). Hence, L/R re-
flects the difference in the number of individuals that crabs
would perceive in the Left and Right patches if their estimates
of numerosity followed Weber’s law. For the current analysis,
we took the natural logarithm of (L/R), to balance the span of
data on the left and right sides of zero.

Model fitting
Preliminary analyses indicated no variation in results as a func-
tion of trial number, so data from all the trials were combined
in the analyses. Initial analysis indicated that the behavior of
the crabs changed when 31 crabs had selected the food
patches, so we focused on individuals that selected a patch
before the 31st crab arrived at either of the two patches.
The 13 trials yielded a total of 358 data points, which were
fitted to each of the five models indicated above.
For each of the five models, we computed the log likelihood

that the model correctly described the choices made by the
crabs and then computed the AIC values and Akaike weights
for each model. D values were computed based on the as-
sumption that crabs selecting patches entirely at random
would be equally likely to select the Left and Right patches.

RESULTS

Flies

Across the five experiments, there was support for two models
of conspecific attraction (FF and FF-lag) for virgin female
D. melanogaster (Table 2). In every experiment except Experi-
ment 1, FF-lag had the best-adjusted fit, as indicated by the
fact that the FF-lag model had the lowest AIC values and the
highest Akaike weights. However, in two experiments (Exper-
iment 1 and Experiment 3), the Akaike weights were compa-
rable for the FF-lag and the FF model. This suggests that the
explanatory power of the hour lag effect is small relative to the
explanatory power of within-hour conspecific attraction. This
can be seen by noticing that the Akaike weights for within-
hour attraction alone (FF) are greater than those of hour-lag
attraction alone (HL) in four out of five experiments. Con-
versely, there was little support for the hypothesis that virgin
female D. melanogaster selected traps independent of one
another. In all five experiments, the AIC values for the IND
model were higher, and the Akaike weights lower, than those
for the best-fitting conspecific attraction models.
The D values tell a similar story. In every experiment, the

highest D values were generated by the FF-lag model, and the
lowest D values were generated by the IND model. However,
across the experiments, most of the D values were relatively
low, indicating considerable unexplained variation in the flies’
behavior. This illustrates the important distinction between
identifying the best model from a set of models and the ability
of that best model to describe all the patterns in a data set.

Crabs

Our results verify that crabs were strongly attracted to conspe-
cifics when selecting foraging locations: all the models of con-
specific attraction yielded AIC values much smaller than the
AIC value for the IND model (Table 3). Of the four models of
alternative rules for conspecific attraction, the best-fitting
model, by a very wide margin, was the RatioLR model, which
assumes that the attractiveness of a patch to the crabs is pos-
itively affected by the ratio of the number of crabs in the Left
and the Right patches at the time when the crab selected
a patch. The Akaike weights for the other three models are
very small, indicating very little relative support. Despite the
very high Akaike weight of the RatioLR model, however, its D
value of 0.40 indicates that there is still considerable unex-
plained variance among crabs in patch choice. Hence, as
was the case with the flies, the most strongly supported model
in a set of models may not necessarily explain most of the
variance in that data set.

Table 3

Model fits for crab dataa

Model

Measures of fit
Parameter
estimates

AIC w D a b

IND 468.43 9.37 3 10�37 0.06 0.6104
Lag1 337.68 2.31 3 10�8 0.33 0.3761 �1.4532
MajorityLR 331.78 4.43 3 10�7 0.34 0.1108 �1.5735
DiffLR 326.09 7.60 3 10�6 0.35 0.3116 �0.2187
RatioLR 302.52 1.00 1 00 0.40 0.4200 �0.4667

a N ¼ 358 observations. For each model fit the crab behavioral data,
we present the same three measures of fit we presented for the fly
data. Maximum likelihood parameter estimates follow the measures
of fit for each model.
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DISCUSSION

By comparing multiple (nonnull) hypotheses, we have tried to
understand which of the several plausible processes may ac-
count for conspecific attraction in these two systems. Instead
of simply asking whether or not virgin female D. melanogaster or
O. rotundata crabs were attracted to one another, the multi-
model approach described here allowed us to address more
detailed questions about conspecific attraction in both species.
In the flies, our results indicate that virgin females were not

only attracted to other virgin females located at fresh food
substrates during the same hour but also to cues (probably
olfactory) left behind by virgin females that had entered the
traps the previous hour. The latter results are interesting
because virgin females lack access to the long-distance aggre-
gation pheromone, cVA. However, studies using adult male
bioassays show that virgin females produce a volatile phero-
mone which can be detected by conspecifics (Tompkins et al.,
1980; Venard and Jallon, 1980). Attraction of virgin female
flies to one another is consistent with the hypothesis that
groups of females may be able to enhance habitat quality
for their offspring (Wertheim et al., 2002) and imply that
the benefits of conspecific attraction in D. melanogaster may
extend beyond mate attraction and the location of high-
quality oviposition sites.
In the crabs, the best model of the rules governing conspe-

cific attraction is one which assumes that the attraction of the
crabs to two foraging patches is positively related to the ratio
of the number of crabs in those two patches. It is doubtful that
crabs benefit by foraging in groups because crabs foraging at
rich resource patches are highly aggressive to one another
(Burggren and McMahon, 1988; Eason P, unpublished data).
A more plausible hypothesis is that crabs use the relative num-
ber of conspecifics at a foraging patch to estimate the relative
quality of that patch but that their ability to count conspecifics
is constrained by Weber’s law. Similar asymptotic relationships
between foraging group size and the tendency of newcomers
to join a group have been reported in other animals (see In-
troduction). We predict that this same asymptotic relationship
will be observed in other situations in which conspecific at-
traction varies as a function of group size and in which indi-
viduals are confronted with a wide range of group sizes (e.g.,
group sizes that differ by an order of magnitude or more).
Of course, in the current experiment, the tendency of crabs

to be attracted to the patch with the most foragers produced
suboptimal foraging behavior because most animals com-
peted with conspecifics for access to food in one patch while
ignoring an adjacent patch filled with food items. However,
under natural conditions, in which ephemeral food items of
a wide range of sizes and quality are used by the crabs, indi-
viduals might reasonably expect large aggregations of forag-
ing crabs to be indicative of higher food quantity or quality. If
the probability of finding another food patch is sufficiently
low, foraging with competitors might be the best option.
As is always the case with empirical research, our conclu-

sions are limited by our ability to construct plausible models
to explain patterns in the data. Just as there is no guarantee
that the alterative hypothesis in null hypothesis testing is the
‘‘correct’’ hypothesis, there is no guarantee that a multimodal
approach necessarily includes the model which best reflects
the processes responsible for generating the patterns in that
data set. For instance, it is possible that we have overlooked
a joining rule for the crabs that fits their data better than any
of the rules used in the current study.
However, a major advantage of the multimodel approach is

the ease with which one can determine whether a new hypoth-
esis fits a data set better than any of the hypotheses previously
confronted with that data set (e.g., Luttbeg and Langen,

2004). For instance, if a new hypothesis about conspecific
attraction predicts a new joining rule for crabs, it would be
a simple matter to compute AIC statistics for a model based on
that rule and then compare these to the values obtained in
the current study. Thus, the multimodel approach not only
encourages researchers to consider a number of different
hypotheses when they first analyze their data but also encour-
ages them to remain open to new hypotheses that might pro-
vide better explanations for their data in the future.
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