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Models for data with too many zeros: 
Fish in Florida ranches’ wetlands 

 
Species counts are particularly difficult to analyze because commonly, zero inflation results from 
having far more zeros that what would be expected for Poisson or Negative Binomial 
distributions. We use data collected by Bohlen et al. (2014) aimed at understanding the effect of 
hydrology on species abundance to evaluate government policies encouraging water retention. 
They used a stratified random sampling method to gather data on abundance of several 
organisms in wetlands within four ranches in Highlands and Okeechobee Counties in Florida, 
USA. Here, we focus on the abundance of fish (Figure 1). For this analysis we ignore the 
hierarchical nature of the sampling among wetlands within ranches.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                        
 
 
 
Figure 1. Above: View of one of the sampled wetlands. Below: Female and male Mosquito 
fish (Gambusia affinis), one of the species found in our samples. 
 

Bohlen et al. (2014) proposed hypotheses on the shape of the responses of organisms to wetland 
water depth; in particular they expected a unimodal distribution for fish abundance (Figure 2). 
They also predicted that fish abundance will vary among ranches because of management history 
and local attributes.    
 
 
 
 
 
 
 
 
 
Figure 2. Hypothesis of change of fish abundance with water depth 
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Figure 3. Histograms of fish abundance for (i) the whole sample, (ii) those samples 
where fish were observed, (iii) expected frequency based on a Poisson distribution 
based on the overall mean, (iv) expected frequency based on a Poisson distribution 
based on the mean of samples > 0, (v) expected frequency based on a negative binomial 
distribution based on the overall mean and dispersal parameter = 0.58, (vi) expected 
frequency based on a negative binomial distribution based on the mean of samples > 0 
and dispersal parameter = 0.58, (vii) expected frequency based on a negative binomial 
distribution based on the overall mean and dispersal parameter = 100, (viii) expected 
frequency based on a negative binomial distribution based on the overall mean and 
dispersal parameter = 0.19. In red the location of the overall mean, in blue that of 
the data > 0. Data is truncated to occurrences < 20 fish per sample.  

 
The origin of zeros  
 

The numbers of fish caught per sample was extremely variable. Most frequently no fish were 
caught, but 70 fish were caught at once in one occasion. A Poisson distribution with the same 
mean as the one observed in this study expects 297 zeros, not close to the 509 zeros observed. 
The prediction of 450 from the Negative Binomial with dispersal parameter 0.58 is closer but 
Zuur et al. (2009) caution that ignoring zero inflation biases the standard errors and causes over-
dispersion. There are techniques that deal with this excess of zeros, but they require 
understanding the nature of the zeros. We use the classification described in Martin et al. (2005) 
to classify those encountered in our study. 
 

1. Structural zeros: Fish were not present because the habitat was not suitable for them. 
2. Design errors: Fish were not found because of poor experimental design or sampling 

practices. 
3. Observer error: Fish were there but they were not seen. 
4. Organism error: The habitat was suitable but fish were not there.  
5. Bad zeros: Sampling outside the species range, for example fish out of water. 

 
Zeros due to design, observer and impossible species range are called false zeros or false 
negatives and we should do our best to avoid those (Zuur et al. 2009). Researchers have little 
control of organismal error but it can be minimized with better designs. Structural zeros are 
called positive or true zeros, but these definitions are open to discussion (Martin et al. 2005). We 
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recognize that our study probably includes false negatives, for example, the methods we used did 
not sample large fish well. We did try to minimize design and observer error by having 
experienced biologists collect and retrieve the samples.  
 
There are four possible models to analyze our zero-inflated fish data. The difference between the 
Poisson and negative binomial is that the second allows for additional over-dispersion in the 
positive (non-zero) part of the data (Zuur et al. 2009). There are also two different ways to 
consider the zeros: mixture zero-inflated models (known as Zi and Ni models for Poisson and 
negative binomial distributions, respectively) and two part zero-altered models (Za and Na) 
(Zuur et al. 2009). Zeros in mixed zero-inflated models are modelled as coming from two 
different processes: the binomial and the count processes, where the binomial GLM estimates the 
probability of false zeros versus all other type of data (counts and true zeros). In zero-altered 
models, the non-zero observations are modelled with a truncated Poisson or negative binomial 
and therefore the count process does not allow for zeros. In both cases it is possible to use 
different sets of covariates to explain the occurrence and the counts. You can use AIC criteria to 
select the most informative model, but we agree with Zuur et al. (2009) that it is better to use 
biological knowledge to decide among them. In this case, we only use the mixed zero-inflated 
type of models because we are convinced on the existence of genuine structural zeros. We expect 
the shallower and the deeper areas in the wetlands to not be as suitable for fish as intermediate 
depths.  
 
We start by specifying five possible structures for the effect of depth and ranch on fish count. 
Anything before the | is the structure of the count model i.e. how many fish, while terms after the 
| refer to the structure of the binomial model i.e. are there fish or not. If the last part is not 
specified, the default is to use the same structure for both components (i.e. f1 and f2 below are 
the same). Formulas 1 to 4 assume an interactive effect of depth (as a quadratic variable) and 
ranch, but f3 assumes the presence of fish in only affected by depth while f4 assumes it is only 
affected by ranch. F5 assumes an additive effect of depth and ranch, and f6 assume only depth is 
important in the count and zero models.   
 
f1 <-formula(fishct~depth*ranchn+depth2*ranchn) 
f2 <-formula(fishct~depth*ranchn+depth2*ranchn | depth*ranchn+depth2*ranchn) 
f3 <-formula(fishct~depth*ranchn+depth2*ranchn | depth) 
f4 <-formula(fishct~depth*ranchn+depth2*ranchn | ranch) 
f5 <-formula(fishct~depth+depth2+ranchn | depth) 
f6 <-formula(fishct~depth+depth2 | depth) 

 
Then we decide whether to allocate a Poisson or negative binomial distribution to the count 
models and end up with the following ten models (notice Zi1 = Zi2 and Ni5 = Ni6).   
 
Zi1 <- zeroinfl(f1,dist="poisson", link="logit", data = dataforstats) 
Zi2 <- zeroinfl(f2,dist="poisson", link="logit", data = dataforstats) 
Zi3 <- zeroinfl(f3,dist="poisson", link="logit", data = dataforstats) 
Zi4 <- zeroinfl(f4,dist="poisson", link="logit", data = dataforstats) 
Ni5 <- zeroinfl(f1,dist="negbin", link="logit", data = dataforstats) 
Ni6 <- zeroinfl(f2,dist="negbin", link="logit", data = dataforstats) 
Ni7 <- zeroinfl(f3,dist="negbin", link="logit", data = dataforstats) 
Ni8 <- zeroinfl(f4,dist="negbin", link="logit", data = dataforstats) 
Ni9 <- zeroinfl(f5,dist="negbin", link="logit", data = dataforstats) 
Ni10 <- zeroinfl(f6,dist="negbin", link="logit", data = dataforstats) 
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We identify model Ni5 as the most plausible in our set using AIC (after removing the redundant 
formulations).  
 
AICtab(Zi1,Zi3,Zi4,Ni5,Ni7,Ni8,Ni9,Ni10,weights=TRUE,base=TRUE) 
 
     AIC    dAIC   df weight 
Ni5  1899.3    0.0 25 0.8053 
Ni7  1902.4    3.1 15 0.1710 
Ni9  1907.3    8.0 9  0.0144 
Ni8  1908.2    8.9 17 0.0093 
Ni10 1937.7   38.5 6  <0.001 
Zi1  2544.3  645.0 24 <0.001 
Zi3  2549.7  650.4 14 <0.001 
Zi4  2559.0  659.7 16 <0.001 

 
The summary and statistical model for Ni5 are presented below:  
 
Call: 
zeroinfl(formula = f1, data = dataforstats, dist = "negbin", link = "logit") 
 
Pearson residuals: 
     Min       1Q   Median       3Q      Max  
-0.63917 -0.46581 -0.37015 -0.03652  7.44054  
 
Count model coefficients (negbin with log link): 
                Estimate Std. Error z value Pr(>|z|)   
(Intercept)     0.393599   0.671864   0.586   0.5580   
depth           0.023026   0.058313   0.395   0.6929   
ranchn2         1.809072   0.938194   1.928   0.0538 . 
ranchn3         1.050350   1.114154   0.943   0.3458   
ranchn4        -0.454490   1.490929  -0.305   0.7605   
depth2         -0.002257   0.001150  -1.962   0.0497 * 
depth:ranchn2  -0.042719   0.086738  -0.493   0.6224   
depth:ranchn3  -0.043722   0.097292  -0.449   0.6531   
depth:ranchn4   0.161196   0.164870   0.978   0.3282   
ranchn2:depth2  0.001941   0.001750   1.109   0.2673   
ranchn3:depth2  0.002670   0.001769   1.510   0.1311   
ranchn4:depth2 -0.001938   0.004068  -0.476   0.6338   
Log(theta)     -0.549258   0.237159  -2.316   0.0206 * 
 
Zero-inflation model coefficients (binomial with logit link): 
                Estimate Std. Error z value Pr(>|z|) 
(Intercept)     1.178401   2.393391   0.492    0.622 
depth          -0.011629   0.542144  -0.021    0.983 
ranchn2         0.080079   2.468153   0.032    0.974 
ranchn3        -0.493727   2.430498  -0.203    0.839 
ranchn4         1.702906   2.955669   0.576    0.565 
depth2         -0.012371   0.029210  -0.424    0.672 
depth:ranchn2  -0.065229   0.546626  -0.119    0.905 
depth:ranchn3  -0.001005   0.541265  -0.002    0.999 
depth:ranchn4  -0.305828   0.591997  -0.517    0.605 
ranchn2:depth2  0.012887   0.029260   0.440    0.660 
ranchn3:depth2  0.012466   0.029221   0.427    0.670 
ranchn4:depth2  0.017867   0.030065   0.594    0.552 
 
Theta = 0.5774  
Number of iterations in BFGS optimization: 48  
Log-likelihood: -924.6 on 25 Df 
 



PCB 6468 - Methods in Experimental Ecology II  Spring 2016 
Pedro F. Quintana-Ascencio, David G. Jenkins & Lina M. Sánchez-Clavijo  03/30/2016 
 

𝑷(𝒚𝒊 = 𝟎) =  𝝅𝒊 + (𝟏 − 𝝅𝒊) ×  �
𝒌

𝝁𝒊 + 𝒌
�
𝒌

 

 
𝑷(𝒚𝒊 > 𝟎) =  (𝟏 − 𝝅𝒊) ×  𝒇𝒇𝒇(𝒚) 
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See Zuur et al (2009) for the details of the negative binomial function 𝒇𝒇𝒇(𝒚); Fac = Factorial. 
 
Notice that none of the parameters of the binomial model are statistically different from zero, so 
we could instead have favored model Ni7 which has a simpler structure (see below). But still, 
when we compared the mixed zero-inflated model Ni5 against a model without the binomial 
portion (using both AIC and the Vuong test), we found significant justification for the inclusion 
of this structure in the model.  
 
Call: 
zeroinfl(formula = f3, data = dataforstats, dist = "negbin", link = "logit") 
 
Pearson residuals: 
     Min       1Q   Median       3Q      Max  
-0.52039 -0.43964 -0.35033  0.01414  7.20437  
 
Count model coefficients (negbin with log link): 
                Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -0.089421   0.725026  -0.123   0.9018     
depth           0.065824   0.068601   0.960   0.3373     
ranchn2         1.982829   0.953347   2.080   0.0375 *   
ranchn3         1.328865   1.139154   1.167   0.2434     
ranchn4        -0.946936   1.499118  -0.632   0.5276     
depth2         -0.003004   0.001432  -2.097   0.0360 *   
depth:ranchn2  -0.101185   0.088107  -1.148   0.2508     
depth:ranchn3  -0.123540   0.100390  -1.231   0.2185     
depth:ranchn4   0.196890   0.171093   1.151   0.2498     
ranchn2:depth2  0.003065   0.001797   1.706   0.0881 .   
ranchn3:depth2  0.003912   0.001938   2.019   0.0435 *   
ranchn4:depth2 -0.002904   0.004319  -0.672   0.5013     
Log(theta)     -1.202152   0.219717  -5.471 4.47e-08 *** 
 
Zero-inflation model coefficients (binomial with logit link): 
            Estimate Std. Error z value Pr(>|z|)   
(Intercept)   1.1377     0.6245   1.822   0.0685 . 
depth        -0.1556     0.0775  -2.008   0.0446 * 

 
Theta = 0.3005  
Number of iterations in BFGS optimization: 32  
Log-likelihood: -936.2 on 15 Df 

 
model1 <- glm.nb(formula = f1, data = dataforstats, init.theta = 0.58, link = log) 
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vuong(Ni5,model1) 
Vuong Non-Nested Hypothesis Test-Statistic:  
(test-statistic is asymptotically distributed N(0,1) under the 
 null that the models are indistinguishible) 
------------------------------------------------------------- 
              Vuong z-statistic             H_A    p-value 
Raw                    3.265381 model1 > model2 0.00054658 
AIC-corrected          1.254439 model1 > model2 0.10484115 
BIC-corrected         -3.268451 model2 > model1 0.00054069 
 
AICtab(Ni5,model1,weights=TRUE,base = TRUE) 
       AIC    dAIC   df weight 
Ni5    1899.3    0.0 25 1      
model1 1914.2   15.0 13 <0.001 

 
A plot of model Ni5 is presented against the background of the data using the following code 
(Figure 4). We conclude that the effect of depth on fish counts vary among ranches, since depth 
affects abundance in a unimodal pattern for all ranches except Pal.  
 
x<-seq(min(dataforstats$depth),max(dataforstats$depth),1) 
name <-c(" Ald","Bir","Pal","Wil") 
lr <- levels(dataforstats$ranchn) 
par(mfrow=c (1,4)) 
for (k in 1:4) { 
plot(dataforstats$depth,(dataforstats$fishct+1),type="n",log="y", 
ylim=c(1,100),xlim=c(1,60), main=name[k],xlab= "depth (cm)", 
      ylab=("number of fish+1"),cex.lab=1.5,cex.main=1.7) 
depth_dat <- dataforstats$depth[dataforstats$ranchn==lr[k]] 
fish <- dataforstats$fishct[dataforstats$ranchn==lr[k]] 
t <- table(fish,depth_dat) 
dep <- unique(depth_dat) 
pez <- unique(fish) 
ord <- order(dep) 
dep <- dep[ord] 
orf <- order(pez) 
pez <- pez[orf] 
y11 <- y22 <- rep(0,length(x)) 
for (i in 1: length(dep)) { 
  for (j in 1: length(pez)) { 
     points(dep[i],(pez[j]+1),pch=1,cex=log(t[j,i])+1,col="blue")}} 
for (i in 1:length(x)){ 
y11[i]=predict(Ni5,list(depth=x[i],depth2=x[i]^2,ranchn=factor(k,levels=levels(datafor
stats$ranchn))),type="response")} 
lines(x,(y11+1),col="black",lwd=2)} 
 

The residuals differ slightly between the zero-inflated model (A) and the one without the 
correction (B). Both indicate larger residual variation for smaller predicted values and smaller 
residual variation in Pal. 
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Figure 4. Number of fish +1(in blue) as a function of depth (in cm) by ranch. The size 
of the symbol is related to its frequency in the sampling. Model Ni5 is depicted in 
black.  

 
Figure 5 A. Residuals of model Ni5.

 
Figure 5 B. Residuals of model1. 
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Figure 6. Overall residuals of model Ni5 and model 1. 
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