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Applications of Fractals in Ecology 

George Sugihara and Robert M. May 

edged complexity of real-world ob
jects by simplified euclidean ideals. 

There is, however, growing recog
nition that many natural objects 
have a graininess or nested irregu
larity to them, which places them 
within the realm of fractal geometry. 
Whereas in the euclidean scheme 
lines are smooth, in fractals lines are 
jagged (not differentiable). often ex
hibiting a special type of self-similar 
structure that is repeated on dif
ferent scales. As Mandelbrot ' has 
emphasized, this peculiar kind of 
nested irregularity, which appears 
to be so ubiquitous in nature, can 
become a source of simplicity when 
fractal methods are applied (see, for 
example, Fig. 11. 

Fractals are based on the idea 
that any measure that we assign to 
an object (e.g. the amountof length, 
area, volume, etc.) depends on 
some notion about appropriate di
mensions. Thus, for example, a line 
has zero area (planar measure). 
whereas a plane has infinite length 
(because it would take a line of in
finite length folded back on itself to 
fill it). At first glance, the problem 

of choosing appropriate units for 
measurement may seem trivial, but. 
as we shall see, for many natural 
objects having complicated shapes 
this is not the case. In fact, problems 
as apparently simple as measuring 
the length of a coastline or the area 
of available leaf habitat for insects 
can be rather tricky insofar as they 
have fractal geometry. Although 
the technical origins of fractals in 
measure theory may seem abstruse 
(e .g. Ref. 3J. the basic ideas of fractal 
analysis are extremely simple and 
intuitive, and one can begin to work 
with them very quickly. 

This review gives an introduction 
to fractal techniques, pointing out 
possible applications in ecological 
research. It begins with an informal 
discussion of the theory of fractals, 
followed by a section providing 
details on specific methods of 
computing them. This is then fol
lowed by a survey of possible field 
applications, which are intended to 
illustrate the utility of fractals 
in ecological research (Ref. 4 and 
Sugihara , unpublished). and par
ticularly their use as a tool for 
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Fig. I. Fractal image of a black spleenwort fern pro
duced by a model consisting four simple transform
ations each having only six parameters I from Ref 2. with 

complex shape miRht involve a 
permission) By contrast, a euclidean descriPtion of this 

thousands 

addressing problems of scale and 
hierarchy5-IO For a more detailed 
review of these ideas. with some 

of 
in 

Defining a fractal dimension 
How long is the coastline of Britain? 

Suppose the jagged curve in Fig. 
2a represents a section of coastline. 
How will it take me to walk this 
coastal path; how long is this jagged 
coastline? To measure with a ruler. 
I cou Id the length 
of the curve with a arc 
having N straight-line segments, 
each of length 0, as shown in 2b. 
One could think of realizing this 
measurement scheme by using div
iders set to width 0, and fli ng the 
dividers along the curve. total 
estimated euclidean length of the 
curve, L, would be the number of 
sides of the N, multiplied 
by the length °But as 
I move to finer scales - to shorter 

segments, having 
values of 0; to more finely

set dividers I will be able to trace 
the ins and outs of the coast
line more closely. Thus, the 
of the coastline will increase as I 
measure it on finer and finer scales. 

In practice, the L, of many 
objects in the natural 

world - coastlines. rivers. tree 
trunks, and so on - are found to 
depend on measurement scale, 0, 
according to a simple power law 
(over an appropriate range of ° 

Llo) = KOI-D III 

Here L is the measured on 
the characteristic scale 0, and the 
exponent 0 is called the 'fractal di
mension' (2 > 0> I) 

3 gives some examples of 
'coastlines'. a with their 

fractal dimensions. For the familiar 

euclidean that we were all 
up to know and love, 0= I. 

That is, the is simply a 
constant, L=K, i of 
measurement sca Ie. More generally, 
for geometrical such as 
'Koch's snowflake' ( 3b and Box 
I J. the structure of the outline of the 

repeats itself on finer and 
successive magn ifica

tions of the show the same 
'self-similar' structure. As shown in 
Box I, the fractal dimension of 
Koch's snowflake is 0 1.26. 

In the natural world, there is no 
that such self-

will apply. AI
landscape pat

leaf 
the like do show 

fractal patterns, the 
characteristic fractal dimension, 0, 
of I may as we shall see below 

itself change with changes in the 
measurement o. 

o as a measure of 
Box 2 a brief indication of 

the relationship between the essen
tially intuitive of ideas 
about fractal in this review 
and their more formal origins in 
measure One of the prob
lems with intuitive 
approach is that it invites the 

that maybe the coastline 
of Britain is a defined and 
that what we are about 
is only a problem of practicality 
of measurement. Koch's snowflake 
and other such self-similar 
metrical objects make it clear 
something is at stake: 
such abstract objects, 

become infinite as 0 tends 
to zero (at a rate determined by Eqn 
II For real there will be 
physical limitations to the minimum 
meaningful scale (ultimately set by 
molecular dimensions, but usually 
by other commonsense consider
ations before that). But the problem 
is nevertheless than one of 
trivial measurement accuracy; a tree 
trunk literally has and 
circumference as one moves to 
smaller and smaller in a man
ner characterized Eqn I, and this 
has consequences the the 
tree trunk looks to creatures dif
ferent sizes. 

More explicitly, consider Eqn I 
applied to a coastline for which 
0= 1.5. Here, a tenfold reduction in 
measurement scale will increase the 

curve.lbi The length of the curve is measured 
curve length is reckoned as the number of sides [K times the length each side 10): K is a 

constant [see 21 and D the dimension. In a fractal curve, measured length IL 101 K &'.01 
grows as (, declines fcf Eqn II 
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apparent length by a factor of 
10°5=3. In general. we see from Eqn 
I that the faster the apparent length 
changes as measurement scale 
changes, the larger 0 becomes. 

For an ideally smooth and simple 
curve, the fractal dimension 0= I is 
equal to the formal 'topological di
mension', 0T' that we expect 'one
dimensional' objects to have. But 
for the jagged curves that we 
have been discussing, 0 will exceed 
0T; a more formal definition of 
Mandelbrofs fractal forms are those 
where 0 exceeds 0T' 

Returning to the curves in Fig. 3, 
we notice explicitly that larger 
values of 0 correspond to curves 
that are increasingly complex. In the 
case of the Brownian trail in the 
plane, for example, the curve is so 
complex as to literally fill the plane 
(which is why we did not draw it!); 
that is, for this Brownian trail in the 
plane , 0 = 2; see Box 3. 

The fractal exponent, therefore, 
describes the complexity of a 
shape. Moreover, this complexity of 
shape is reflected in the speed with 
which apparent length changes as 
measurement scale changes. For 
larger values of 0, length changes 
faster because the curve is more 
complex. 

Measuring the fractal dimension, 0 
Dividers method (boundary 
dimensions: 2 > 0 > I) 

This method involves stepping 
along a curve or boundary with div
iders to see how apparent length, 
Uo), changes as the dividers are 
brought closer together. Using a 
spectrum of widths of dividers, one 
plots log L versus log 0 and deter
mines 0 according to Eqn I as 1.0 
minus the slope of the linear re
gression through these points; see 
Box 2. Again, the fractal exponent 0 
can only be thought of as a Haus
dorf dimension in the limit as the 
divider width goes to zero, 0 ~ O. 
This, of course, can never be real
ized in practice because the so
called 'inner scale' of measurement 
of 0 will be constrained by such 
things as the resolution of the photo
graphic image or of the dividers. 

In practice, for a given 0, it is a 
good idea to repeat the exercise 
starting from a variety of different 
pOints on the curve, because L will 
have some variance to it depending 
on where on the curve one starts. In 
this way, one can either construct a 

plot of log L versus log 0 containing 
more points, or obtain a distribution 
of 0 values. An additional compli
cation, to be discussed below, is the 
possibility that 0 may change ab
ruptly at some measurement scale; 
that is, for a particular range of 0 we 
may obtain one value of 0 whereas 
at another scale range we obtain a 
new value of O. 

Grid method (boundary dimension) 
If the landscape image or other 

object is digitized on a plane, it is 
easier to use the following approxi
mation based on the equations in 
Box 2. Superimpose on the image a 
regular grid, composed of squares of 
side length o. At some 0, count the 
number of grid squares containing 
a piece of the curve or boundary 
and call this C (in technical jargon, 
the grid squares form an approxi
mate o-cover over the curve). Repeat 
this for various 0, and compute 0 as 
the magnitude of the slope of the 
regression line through a plot of log 
C verus log 0 1 to be pedantic, 0 is 
(- I) times this slope I. Reorienting 
the grid relative to the image has 
the same effect that choosing 
different starting points has in the 
divider method (see also the dis
cussion of pOintwise dimension by 
Guken heimer '3 ). 

Grid method (general) 
If the image is digitized and em

bedded in N dimensions (as will be 
the case, for example, if the image 
is a strange attractor in a high
dimensional phase space), then 0 
may be computed as in the preced
ing paragraph by using an N-dimen
sional grid of boxes of side length 0 
to cover the object. For various 
values of 0, the log of the number of 
N-dimensional boxes containing a 
piece of the object (log C) is plotted 
against log o. Again following the 
equation in Box 2, 0 may be esti
mated as the slope of the regression 
of log C against log 0 as 0 ~ O. Note 
that if the shapes are planar islands 
and the interior points are included 
in C, then 0 should equal 2 in the 
limit as 0 ~ O. At larger values of 0, 
the boundary irregularities may pre
dominate so that 0 may appear to 
be less than 2. 

Perimeter/area method (boundary 
dimension) 

If the object consists of a mosaic 
of irregular islands (for instance, im

(a) 

Fig. 3. A higher fractal dimension is associated with 
higher shape complexity . (a I A straight line, 0 = I . 
Ibl Koch curve, 0 = log 4 1 log 3; see Box 1. lcl Brownian 
time series Iline-to-line function!. 0 = 1.5. A Brownian 
trail in the plane I not shown 1 is 'plane-filling' and conse
quently 0 = 2; see Box 3. 

ages of ocean colours or vegetation 
patches) the dimension of the 
boundaries of these islands can 
be estimated from perimeter/area 
data, by using the relation P = AD/2 

That is, one calculates the per
imeter, p, and area, A, of each irregu
lar tile at some fixed 0, and plots 
these values on log coordinates so 
that the slope of the regression is 
equal to 0/2 . The choice of 0 should 
not affect the result, as long as the 
objects are simple fractals gener
ated by rules of self-similarity; in 
such situations, the plot of log A 
against log P will give a single 
straight line, providing a unique 0 

Box I. The fractal dimension of Koch's snowflake 
Koch's snowflake is constructed by the fol

lowing rule. Start with an equilateral triangle. 
Take the middle third of each side, and re
place it with the other two sides of an equi
lateral triangle (smaller, of course, than the 
original one) pointing outward. Now do this 
again to each line segment in the new figure. 
And again, indefinitely many times, repeating 
the same process on smaller and smaller 
scales. Figure 3b shows one of the three sides 
of the ensuing 'snowflake'. 

The snowflake has an area not much larger 
than that of the original equilateral triangle . 
But how large is its perimeter? Each step in 
the process obviously lengthens the per
imeter by a factor 4/3, so the asymptotic per
imeter is (4/3) x (4/3) x., which is infinite l 

To characterize the fractal dimension of the 
snowflake, look at Eqn 1 in the main text. Each 
step in the recipe represents reducing the 
measurement scale by a factor of 3 (on +,1on = 
1/3) and consequently increasing the length 
by a factor of 4/3 (L(on+') / L(l)n) = 4/31. Sub
stituting into Eqn 1, we have 

4/3 = (1/3),-D 

That is, 4 = 3D, or 0 = In 4 / In 3 = 1.26. 
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Box 2, Measure Hausdorf dimension and fractal dimension 

The is a plot of log 
length, on log divider's 
For a fractal curve, the log 
length grows linearly as the 
are brought closer together 
arithmicallyL The slope of the line 
1 D. 

This illustrates Eqn 1, applied to a 
self-similar, fractal object (for 
Koch's snowflake) for which D is 
deed a constant. A question asked by 
measure theory is to find some relative 

o I nn 0 	 measure (for a given dimension, D) 
that does not depend on the scale, o. 

Hausdorf proposed the parameter K, the asymptotic intercept with the y-axis in the plot, as 
such a measure. 

Alternatively, we may return to the measurement procedure in Fig. 1, and note that for 
such a polygonal to an irregular curve, the linear measure K 
may be calculated up the sides' lengths, 0, after are each raised to the 
power D [more 1 tells us that the number sides of the polygon is 
N = Ko·· D

, where each a 'D-dimensional ",0, so that the approximate 
measure is (Ko~O) 00 KJ. 

Expanding on this theme, we see that if a linear measurement scales as n, then a 
D-dimensional measurement scales as k = nO. Thus, if an object of dimension 0 is expanded 

increasing 	its linear size in each spatial dimension n times, then its volume (D
is increased by a f·actor of k nD times the original. This simple 
thus suggests the following general notion of dimension, 

0= In kIln 

where k is the multiple by which the D·dimensional measurement (e.g. volumel increases, 
and n is the multiple by which the corresponding linear measurement increases. We call 
this 0 the fractal dimension or fractal exponent; it is the same 0 as met in Eqn 1 

According to these intuitive arguments, the fractal is an allometric scaling 
constant that behaves something like a dimension. To this exponent more 
rigorously as the Hausdorf dimension requires that we investigate the scaling as the linear 
measurement, 0, approaches zero. That is, the Hausdorf dimension may be defined as 

Dh limit [In C lin (111))1 as 0 0 

Here C is, for the number of sides in the (more generally, C is the 
'cardinality of a of the set'). Thus, as in more intuitive approaches, 
we are looking at how changes with to scale, but nowwe are doing 
so in the limit 1) -i> 0, If L versus In 0 is linear for all 0, as by 
Eqn 1, then the Hausdorf and the fractal are equal, 0 = 

In practice, Dh can never really be obtained because the finite resolution measuring 
instruments or photographic grain. Moreover, given this constraint, it is most plausible that 
as 0 .... 0 the Hausdorf dimension will equal unity for most natural outlines. Largely for this 
reason, but also because fractal ideas are easier to grasp intuitively, we focus the discussion 
in this review on 0 rather than Dh , 

for all 0 of interest. More gener
o itself may depend on the 

scale of measurement. as reflected 
in the characteristic magnitude of P 
or A 

Notice that 0 obtained in this way 
is an ensemble measure for the 
collection of islands or patches. 
Th is is in con trast to the previous 
methods, which can be applied to 
the boundary of a single island. 

distribution (boundary 
dimension) 

Certain rules or mechanisms that 
arch of self-

similar islands (for instance, so
called Koch islandsl are known 
to prod uce size-frequency d istri 
butions that are hyperboliC: 

Pr(A a) = ca- B (2) 

Here PrlA a) stands for the 
that the area of a 
A, will exceed some 

a; c and 8 are 
constants. Hyperbolic distributions 
of areas have been demonstrated 

Iy for of 
etation l2 , the Aegean Islands '4 , 

landmasses ' . Mandelbrot l 

that - under certain as
about the 

mechanism - it may be to 
fit a distribution to data 
on island areas, and by so doing to 
obtain an estimate of 0 for 
boundaries, In when the 

mechanism has a 
geometric form, it can be 

shown that 0=28. It follows that 
composed of 

ularly shaped islands will tend to be 
dominated by many small islands 

(as exemplified by the Baltic coast 
of Sweden or Finland!. 

Like the method, 
this distribution~based estimate is 
of course an ensemble measure
ment, but all that is here is 
the area of each tile, measured at 
some fixed value of o. When applied 
to global landmasses, Mandelbrot ' 
finds that this method esti
mates of 0 between 1,2 and 1.3, 
which accords with estimates ob
tained bv the dividers method 

Ecological applications 
Measuring habitat space 

One of the more 
applications of the notions of fractal 
dimension and fractal measure in 
ecology is to the of 
measuring available habitat space. 

Morse et al. l ? have these 
methods to the of why in a 

habitat there tend to be so 
many more individuals of small ani
mals than of ones. 

this question for 
living on vegetation whose surface 
area is believed to be fractal; that is, 
whose surface area appears to ex
pand at finer and finer scales. Using 
photographs of various of veg
etation, they calculate a value for 
the fractal dimension of the habitat 
flora the method. 

. find a value of 0 1.3 
and 1.5, which 
lines of the 
the vegetation in 
Taking the approximation 
1,5 for the leaf bou heuristic 
upper and lower bounds on 0 for 
the surfaces are 2 x 1.5 3 and I + 
1.5 2.5 (d. Ref. 16, p. 365). Follow
ing Eqn I, this means that for an 
order of decrease in 
ruler length (5) the oerceived sur
face area of 
between 3.16 10 times. Thus, 
organisms that are an order of mag
nitude smaller in would have 
between 3.16 and 10 times more 
available living space. Moreover, 
the observed fractal scaling of the 
vegetational which pro
vides small with much 
more living space than is available 
to larger ones on the same sub
strate, is consistent 
with of individual abun
dance based on allometric 
ments. Morse et al. '? . 

the steep increase observed in the 
abundance of as body 
size decreases, is qualitatively con
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sistent with predictions based on 
the fractal scaling of the vegetation 
on which they live. 

Briand and Cohen 7 discuss habi' 

tat dimensionality in relation to 
food web shape. suggesting that 
webs from three-dimensional habi
tats are longer and narrower than 
webs from planar habitats. Only 
rough arguments are made in guess
ing the dimensionality of habitats. 
and criticisms have been made ,o. 18 

that the apparent differences seen 
may in fact be a more accurate re
flection of the differences in data 
collection habits of investigators 
studying aquatic versus terrestrial 
environments. Although it has yet to 
be tried. fractal methods could con
ceivably be applied to resolve this 
problem . Measurements of D for en
vironments of a given type could be 
used to determine whether within a 
given web type the presumed trend 
with dimension still exists. Thus. 
one might use photographs to 
measure the fractal dimensions of 
the environments from which each 
web was drawn . Alternatively. the 
D-dimensional measure for avail
able habitat space in each environ
ment may be a more important 
quantity for regulating food web 
shape Thus. fractals can be used to 
compare webs of a given type by 
providing a quantifiable continuum 
for habitat dimension and measure . 

Dimension as a (unction o( scale: 
detecting (unctional hierarchies 

By definition , the Hausdorf di
mension involves computing the 
unique value Dh = log C 1 log 0 in 
the limit as 0 ---70 (see Box 21. Notice 
that Dh is independent of length 
scale. o. As suggested in Box 2, in 
most applications it is more useful 
to adopt the less formal sense of 
dimension given by the fractal ex
ponent. D = log k / log n. where D 
may in fact depend on the inner 
and outer scales of measurement 
(a particular range of 0 for which a 
straight line is obtained on a log-log 
plot). Mandelbrot provides a nice 
example of this idea in discussing 
how a ball of string appears to 
change dimension depending on 
how close the observer is. As the 
ball is approached from afar the 
string goes through the sequence of 
dimension changes. 0 (a distant 
pointl. 3 (a closer ball). I (the linear 
thread I. 3 (the three-dimensional 
tubular thread). etc.. illustrating how 

apparent dimension may change this region large-scale features are 
with observational scale (i.e. differ simply magnified versions of smaller 
ent ranges of 0). Different obser ones. As discussed above. such con 
vational scales capture different stant scaling could be produced by 
aspects of structure. and these tran a single (possibly complex ) self
sitions are signaled by shifts in the similar generating process. It should 
apparent dimension of the object. be required. moreover, if one is try
This latter fact suggests an interest ing to extrapolate mechanisms from 
ing application of fractals as a small scale to large. 
method for distinguishing hierarchi On the other hand, a shift in D at 
cal size scales in nature. the inner or outer scale may indicate 

A constant fractal exponent over a a shift in generating process, and 
given size range (inner and outer define a boundary across which one 
scale) may indicate that within may no longer make extrapolations. 

Box 3. Inferring dynamics from complexity of shape: a Brownian neutral model 

The important connection between fractal patterns and self-similar generating processes 
can be made more explicit by considering modified Brownian diffusion processes. Man
delbrot' and Hastings et al. 12 have discussed how fractal exponents may be incorporated 
into diffusion processes, as a scaling factor for normalizing increments in space and time. 
This normalization effectively tunes the memory of a diffusion process, to produce either 
smoother ('persistent') or more complex ('anti-persistent') outlines characterized by their 
fractal complexity. 

A modified Brownian process is defined in terms of some random variable characterizing 
displacement, XU)' which is distributed as Gaussian white noise, with a root mean square 
equal to 

r.m.s . X(t) = (6t)H 

Depending on the value of H, the process can be said to be positively or negatively 
correlated. When H = 112, the process is classical Brownian motion, with no serial 
correlation between the displacements in successive time intervals. This means that, at 
every stage and at every scale of 6 t, all directions of displacement are equally likely. If 
1 > H > 1/2, the increments of displacement may be roughly thought of as overlapping each 
other, above time increments that do not overlap. Such a process may be said to be 
positively correlated, or persistent, in the sense that a particle moving in some direction at 
time twill tend to move in the same direction regardless of 6 t. Roughly speaking, the grain 
of the Brownian path will have been smoothed out in a statistically self-similar fashion that 
transcends all scales. 

To summarize, the H values for constrained white noise may be characterized as: 

H = 1/2, Brownian 
H > 1/2, Persistent 

H < 1/2, Anti-persistent 

These results translate to fractal curves and landscapes. Smoother cu rves can be generated 
by higher values of H, and more irregular curves by lower values. The classical Brownian 
value, H = 1/2, serves as a neutral value. 

Mandelbrot ' and Hastings and Sugihara (unpublished) have shown that the exponent H 
can be related to the fractal exponent, D, with the precise relationship depending on the 
details of the Brownian generating model. If the process involves a Brownian trail in the 
plane (a Brownian line-to-plane function), say for describing animal movements in two 
dimensions, then D for the resulting path can be shown to be 

D = 11H 

Thus, for the classical Brownian trail where H = 1/2, we find that D = 2; the curve effectively 
fills the plane. Adding persistence to the modified random walk smooths the trail out and 
lowers the dimension; the curve becomes less plane-filling. 

If the process involves level curves cutting across a crinkled Brownian sheet (e.g. 
isoelevation lines on a topographic map; a Brownian plane-to-line function), or if we are 
considering the time series of a Brownian process (displacement versus time ; a Brownian 
line-to-line function), then D may be calculated from the relation 

D= 2-H 

Conversely, we can use the above relationships to infer the Hvalue required in order that 
the appropriate Brownian process may reproduce the texture of an observed random 
fractal pattern. That is, one can infer the space-time scaling that would be required of a 
modified Brownian model to approximate the texture of the observed fractal pattern. 
Mandelbrot' provides some nice examples of this. 

83 



---l 

(a) 

Q 
OJ 
o 

12.5 13.0 13.5 14.0 14.5 

Log A 

~ 1.5 1 (b) 
c 

.Q 
(f) 

c 
Q) 

S 1.3 
D 

ro 
u 
CIl 

U:: 1.1 +.-1---.;::..---~--~---~ 
12.5 	 13.0 13.5 14.0 14.5 

Log A 

Fig. 4. (al A plot of log patch perimeter (PI against 
log patch area (AI for aerial photographs of decidu
ous forest in Natchez Ouadrangle, Mississippi, USA. 
(bl Using a sliding window of 60 points along the x-axis, 
a discontinuity in 0 is uncovered at 60-70 ha: this is 
marked by a kink in the curve at this scale Such kinks 
indicate shifts in dimension, and may demarcate 
boundaries between hierarchical levels. From Ret: 19, 
with permission 

In this way, fractals may provide a 
methodology for obtaining objec
tive answers to such difficult prob
lems in hierarchy theory as how 
to determine boundaries between 
hierarchical levels and how to 
determine the scaling rules for 
extrapolating within each level (Ref. 
19 and Sugihara, unpublished) 

Bradbury et a/20 investigate the 
possibility of hierarchical scaling in 
an Australian coral reef. They use 
the dividers method in transects 
across the reef to determine 
whether D (boundary) depends on 
the range of length scales. They find 
that D declines abruptly from a 
value of about 1.1 at the finest scale 
(8 = 10 em) to a value of about 1.05 
for intermediate lengths (8 between 
20 em and 200 em), and rises sharply 
to a value of about 1.15 at the largest 
scales (8 between 5 m and 10 m) 
Again, the constant D within each 
of these size ranges suggests the 
possibility of a single class of pro
cesses for generating reef structure 
that are self-similar within these 
size ranges. The shifts in D between 
scaling intervals indicate when the 
processes are different at each 
scale. These three ranges of scale 
correspond nicely with the scales of 
three major reef structures: 10 em 

corresponds to the size of anatom
ical features within individual coral 
colonies (branches and convol
utions); 20-200 em corresponds to 
the size range of whole adult living 
colonies; and 5-10 m is the size 
range of major geomorphological 
structures such as groves and but
tresses. That is to say, the shifts in 
fractal exponent at different scales 
appear to signal where the break
points occur in the hierarchical or
ganization of reefs. 

In similar vein, Krummel et al. 19 

evaluate the fractal dimension of 
deciduous forest patterns in Mis
sISSippi using the perimeter/area 
method on aerial photographs of 
the US Geologica I Survey (1973) 
Natchez Quadrangle. This region 
has experienced relatively recent 
conversion of native forests into 
agricultural use. Repeated calcu
lations of D using a sliding window 
of 60 points along the size-scale axis 
(the x-axis of Fig. 4a), reveal a 
marked (P < 0.001) discontinuity in 
D at areas around 60-70 ha. The 
discontinuity was signaled by a kink 
in the log Pagainst log A plot Small 
areas of forest tend to be smoother 
with D = 1.20 ± 0.02, while larger 
areas, greater than 70 ha, have 
more complex boundaries, D = 1.52 
± 0.02. This result is interpreted to 
indicate that human disturbances 
predominate at small scales making 
for smoother geometry and lower D, 
while natural processes (e.g. geol
ogy, distributions of soil types, etc.) 
continue to predominate at larger 
scales, 

Sea/inl]: persistence/smoothness 
One of the more intriguing appli 

cations that has particular relevance 
to remote sensing studies concerns 
the connection (discussed in Box 3) 

between fractal spatial patterns and 
modified Brownian dynamics. 

As outlined in Box 3, there are 
simple relationships between per
sistence, measured by the par
ameter H in modified Brownian 
diffusion models (see Box 3)' and 
fractal exponents. Although the 
exact relationship between Hand D 
depends on the details of the 
assumed model (Hastings and 
Sugihara, unpublished), the general 
relationship remains: increased 
persistence (more memory in the 
process) should correspond to 
smoother boundaries and patches 
with larger and more uniform areas; 

whereas reduced persistence will 
correspond to more complex and 
highly fragmented landscapes 
dominated by many small areas. For 
example, in simple patch-extinction 
models '2 , persistence in the dis
semination of spatial displace
ments corresponds roughly with 
how long the resulting patches last 
Given that for a particular natural 
landscape the Brownian paradigm is 
somewhat reasonable, one might 
expect to find the predicted re
lationship between reduced shape 
complexity and persistence in time. 
Indeed, without committing to any 
particular Brownian model, it may 
be possible to obtain a purely em
pirical scaling that relates a pat
tern's ephemerality to its fractal 
exponent, D. 

Hastings et al. 12 have examined 
this possibility for patches of two 
kinds of vegetation, cypress and 
broadleaf, in the Okefenokee 
Swamp, USA. They fit patch areas to 
the hypergeometric distribution to 
determine B (Eqn 2), which is then 
used to estimate Hand D (see pre
vious section on hyperbolic distri 
bution). Hastings et al. find that the 
fractal exponent D is larger (thus 
persistence, H, is lower) for the 
earlier successional cypress. The 
more persistent broa'dleaf veg
etation which eventually dominates 
has a lower value of D. They specu
late that D may be used as an index 
of succession in circumstances 
where simple patch-extinction 
models are reasonable. 

Several additional anecdotes 
help to illustrate these ideas. An 
initial analysis of satellite ocean
color patterns appears to corrob
orate the predicted relationship 
between shape complexity and per
sistence (Sugi hara, unpu blished). 
The boundary-grid method applied 
to a series of images of the California 
Current taken by a remote color 
scanner reveals remarkably good 
fits to single fractal exponents on 
length scales between 1 km and 
10000 km. When stab Ie patterns of 
low productivity of typical years are 
compared with transient EI Nino 
conditions, the predicted corre
lation between fragmentation and 
vagility is observed. Transient EI 
Nino years show low and high pro
ductivity regions having a patchier 
and more high Iy dissected appear
ance than is the case in typical 
years. 
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Similar informal observations 
arise in the patch dynamics of sess
ile organisms. Healthy vestimen
tiferan reefs formed within plume 
fields of deep-sea hydrothermal 
vents often appear to have a much 
simpler geometry than failing colon
ies that inhabit vents on the verge of 
extinction (R. Hessler, pers. com
mun.). Similarly, certain persistent 
bryozoan and coral colonies (e.g. 
Montipora spp.) often have simpler 
outlines and are less patchy than 
colonies of more ephemera I species 
(e.g. Pocillopora spp .) (Ref. 21; T. 
Hughes, pers. commun.; J. Connell, 
pers. commun .). It would be inter
esting to follow up these provoca
tive anecdotes with careful studies 
to determine to what extent 0 com
puted from snapshots can be used 
as an index of physiological state or 
persistence of patches in time, and 
how such persistence may relate to 
the spatial scales involved. 

Extinction 
Another potential application of 

fractals in ecology is to the related 
problem of persistence of rare 
species. Rather than focusing on 
spatial geometry, we shall consider 
instead the fractal properties of a 
time series of population values. 

Viewed in the light of a modified 
Brownian model (Box 3). one might 
expect the range of values in a time 
series to grow roughly as time raised 
to the power H (i.e 6 tH). That is, if 
x(t) is the time series variable, and 
x'(t) is the normalized deviation 
Ix'(t) = x(t) - x(t) for t between 0 
and TI. then the range R( Tl I where 
R(T) = max x'(t) - min x'(t) for t 
between 0 and TI of a modified 
Brownian process will scale with the 
length of the time series, T, as 

R(TJ = CTH (3) 

According to the third equation in 
Box 3, the fractal exponent 0 for 
the time series is computed as 0 = 
2 - H. Thus, Eqn 3 provides another 
method for calculating 0 for a time 
series. All that is required is a re
gression of log range against log 
time, and the resulting slope is H. 
Notice that when H > 1/2, the time 
series is smoothed out (lower value 
of 0); but because the Brownian 
process is more persistent in its 
deviations, the time series goes 
through wider swings. 

Such power-law scaling between 

range and time has been observed 
empirically in river discharge rec
ords l6 . The values of H computed 
here have been found to vary be
tween 112 and I, indicating a tend
ency toward persistence in the 
fluctuations of river discharge, i.e. 
wet years tend to be followed by 
other wet years . Moreover, this per
sistence is scale-invariant in that the 
autocorrelation remains at all scales 
(at least at all scales used to 
measure HJ. That is. correlations be
tween wet weeks wiJl scale upward 
in a self-similar fashion to imply cor
relations between wet years and 
wet decades, etc. This information is 
important, for example, in designing 
a reservoir so that in its finite life
time itwill never overflow and never 
empty. 

The analogy to populations is 
clear. All things being equal. a 
species whose population time 
series follows Eqn 3 would be more 
vulnerable to local extinction if its 
range of population values in
creases faster with time (larger H) 

than one whose population range 
grows only slowly (lower H). Roughly 
speaking, the time to extinction 
should scale as c' NIIH, where c' is a 
constant less than I and N is the 
average population size. Thus, one 
may speculate that vulnerability to 
extinction should be associated 
with a larger H or a lower fractal 
exponent for the time series, 
whereas more stable species will 
have time series with a lower H. 

Figure 5 shows an informal 
example of such an analysis for two 
bird species having roughly the 
same average abundance22 Accord
ing to Eqn 3, the slope of the log R 
against log T plot yields a value for 
H. The value of H for the least 
flycatcher (Empidonax minimus) (H 
= 056) is higher than for the Ameri
can redstart (Setophaga ruticilla) (H 

= 038). suggesting that the former 
is more prone to local disappear
ance and less subject to density
dependent population corrections. 
A lower H for the American redstart 
suggests anti-persistence in its time 
series (higher 0). which again trans
lates roughly to tighter density
dependent population correction. 

Dimension and embedding 
As a final suggestion for a poss

ible class of applications of fractals 
that may be of interest to ecologists, 
we consider how the concept of di
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Fig. 5. Log range in population values I normalized, 
RI Tl - see text 1 versus log time of observation (Tl for 
two equally abundant bird species Itime series data 
from Ref. 221. The slope yields a value of H from which 
o for the time series can be calculated as 0 = 2- H. 
lal For the American redstart H = 0.38. and Ibl for the 
least flycatcher H = 0.56. A higher value of H for the 
least flycatcher implies higher suceptibility to local 
extinction and weaker density-dependent control. 

mension operates in sampling, i.e. 
why sweep nets should work better 
than flypaper. 

Consider two sets of dimension 
Om and Op embedded in a space of 
dimension E. In order for them to 
intersect with nonzero measure, it is 
necessary that 

Thus, a sampling scheme of dimen
sion Om used in a space of dimen
sion E can only detect phenomena 
of dimension Op > E - Om' 

Lovejoy et aJ23 discuss an appli
cation of this idea in connection with 
the ability of the worldwide network 
of fixed weather stations to detect 
weather phenomena of different di
mension. They use a modification 
of the generalized grid method to 
obtain a value of Om = 1.75 for 
the worldwide network of weather 
stations. Assuming E = 2, phenom
ena of dimension Op < 0.25 cannot 



be detected by this network. 
Apparently, the low-dimensional 
phenomena that might be missed 
characterize certain violent epi
sodic storms - a good case for the 
use of satellites. 

In addition to the possible, 
though perhaps only weak, rel
evance of these ideas for designing 
sampling regimes in ecology (e.g. for 
monitoring acid rain!. they may be 
used to motivate a variety of in
teresting evolutionary hypotheses 
involving encounter rates (e.g. be
tween predator and prey). 

For example, in cases where a 
predator searches randomly (having 
no information about the where
abouts of its prey). one might expect 
selection to operate toward maxi
mizing the dimensionality of the 
predator's search path. Thus, such 
predators may have highly .con
voluted and space-filling search tra
jectories. Prey movements, on the 
other hand, might tend to be 
simpler, or the prey may be distrib
uted in space so as to minimize their 
dimension (Cowles and Sugihara, 
unpublished!. It would be an 
interesting and workable task to 
investigate how dimensional con
siderations may come to play in 
evolution by maximizing or mInI
mizing the frequency of different 
kinds of encounter. 

Conclusion 
Fractal scaling appears as a 

ubiquitous property of nature. It has 

some promise both as an economi
cal description of natural patterns 
and, more speculatively, as a tool for 
probing causes. Whereas the for
mally defined Hausdorf dimension 
is not in itself usually a practical 
concept, in real applications the 
less stringent fractal exponent may 
prove to be more valuable. More
over, because the mecha nics of esti
mating fractal exponents are often 
straightforward, they should be par
ticularly attractive as a novel way to 
approach some difficult problems 
involving scale and hierarchy in eco
logical systems. The suggestions for 
applying fractals that are offered 
above illustrate their potential in
terest in ecology. 
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