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Abstract. The statistical literature on tests to compare treatments after the analysis of
variance is reviewed, and the use of these tests in ecology is examined. Monte Carlo
simulations on normal and lognormal data indicate that many of the tests commonly used
are inappropriate or inefficient. Particular tests are recommended for unplanned multiple
comparisons on the basis of controlling experimentwise type I error rate and providing
maximum power. These include tests for parametric and nonparametric cases, equal and
unequal sample sizes, homogeneous and heterogeneous variances, non-independent means
(repeated measures or adjusted means), and comparing treatments to a control. Formulae
and a worked example are provided. The problem of violations of assumptions, especially
variance heterogeneity, was investigated using simulations, and particular strategies are
recommended. The advantages and use of planned comparisons in ecology are discussed,
and the philosophy of hypothesis testing with unplanned multiple comparisons is consid-
ered in relation to confidence intervals and statistical estimation.

Key words: analysis of variance; assumptions; confidence intervals; homogeneity of variance; log
transformation; Monte-Carlo simulations; multiple comparisons, planned comparisons, significance

lests.

INTRODUCTION

Analyses of variance (ANOVASs) are very common
in the recent ecological literature, and unplanned mul-
tiple comparison procedures (UMCPs) to compare
treatment means often follow the ANOVA. Not only
are UMCPs sometimes inappropriate, but the two
UMCPs most commonly used, the Student-Newman-
Keuls (SNK) and Duncan’s multiple range tests, have
not been recommended by most statisticians for many
years (Ryan 1959, Scheffé 1959, Petrinovich and Har-
dyck 1969, Einot and Gabriel 1975). The criticisms
are related to the type of error rate used and imply that
conclusions drawn using these tests are based on in-
consistent criteria. Means pronounced different at a
significance level of 5% by one test may not be signif-
icantly different at this level using another test. Another
problem is that the commonly used tests are not robust
to violations of assumptions, and more robust tests
should be used, for example, when variances may not
be equal. Yet there is often no explanation in ecological
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papers of why a procedure was chosen, or enough in-
formation given for the readers to judge the strength
of the conclusions, or interpret the results themselves.
Sometimes even the method used is not properly spec-
ified.

The subject of comparisons after, or included in, the
ANOVA has been a rapidly developing field in statis-
tics, and many standard statistical texts appear to have
glossed over the issue to some extent, by describing
only a few common methods rather than discussing
the issues involved and the alternatives available (more
complete treatments are presented in Winer 1971, So-
kal and Rohlf 1981, Keppel 1982, Miller 1986). Mul-
tiple comparisons have been reviewed by statisticians
(e.g., O’Neill and Wetherill 1971, Thomas 1973, Miller
1981, Stoline 1981, Games et al. 1983, Hochberg and
Tamhane 1987) and have been discussed in articles in
many fields, e.g., agronomy (Chew 1976, Baker 1980),
animal production and veterinary science (Gill 1973,
Waldo 1976, Cox 1980), entomology (Jones 1984, Per-
ry 1986), medicine (Rosen and Hoffman 1978, Sals-
burg 1985), plant pathology (Madden et al. 1982), and
psychology (Jaccard et al. 1984, Klockers and Sax 1986).
These papers have examined either the relative merits
of different UMCPs or whether UMCPs should be used
at all, leading to a more general discussion of the use-
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fulness of statistical hypothesis testing (e.g., Jones and
Matloff 1986).

It is important for ecologists to judge whether the
biological data fit the assumptions of the analysis closely
enough. This depends on how robust the method used
is to deviations from its assumptions. Such informa-
tion is hard to find in textbooks, but there are many
recent studies of this issue, and some new robust meth-
ods, both for ANOVA and comparisons of means. The
assumption of equal variances is particularly impor-
tant. Biological data often follow a lognormal distri-
bution, presumably because of underlying multipli-
cative processes. Such processes lead to a relation
between the mean and the variance, so that the samples
from different treatments not only have non-normal
distributions but also unequal variances. The effects of
this on the ANOVA and tests to compare means has
seldom been studied.

Papers written for biologists on comparing treat-
ments have been limited in their coverage of the prob-
lem (e.g., not discussing unequal sample sizes, variance
heterogeneity, or nonparametric methods) and their
coverage of the literature, particularly many recent sta-
tistical papers. Nonetheless, the common theme
emerging from all these papers is that different methods
have been designed for different purposes, and the best
method to use for a particular experiment depends on
the precise objectives of the experiment. We suspect
that ecologists often do not understand clearly the pur-
pose of the method they use.

The objectives of this paper are: (a) to explain the
concepts underlying the methods to compare treat-
ments and to summarize the relevant statistical liter-
ature, much of which is very recent; (b) to determine
the most commonly used methods in ecology, and the
situations in which they are used; (¢) to show, using
Monte-Carlo simulations, what the commonly used
UMCPs do and how they are affected by variance het-
erogeneity; (d) to demonstrate the effects of lognormal
data and the need to detect this situation; and (¢) to
discuss which methods are most appropriate for par-
ticular situations. We intend this paper to provide prac-
tical advice on what test to use. The formulae are in
Appendix 1 and a worked example is in Appendix 2.
References to textbooks (where possible) and papers
are given for all tests mentioned.

Relevant concepts

Statistical terms and notation will be kept to a min-
imum, but some basic concepts are required to discuss
the merits of different procedures, and some of these
appear to be poorly understood by many ecologists,
despite the efforts of Underwood (1981) and various
texts. The concepts in this section also apply to non-
parametric comparisons of treatment medians.

Two types of error can occur when tests are used to
compare treatments:

R. W. DAY AND G. P. QUINN

Ecological Monographs
Vol. 59, No. 4
Type I: The means for two treatments are declared
significantly different when, in fact, the pop-
ulation means for the treatments are equal.
Type I1: The means for two treatments are not de-
clared different when, in fact, the popula-

tion means differ.

Type I errors are measured in two ways. Consider
an experiment with four treatments with equal popu-
lation means A, B, C, D, and an analysis in which the
means of samples from each treatment are compared
using multiple ¢ tests at the 5% level. The type I error
rate per comparison is the probability of a type I error
in a single comparison. The probability of a type I error
when A and B are compared is 5%, and the same is
true when B and C are compared, etc.

The experimentwise type I error rate (EER) is defined
as the probability of one or more type I errors when
all of the comparisons in an experiment are made. For
multiple ¢ tests the EER may be roughly estimated
using the binomial probability formula by treating the
comparisons as independent. In the example there are
six comparisons and the estimated EER is =26%. The
EER can only be reduced to 5% by decreasing the error
rate per comparison.

Now consider an experiment where three treatments
have equal population means A, B, and C, while D is
different from the other three. In comparing the means
a type I error can only occur when comparing A, B,
and C, so that the EER using multiple ¢ tests would be
~14%. The error rate per comparison does not have
to be decreased as much in this case to reduce the
experimentwise error rate to 5%. The stepwise UMCPs
described below make use of this fact.

In a factorial experiment where means are consid-
ered in groups, one refers to the familywise error rate
for each group rather than the EER. Huitema (1980)
points out that if an ANOVA F test is carried out at
the 5% level, then this type I error rate of 5% refers to
the probability that one or more of all the possible
comparisons between the treatments will be incorrectly
declared significant, i.e., the F test uses an EER (or a
familywise error rate in factorial experiments).

The power of a test is the probability of not making
a type 1l error if the treatments differ (i.e., the proba-
bility of finding real differences), and this is measured
on a per-comparison basis. The probability of a type
Il error depends on how different the treatments are
in relation to the variability within treatments in the
data, the sample size, and which method is used. If the
type 1 error rate per comparison is very low then the
probability of a type Il error will be high, and the test
will have a low power.

Heterogeneity of variance may affect both the type
I and type II error rates. Box (1954) showed that the
effect of heterogeneous variances on the type I error
rate of the ANOVA F test would be approximately
proportional to a coefficient of variation of the vari-
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ances (Box’s coefficient). For a given range of variances,
Box’s coeflicient is largest when one variance is large
and the rest are small. When sample sizes are unequal
there is an additional important effect on the error rate,
which depends on the ratio of the unweighted (ignoring
sample sizes) to the weighted (by the degrees of freedom
of each sample) mean of the variances (Box 1954). This
“bias ratio” reflects the degree to which small sample
sizes are paired with large variances.

Comparisons of means may be planned or un-
planned. Planned comparisons are a selected subset of
the possible contrasts between means or combinations
of means, chosen before the experiment is done so that
they are not suggested by the results. They should re-
flect arational set of specific hypotheses about the treat-
ments, which flows from the design of the experiment
or the knowledge and interests of the researcher (War-
ren 1979). For example, in an experiment on the effects
of no food and two types of food on growth rates, a
pertinent hypothesis is that growth is greater in treat-
ments with food. This is measured by the difference
between the mean for no food and the average of the
other two means. Another common example is where
aresearcher is interested in trends across levels of some
factor, or simply hypothesizes that the treatment means
will be ordered in some way. Ideally, planned com-
parisons should be orthogonal, i.e., they should test
completely separate hypotheses (Sokal and Rohlf 1981)
and thus provide independent pieces of information
(Keppel 1982). The number of hypotheses possible in
an orthogonal set is no more than the number of de-
grees of freedom available.

Unplanned comparisons occur when the researcher
has only a general question, such as “Are there any
differences?”” to ask and explores the results to find
what pattern of differences emerges. The common
strategy here is to compare all the means in pairs, using
unplanned multiple comparison procedures (UMCPs).
Such comparisons are not orthogonal, and the objec-
tive is usually to see whether any of the comparisons
are significant, so as to base conclusions on these re-
sults. Unplanned tests are called ““protected” when they
are applied only if the ANOVA F test is significant,
1.c., as a two-stage procedure. The EER of protected
tests is measured for the whole two-stage procedure
(Carmer and Swanson 1973, Miller 1981). Some au-
thors have suggested that this protection ensures con-
trol of the EER (see discussions in Keppel 1982, Zwick
and Marascuilo 1984).

Methods for comparisons

This section will describe the available procedures
for making comparisons of treatments and their ratio-
nale. As a complete, up-to-date reference source is not
available elsewhere, we provide references to the rel-
evant literature; we also provide technical information,
including formulae for the tests in Appendix 1. The
symbol a will be used for the chosen (i.e., nominal)
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significance level, e.g., .05 or 5%, m for the number of
treatments or means, r for the number of comparisons
and “df for degrees of freedom.

Planned comparisons. —Planned comparisons use a
per-comparison error rate. They may be pairwise com-
parisons, where two means are compared, or contrasts,
where combinations of several means are compared,
e.g., the average of two means is compared to a third.
In either case they are significance tests of focused ques-
tions, as opposed to omnibus or unfocused tests (Ro-
senthal and Rosnow 1985).

The ¢ or F statistics are used for parametric tests.
The F method has the advantage that a sum of squares
for each comparison can be put in the ANOVA table
for the overall analysis, showing how the variation is
partitioned between (orthogonal) comparisons. These
F test comparisons are exactly equivalent to ¢ test com-
parisons. Both methods assume equal variances and
use the mean square in the denominator of the overall
ANOVA F test to estimate the standard error of the
comparison (SE.). For nonparametric tests, the Mann-
Whitney-Wilcoxon U statistic appears to be the sim-
plest pairwise test to apply: and the Spjetvoll method
1s best for contrasts (see Hollander and Wolfe 1973).
These also require equal variances (the assumption
being that the distributions only differ in location).

When treatment variances are unequal, the use of a
pooled estimate of variance (e.g., the denominator mean
square from the ANOVA. ms,) in calculating the stan-
dard error of the comparison (Sg.) is inappropriate.
Parametric methods robust to unequal variances in-
clude the Behrens-Fisher 7 test (Winer 1971, Snedecor
and Cochran 1980), which uses the correct standard
error (SE.*), and special tables in Fisher and Yates
(1953). However, standard ¢ tables can be used in ap-
proximate tests: Welch’s (1938) test uses adjusted de-
grees of freedom (df*), which were generalized by Sat-
terthwaite (1946) for use in complex contrasts (see
Winer 1971, Keppel 1982); Welch’s (1947) slightly dif-
ferent adjustment (Winer 1971, Keppel 1982); and
Cochran’s approximate ¢ test (see Snedecor and Coch-
ran 1980, Sokal and Rohlf 1981). A robust version of
the Mann-Whitney U test has also been described re-
cently (Fligner and Policello 1981), which requires only
that the distributions under each treatment are sym-
metrical. We call this the Fligner-Policello test.

Parametric unplanned comparisons. — The com-
monly used methods rely on the Studentized Range
statistic (Q), or on the F and ¢ statistics (which are
equivalent for comparisons). Other methods use the
Studentized Maximum Modulus (SMM), or the Stu-
dentized Augmented Range (SAR), which are tabulat-
ed in Rohlf and Sokal (1981). However most methods
can be adapted for use with any of the statistics (Einot
and Gabriel 1975). Kurtz et al. (1965) noted that the
statistics vary in the kinds of differences between means
to which they are most sensitive: (1) for comparisons
involving combinations of many means (e.g., regres-
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sion comparisons) the F statistic is most powerful; (2)
for simultaneous pairwise comparisons of means the
Q statistic is most powerful; and (3) the SMM statistic
is most powerful for detecting treatments that are dif-
ferent from the remaining group of treatments. Einot
and Gabriel (1975) showed that the F is more powerful
than the Q statistic for stepwise UMCPs such as the
Student-Newman-Keuls (SNK) procedure, but the dif-
ference is very small.

1. Equal sample sizes and variances. — The simplest
test is the LSD (Least Significant Difference) test, which
uses a ¢ value from tables with the df of the standard
error, SE.. The LSD test and multiple ¢ tests set the type
I error rate at a per-comparison level of a, and as a
result they are the most powerful tests available. Fisher
(1935) proposed the Protected LSD test, where the
individual comparisons are tested only if the ANOVA
F test is significant. Note that the test described in
Winer (1971) as a modified LSD approach suggested
by Fisher, is a form of the Bonferroni method below.

The Bonferroni method involves adjusting the sig-
nificance level per comparison, using the Bonferroni
inequality, to ensure the EER is always below the level
chosen (a). This is usually applied to the ¢ test. A more
powerful Bonferroni method, the Dunn-Sidak method,
is described by Ury (1976) and Sokal and Rohlf (1981).
These methods are designed for comparisons involving
combinations of means as well as pairwise compari-
sons, provided the number of comparisons to be made
(r) is fixed in advance.

Scheflé’s test (Scheffé 1953) is designed, like the
Dunn-Sidak method, for all possible comparisons, in-
cluding both pairwise comparisons and contrasts. There
is a very large number of ways to compare combina-
tions of means, whereas the number of pairwise com-
parisons is limited to r = m(m — 1)/2, where v = the
number of possible comparisons to be made and m =
the number of treatments (or means) in the experiment.
Scheffé’s method, therefore, adjusts the type 1 error
rate per comparison to a very low level to keep the
EER at the chosen level (a); and it lies below a when
there is only a limited number of possible comparisons.

Tukey’s method (Tukey 1953), variously called the
honestly significant difference (HSD) test, the 7 meth-
od, Tukey’s 4, and Tukey’s w method, is usually used
with the Q statistic. This test is designed for comparing
each pair of means. Like each of the tests above, the
critical value for each comparison is the same, so that
each comparison has the same chance of a type I error.
Such tests are called “simultaneous tests.”

There are many stepwise tests, which are designed
to compare pairs of means to find where differences
occur, or to detect groups of equivalent means. The
means are arranged in order, for example A, B, C, D.
The difference between A and D is tested using a
“4-mean significance level,” which is the probability
of falsely rejecting the hypothesis that all four means
are equal. If this test is significant, then groups of three
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means (¢.g., A, B, C and B, C, D) are tested, using a
“3-mean significance level.” This process is continued
until pairs of means are tested, but no further tests are
done on means which lie within a nonsignificant group.
The stepwise tests differ in how the adjusted signifi-
cance level is set. They include the familiar Duncan’s
multiple range (new) test (Duncan 1955), and the Stu-
dent-Newman-Keuls (SNK) test (Newman 1939, Keuls
1952). Ryan (1960) proposed a stepwise test, using
adjusted significance levels on any two-sample test such
as the r or Mann-Whitney U tests. The method is not
appropriate for multisample statistics such as Q or F.
Einot and Gabriel (1975) described a modification of
Ryan’s method for the Q and F statistics which we
illustrate and call “Ryan’s @ (or F) test.” Welsch (1977)
also proposed a number of modifications of Ryan’s
method. One of these is Welsch’s step-up, or GAPA,
test (see Sokal and Rohlf 1981) where pairs of means
are tested first, then groups of three means, etc. A test
on a larger group is automatically significant if it con-
tains means which have already been declared differ-
ent. Ramsey (1978) proposed a further revision of
Ryan’s test, which he unfortunately called “Ryan’s pro-
cedure.” This revised Ryan’s test is slightly more com-
plex to use than the Ryan’s Q test we illustrate.

The adjusted levels of significance () are highest for
Duncan’s test and lowest for Ryan’s test. Following
Begun and Gabriel (1981), values of Q,(P, df) for Ryan’s
Q test can be obtained by interpolation from available
tables of the Q statistic (see Appendix 1).

A number of new stepwise UMCPs have been de-
veloped recently, but will not be described in detail
here. These include Shaffer’s (1979) modification of
stepwise procedures, which replaces the comparison of
means farthest apart by an ANOVA F test; Peritz’s
test (Einot and Gabriel 1975), which is a mixture of
the SNK test and Ryan’s test (Begun and Gabriel [1981]
provide a computer algorithm); and a model testing
procedure described by Ramsey (1981), who has de-
scribed and evaluated all these tests. They are more
complex to apply than those described above and in
Appendix 1.

The Waller-Duncan k-ratio test (Waller and Duncan
1969) employs a different approach from the other
tests. The critical value used depends on (1) a chosen
ratio of the seriousness of type I and type II errors,
which corresponds to the chosen significance level, and
(2) the magnitude of the ANOVA F value. It is thus
like an elaborate protected LSD test.

2. Unequal sample sizes.—Most UMCPs can be
simply modified for unequal sample sizes. The usual
modification of the ¢ test is to replace n (sample size)
in the formula for the standard error (Sg.) by the har-
monic mean of the sample sizes in the comparison (e.g.,
Sokal and Rohlf 1981). This is equivalent to using the
formula for complex comparisons, and therefore the
same substitution is used for the Bonferroni (or Dunn-
Sidak) and Scheffé methods, which were designed for
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complex comparisons. Tukey (1953) proposed this
substitution for Tukey’s test, and Kramer (1956) pro-
posed it for the Duncan and SNK tests. It has become
known as the Tukey-Kramer (T-K) or Kramer’s meth-
od (see Sokal and Rohlf 1981). It can also be used for
the other stepwise tests described above.

More recent methods include the GT2 method
(Hochberg 1974), Gabriel’s (1978) approximation to
the GT2 method. and the T' method (Spjetvoll and
Stoline 1973). These methods are illustrated by Sokal
and Rohlf (1981). Winer (1971) and Snedecor and
Cochran (1980) proposed replacing # by the harmonic
mean of all the sample sizesin Tukey’s and the stepwise
tests. All these methods, and some other less-used ones,
are discussed by Dunnett (1980a) and Stoline (1981).

3. Heterogeneous variances (equal or unequal sam-
ple sizes). — When treatment variances are unequal, the
pooled estimate of variance (Ms,) cannot be used to
calculate the standard error of the comparison (SE.).
For all pairwise comparisons of means, simulations by
Tamhane (1979) and Dunnett (19805) have reduced
the choice of suitable UCMPs to three: the GH (Games
and Howell 1976, Sokal and Rohlf 1981), T3 (Tam-
hane 1977 modified by Dunnett 1980b) and C meth-
ods. The last was developed by Dunnett (19800) from
Cochran’s approximate ¢ test. For complex compari-
sons, formulae for sg.* and df* are provided in Ap-
pendix 1 (under Planned Comparisons) and these can
be used with the Scheffé, Bonferroni, or Dunn-Sidak
methods.

4. Non-independence.— Adjusted means in an anal-
ysis of covariance (ANCOVA) are not independent.
The standard UMCPs are not appropriate (Bancroft
1968, Neter and Wasserman 1974, Miller 1981) be-
cause they require that the covariances as well as the
variances be homogeneous, and this will not generally
be the case (Scheffé 1959). Covariance heterogeneity
leads to inflated type I error rates (Renner and Ball
1983). If the assumption of equal regression coefficients
(or slopes) holds, planned comparisons, Scheffé’s test,
and the Bonferroni methods can still be used, if the
standard error of the comparison (Sg,) is increased ac-
cording to the variation among means for the covariate.
Sokal and Rohlf (1981) suggested using the GT2 pro-
cedure described earlier.

Other special techniques have been developed for
comparing means adjusted in ANCOVA. Thigpen and
Paulson (1974) developed a simultaneous test proce-
dure, similar to Tukey’s HSD test, based on a gener-
alized Studentized Range distribution, which was ex-
tended by Bryant and Paulson (1976) to handle designs
other than one-way ANCOVA. Huitema (1980) pro-
vided an excellent description of this Bryant-Paulson
generalization of Tukey’s test; it can be also used as a
stepwise test, with the generalized Studentized Range
distribution (Bryant and Paulson 1976) or with special
Duncan’s multiple range tables (Bryant and Bruvold
1980). Recently, Hochberg and Varon-Salomon (1984)
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described a Tukey-Kramer procedure, using the stan-
dard Studentized Range distribution, which is condi-
tional on the values of the covariate; the standard error
of the comparison will vary, therefore, depending on
which pair of adjusted means is being compared.

Wilcox (1987) pointed out that in an ANCOVA,
procedures that first test for equal slopes and then equal
intercepts (or adjusted means) do not control the EER
among all the hypotheses tested. He described a tech-
nique for simultaneous pairwise comparisons of slopes
and intercepts, analogous to the Tukey-Kramer meth-
od, that controls the EER.

Treatment means for the repeated factor in repeated-
measures ANOVA are also not independent. We know
of no special tests developed for use with repeated-
measures ANOVA. Winer (1971) recommended using
a standard procedure such as the SNK test, but this is
only applicable if the variances and covariances are
truly homogeneous.

It is also important to note that in an analysis where
a number of tests are carried out using the same esti-
mate of error variation (SE_), the tests are not indepen-
dent. This problem arises both in tests of numerous
fixed factors in an ANOVA and in testing numerous
comparisons using methods which assume homoge-
neous variances. Hurlbert and Spiegel (1976) showed
that the problem becomes serious when the sum of the
df of the comparisons is close to the df of the error
estimate. This may occur when very few replicates are
used, or in factorial designs when a random factor has
few levels.

Nonparametric unplanned comparisons.—Nonpara-
metric methods are appropriate if the population dis-
tributions are not fairly close to normal (e.g., if they
are multimodal; see Discussion and Recommendations:
Assumptions). Standard nonparametric methods as-
sume that the distributions under each treatment differ
only in location, i.e., median. This requires the shape
and variances of distributions to be the same in all
treatments, either on the original scale of measurement
or on some transformed scale. Most multiple compar-
ison procedures can be applied in the nonparametric
case, using treatment rank sums (or mean ranks or
placement sums) instead of means, and a nonpara-
metric statistic. There are two broad groups of non-
parametric UMCPs for pairwise comparisons that use
two quite different approaches. One group uses joint
rankings, i.e., each pairwise comparison is based on
the ranks for all m treatments in the study. The result
of the comparison of each pair of treatments depends
on the data from the other m1 — 2 treatments, a situation
not found in any of the commonly used parametric
UMCPs. These tests usually calculate the difference in
mean ranks, and include the simultancous Nemenyi
test (Nemenyi 1963, cited in Hollander and Wolfe
1973), which uses either exact tables (Hollander and
Wolfe 1973, Damico and Wolfe 1987) or an extension
of the Kruskal-Wallis statistic in a Scheflé test. Large
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sample approximations of this test use the Q statistic
(Miller 1981, 1986), or the unit normal z statistic (Dunn
1964, Hollander and Wolfe 1973), with significance
levels adjusted according to the Bonferroni inequality.

Zar (1974) described an SNK-type stepwise version
of this test, and Campbell and Skillings (1985) have
described two other stepwise versions: an “a/l-subset”
procedure (if a set of m treatments is declared signif-
icant, then all possible subsets of m1 — 1 treatments are
tested without ordering them in any way) and an “‘ad
hoc™ procedure (which orders the treatments according
to rank sums to determine which subsets are tested,
Just as for means in a parametric stepwise test). Both
use Ryan’s adjusted significance levels; the ad hoc pro-
cedure 1s much simpler than the all-subset test (Camp-
bell and Skillings 1985). We illustrate the Nemenyi
(Joint-Rank) test and the stepwise ad hoc test (which
we call the “Joint-Rank Ryan test™).

The other group uses pairwise rankings, i.e., re-rank-
ing the data for each pair of treatments being com-
pared. The test for each pair of treatments does not
depend on the other treatments in the study, as is al-
ways the situation in parametric procedures. This group
usually calculates the maximum or minimum rank sum
(or placements) and uses the Wilcoxon or Mann-Whit-
ney U statistic. [t includes the simultaneous Steel-Dwass
test (Steel 1960, Miller 1981), using exact tables or a
large sample approximation based on the Q statistic,
and the version of this test using ‘‘placements’” in Sokal
and Rohlf (1981). Conover (1980) described a simul-
taneous method using the ¢ statistic in an LSD-type
test. Campbell and Skillings (1985) described a step-
wise all-subset version of the Steel-Dwass test and sug-
gested a stepwise ad hoc procedure (see above), both
using Ryan’'s adjusted significance levels. We illustrate
the Steel-Dwass test, and a stepwise ad hoc version
(called ““Steel-Dwass Ryan’’), which orders the treat-
ments according to sample medians.

The exact tables for the Nemenyi Joint-Rank test,
and Dunn’s (1964) generalization of both the pairwise
and joint rank methods with a large sample approxi-
mation, allow unequal sample sizes (see also Miller
1981, 1986).

Comparing treatments with a control. —A special
group of UMCPs is designed for the case where a con-
trol is to be compared with each of the other m — 1
treatments. Here there are m — 1 comparisons rather
than m(m — 1)/2 as in all pairwise comparisons, so
that a more powerful test can be used while keeping
the EER at a. Parametric tests of this kind include
Dunnett’s test (Dunnett 1955) described in Winer (1971)
and Zar (1974); Dunnett (1964, 1985) discussed un-
equal sample sizes and variances, and Shaffer (1977)
extended this test to include contrasts among the treat-
ments. Williams’ (1972) procedure is suitable for com-
paring dose levels to a zero-dose control. The non-
parametric Steel’s test (Steel 1959) using pairwise ranks
is described in Winer (1971) and Miller (1981), and

R. W. DAY AND G. P. QUINN

Ecological Monographs

Vol. 59, No. 4
was extended by Fligner (1984) for unequal sample
sizes and contrasts among the treatments. Miller (1981)
described a simpler “sign test” version and alternative
tests using joint ranks are described in Hollander and
Wolfe (1973).

METHODS
Literature search

The journals Ecology, Journal of Experimental Ma-
rine Biology and Ecology, Marine Biology, and Qeco-
logia (Berlin) were examined, and all papers published
in the years 1982 to 1984 inclusive plus a second sam-
ple from late 1986 were reviewed. Of the total of 3350
papers, 529 contained some comparison of treatments
after, or instead of, an analysis of variance (or its non-
parametric equivalent). The following information was
recorded from these papers:

whether the analysis was parametric or nonpara-
metric;

which procedure was used, and whether it was used
independently of a significant ANOVA F test or
nonparametric equivalent;

whether a homogeneity-of-variance test was carried
out;

the number of treatments compared, and the sample
size of each treatment;

whether all possible pairs of treatments, or some
subset of these were compared;

whether non-independent means (e.g., in repeated
measures ANOVAs, or adjusted means after AN-
COVA) were involved;

any reference to statistical texts or papers for the
particular test used.

Papers in which it was difficult to determine what
type of analysis was carried out (unfortunately com-
mon) were only included in the present review when
it was clear that some sort of multiple comparison had
been used. In 26 of the 1986 papers, sample sizes and
variance estimates were provided or could be calcu-
lated from the information, and these were used to
determine the values of Box’s coefficient of variance
heterogeneity and Box’s bias ratio that are found in
practice.

Papers describing or evaluating UMCPs were ex-
amined in the statistical literature and elsewhere, to
determine what is known of these procedures. Miller
(1981) provided a good bibliography of statistical pa-
pers, but relevant papers on the use of UMCPs are
widely scattered across journals in many disciplines.

Monte Carlo simulations

Simulations were carried out in order to illustrate
how the commonly used or recommended UMCPs
perform, using sample sizes and numbers of treatments
that are typical of analyses in ecology. We have not
adjusted each procedure to hold the experimentwise
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error rate (EER) constant, as suggested by Einot and
Gabriel (1975). While this might provide a better com-
parison of the inherent properties of the procedures,
ecologists use UMCPs as specified in textbooks, with
different EERs. Similarly, we used sample variances to
estimate population variances in calculating critical
values, as this is what would occur in practice.

Simulations were run on a Hewlett Packard 200-
series microcomputer, programmed in BASIC. Except
where noted below, each run consisted of 12 000 ex-
periments, in which random samples were generated
for each treatment, then subjected to the ANOVA F
test, the Kruskal-Wallis nonparametric ANOVA, and
various methods to compare pairs of treatments. Nom-
inal significance levels of 5% were used for each test.
In each run the program recorded, for each UMCP,
the total number of comparisons with type I and with
type Il errors and the number of experiments with one
or more type | errors. A separate tally of these numbers
was kept for those experiments where the F value was
significant. The EER was calculated as the number of
experiments with one or more type I errors divided by
the number of experiments. The runs were divided into
blocks of 3000 experiments to determine how much
the results would vary.

Numbers with a standard normal distribution were
obtained from pairs of uniform pseudo-random num-
bers using the method of Box and Muller (1958), and
transformed to obtain samples with the population
mean and variance required. The results of a spectral
test (Knuth 1981) of the available linear congruential
random-number generator showed that the points
specified by potential pairs of pseudo-random numbers
were not as closely spaced as Knuth (1981) suggested
is sufficient. The method of Bays and Durham (1976)
was used to shuffle the pseudo-random numbers for
each experiment in a large array. This method produces
numbers sufficiently random for most purposes (Knuth
1981).

l. Normal distribution, equal variances.—Sample
sizes (1) of three, five, and nine, and experiments with
three to six treatments (11) were used, as these appeared

TABLE 1. Parameters used in simulations (equal variances).
PSD is population standard deviation.

Distance
Simu- between
lation No. of  Arrangement groups Sample
series means of means* (PSDs) sizes (1)
A 6 all equal none 3,59
B 6 24242 various 3,5,9
C 6 3+3 various 3,5,9
D 6 various 3 5
E 5 various 3 5
F 3 Jequal, 1 + 2 3 5

* This shows the number, and size, of groups of equal means.
For example, in Series F there were either three equal means
or three means, of which only two were equal to each other
1+ 2).
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TaBLE2. Box’scoefficient of variance heterogeneity and bias
ratio for initial simulations with unequal vartances and
three treatments. Population variances and sample sizes
used are shown. ND = simulation not done.

Equal n Unequal n
3,59 (9,9,5and §, 5, 3)
Variances Box’s Box’s Box’s
used coefficient* coefficient bias ratiot
1, 1,1 0.0 0.0 1.0
[, 1,2 0.35 0.33 1.11
1,1,3 0.57 0.57 1.19
1,1,4 0.71 0.75 1.25
1,2,9 0.89 1.01 1.43
1,1, 10 1.06 1.29 1.43
1,1, 16 1.18 1.50 1.50
1, 1,34 1.29 ND ND

* The coefficient of variation of the variances.
T (Weighted mean of the variances)/(unweighted mean of
the variances).

typical of the literature surveyed (see Results: Proce-
dures Used in Ecology, below). All treatments had equal
population variances. Parameters used in the simula-
tions are shown in Table 1. In the first series of runs
the treatment population means were all equal. In the
second series of runs the treatments were grouped in
three pairs, and the difference between pairs was set at
0.25,0.5, 1, 1.5, 2, 2.5, 3, and 4 population standard
deviations (PSDs). Because in simulations with m = 6
treatments the nonparametric methods required far
more computer time, 4000 experiments per run were
used to investigate these methods. In the third series
of runs the treatments were grouped in various ways,
and the difference between groups was one of the above
(see Table 1). The parametric UMCPs examined were
the Scheffé, Dunn-Sidak, Tukey, SNK, Duncan, and
Ryan Q tests. The nonparametric methods were the
Steel-Dwass test, the Nemenyi Joint Rank test, and
two stepwise methods: the Joint Rank Ryan test (the
“ad hoc” test described by Campbell and Skillings
[1985]), and the Steel-Dwass Ryan test (an equivalent
pairwise “ad hoc” test).

2. Normal distribution, unequal variances.—Simu-
lations were used to illustrate the effects that hetero-
geneity of variances would have on the ANOVA F test,
the Kruskal-Wallis ANOVA, and the Tukey, Ryan Q,
and nonparametric UMCPs. Box’s (1954) coefhicient
of variance heterogeneity guided the choice of sample
sizes and population variances for the first series of
simulations, with three treatments, shown in Table 2.
Based on these results, further simulations were done
to determine the effects of unequal sample sizes for the
parametric tests (using the Tukey-Kramer modifica-
tion).

3. Lognormal distribution.—Lognormal data may
arise in practice as a result of multiplicative biological
processes, so that the treatment variance is propor-
tional to the mean. To illustrate the effect of such pro-
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TABLE 3.

= not recorded.

R. W. DAY AND G. P. QUINN

Parametric unplanned multiple comparison tests
used in papers in ecology in 1982-1984 and in 1986. NR

No. No. treat-
Total after ments
no. %of F (mean
Test used Year papers total test + SD)
SNK 1982-1984 146 38 132 5.0+ 25
1986 2329 21 51 +27
Duncan’s 1982-1984 80 21 64 53 =+25
1986 15 19 13 42+19
Multiple ¢ 1982-1984 44 11 6 48 + 3.6
1986 7 9 3 43+1.4
Tukey’s 1982-1984 30 8§ 25 54+33
1986 13 16 12 54+ 33
LSD 1982-1984 25 6 18 5.6 29
1986 5 6 S 54+21
Scheffé’s 1982-1984 22 6 20 47+20
1986 3 4 3 33=+1.2
Bonferroni ¢ 1982-1984 6 2 3 NR
1986 4 5 3 NR
Other UMCPs 1982-1984 10 2 7 NR
1986 3 4 2 NR
Unspecified 1982-1984 22 6 17 NR
1986 7 8 5 NR

cesses, lognormal data were generated by calculating
the antilog (i.e., %) of normally distributed data, gen-
erated as described previously. The population means
of the underlying normal samples were varied, so that
the variances of the lognormal samples varied in re-
lation to the means. In other simulations, the means
and variances of the lognormal distributions were spec-
ified, using the algebraic relations between the mean
and variance of a lognormal distribution and the mean
and variance of its normal transform; in some the treat-
ment variances were set equal and in others the vari-
ances differed. This corresponds to situations where
treatment variances are affected by processes other than
those producing the lognormal distribution shape.

Table values of statistics were obtained as follows:
F values from Winer (1971), the Dunn-Sidak ¢ statistic
from Rohlfand Sokal (1981), and the Studentized Range
(Q) values for the Tukey, SNK, Ryan’s , and Dun-
can’s multiple range tests from Harter (1970). Harter
states that his tables for Duncan’s test correct errors
in the tables provided by Duncan (1955). Steel and
Torrie (1960), the most frequently quoted reference for
Duncan’s test in the biological literature surveyed, re-
produce Duncan’s (1955) tables. Table values for the
Kruskal-Wallis ANOVA were from Hollander and
Wolfe (1973). Where possible, exact values for the Ne-
menyi Joint Rank test from Damico and Wolfe (1987),
and for the Steel-Dwass test from Steel (1960) were
used. For other values the large-sample approxima-
tions of Miller (1981) were used.

Ecological Monographs
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RESULTS
Procedures used in ecology

Of the 483 papers from 1982—-1984 that compared
three or more treatments, 416 (86%) used parametric
analyses and 67 (14%) used nonparametric methods.
Table 3 summarizes the information on the papers
using parametric analyses. Only 7% of these used
planned comparisons. In the remaining 385 papers, at
least 13 different UMCPs were used to test what ap-
peared to be the same null hypothesis: no differences
between pairs of means. In 16 papers, tests designed
for other purposes (¢.g., all pairwise comparisons) were
used to test a control against a number of treatments.
With the exception of multiple ¢ testing, most of the
tests followed a significant ANOVA or ANCOVA F
test. The most commonly used UMCP was the SNK
test, followed by Duncan’s multiple range test, multiple
t testing. Tukey’s test, the LSD test, Scheffé’s test, and
the Bonferroni method. A number of lesser known or
newer UMCPs made up 2%, and in the remaining 6%
of papers it was not possible to determine which test
had been used. The sample of papers from 1986 showed
a similar pattern (Table 3), except that the SNK test
was less common, and Tukey’s test was more frequent-
ly used. This may reflect the increased use of the 1981
edition of Sokal and Rohlf, which recommends Tu-
key’s test and does not describe the SNK test.

The average number of treatments compared was
=5 for the commonly used UMCPs, although in some
papers the number of means exceeded 15. It was often
not possible to determine the sample sizes used, but
where specified they were commonly <5. When equal
sample sizes were used, the percentage of papers with
n = 5 were: SNK, 32%; Duncan’s, 45%; Tukey’s, 50%;
and LSD, 43%. As shown later, the SNK test produces
inflated experimentwise error rates (EERs) when there
are groups of treatments with equal means. In 40% of

TaBLe 4. Nonparametric unplanned multiple comparison
tests used in papers in ecology (1982-1984). Overall test
refers to Kruskal-Wallis or Friedman tests.

No.
Total after
no. of % of  Type of overall
Test used papers total ranking test
Multiple Mann-Whitney 24 38 Pairwise 8
Nemenyi Joint-Rank

(Dunn’s approx.) 12 19 Joint 11
Nemenyi Joint-Rank

based on Kruskal-

Wallis statistic 9 14 Joint 9
SNK type 8 13 Joint 8
Modified Steel-Dwass 3 5 Pairwise 2
Conover’s T test 2 3 Joint 2
Bonferroni-adjusted

Mann-Whitney tests 2 3 Pairwise 1
Others 2 3 Joint 2
Unknown 2 3 e 1
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FiGg. 1. Experimentwise type I error rates of parametric

unplanned multiple comparison procedures (UMCPs) in sim-
ulations (7 = 5). The 6 treatment means were all equal (zero
on the abcissa) or in 3 pairs of equal values. The gaps between
pairs are shown in units of the population standard deviation
(PSD), which was the same for all treatments. ———: nominal
5% significance level, ——: expected error rate for indepen-
dent ¢ tests. O: Duncan’s test. A: Student-Newman-Keuls (SNK)
test. &: Ryan’s Q test. O: Tukey’s test. l: Dunn-Sidak meth-
od. A: Scheffé’s test.

the papers that used the SNK test, the treatment means
apparently fell into two or more groups, e.g., A=B=C
# D=E=F. The most commonly cited reference for
most tests was Sokal and Rohlf (1969). Zar (1974) and
Underwood (198 1) were others frequently cited for SNK
tests, with the SAS statistical package (Helwig and
Council 1979) cited for Duncan’s multiple range test,
and Steel and Torrie (1960) for Duncan’s and the LSD
test.

Table 4 shows that the most common nonparametric
UMCP was the use of two-sample tests, not corrected
for multiple testing. Of the rest, most papers used a
joint rank test based on Dunn’s approximation or using
the Kruskal-Wallis or Friedman statistic, or a stepwise
test analogous to the SNK test using the Q distribution
(Zar 1974). With the exception of multiple two-sample
testing, most authors only applied these tests after a
significant overall test (i.e., Kruskal-Wallis or Fried-
man tests).

Simulations—equal variances, normal distribu-
tion.— Parametric tests. — The performance of the com-
monly used parametric UMCPs is best shown using
an example of six treatments each with five observa-
tions, with all the tests made at a nominal significance
level of 5% (Fig. 1). When there are no real differences
between the means (zero on the X-axis), type I errors
can occur in all 15 comparisons of means. If all the
comparisons were independent, multiple 7 tests would
have an EER of 53.7%. Of the UMCPs studied, only
Duncan’s test exceeds the 5% EER level. Scheffé’s test
and the Dunn-Sidak method have EERs below 5%.
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When there are three pairs of equal treatments, there
are three comparisons of equal means in which type [
errors can occur, each of which is independent. The
EER for ¢ tests is therefore 14.3%, shown by the solid
line in Fig. 1. As the spacing (gaps) between the pairs
of means increases from 0.25 to 2 population standard
deviations (PSDs), the EERs for Duncan’s and the SNK
tests approach this theoretical maximum. Tukey’s test,
the Dunn-Sidak method, and Scheffé’s test use the same
critical value to test all comparisons, and each remains
at a constant experimentwise error level below the
nominal rate of 5%. The EER for Ryan’s ( test reaches
=~5%. In experiments with two groups of three equal
treatments, the same pattern emerges (Fig. 2). The si-
multaneous tests remain at constant levels <5%, al-
though not as low as in the case of three groups. Ryan’s
Q test approaches the 5% experimentwise error level,
and Duncan’s and the SNK tests exceed the 5% level.
In this case, the EER for Duncan’s test is much greater
than for the SNK test, although both remain below the
theoretical rate of 26.5% for independent 7 tests.

The low EERSs of the simultaneous tests, especially
Scheffé’s test, indicate that they would have little power
to detect small differences between means within each
group of two or three means. However we did not
determine their power to do so directly.

The standard deviations of all these results are not
presented, but may be calculated from the binomial
formula, e.g., 0.10% for an error rate result of 1%,
0.23% for a 5% result, and 0.42% for a result of 20%.
A number of runs with three subsets of 3000 experi-
ments were carried out to determine the standard de-
viation directly, and the results agreed closely with
binomial predictions.

These results illustrate the general pattern from our
simulations. As Table 5 shows, the EER was always
well above the nominal rate for Duncan’s test. When-
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FiG. 2. Experimentwise type I error rates of parametric
UMCPs in simulations where treatment means are in 2 groups
of 3 equal means. Treatment populations had equal standard
deviations (sps; # = 5). Symbols as in Fig. 1.
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TaBLE 5. Experimentwise type I error rates (EER) of four
parametric unplanned multiple comparison procedures
(UMCPs) when treatment means fall into groups. Gaps
between groups are 3 population standard deviations. Sam-
ple size = 5.

?rlr;i?g(;:f No. of Experimentwise error rate (%)

means* groups SNK Duncan’s Ryan’s Tukey’s
3 equal 1 5.1 9.7 5.1 5.1
1+2 1 5.0 5.0 34 1.8
5 equal 1 5.0 18.4 5.0 5.0
1+ 4 1 4.6 14.1 3.7 2.9
2+3 2 9.8 14.1 49 2.5
1+2+2 2 10.4 10.4 4.1 1.3
6 equal 1 5.0 22.0 5.0 5.0
1+5 1 4.9 18.0 4.2 3.7
1+1+4 1 5.2 14.4 3.6 2.5
2+ 4 2 9.7 18.0 5.0 3.2
3+3 2 9.2 17.9 4.8 2.6
1+24+3 2 9.5 13.9 4.5 1.8
2+2+2 3 13.7 13.7 4.9 1.3

* Number, and size, of groups of equal means. For expla-
nation see Table 1 footnote.

ever there was more than one group of equal means
and the gaps between groups were large, the SNK test
also exceeded the nominal rate; the severity of the
problem depends on the number of groups rather than
the total number of means compared. For Duncan’s
test, the EER depends on both the number and size of
the groups. The EERs of tests are not greatly affected
by sample size. In fact, in the range n = 3-9, which
occurs commonly in the biological literature, the
changes in error rate were too small to detect reliably.

Most ecologists used UMCPs only when the ANO-
VA F test was significant (Table 3), probably because
most texts state that UMCPs would only detect differ-
ences already indicated as present by the ANOVA,
rather than to “‘protect”” EERs. Protection is not nec-
essary for those tests that control EERs, but might be
expected to reduce the error rates for the SNK and
Duncan’s tests. The protection works when there are
no real differences between any means, as the EER
cannot exceed the 5% error rate of the F test. Our
simulations showed, however, that when there are dif-
ferences between groups of means, protection by the
F test has very little effect. As the spacing between
groups increases, the power of the F test increases, so

TaBLE 6. Effect of unequal sample sizes on error rates (%)
of ANOVA and Tukey’s test when variances are hetero-
geneous (3 treatments, variances = 1, 1, 10).

Error rate

Sample Box’s Bias of ANOVA  Error rate

sizes coeflicient ratio F of Tukey’s
9,9,9 1.1 1.0 7.8 7.4
9,9,7 1.2 1.2 11.6 11.2
9,9,5 1.3 1.4 17.2 17.5
9,9,3 1.4 2.0 26.8 27.4
3,9,9 0.8 0.8 3.7 34
6,6,9 0.9 0.8 4.1 3.3
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FiG. 3. The power of parametric UMCPs to separate means

in 2 groups of 3. Symbols and conditions of the experiments
as in Fig. 2.

that F'is significant in most experiments, and the EERs
of the protected SNK and Duncan’s tests become equal
to those of the unprotected tests. In our results with
six means in three pairs and a sample size of five, this
occurred when the pairs were one standard deviation
(sp) apart.

The power of tests (percent of correct decisions when
real differences occur) can be illustrated in the case of
two groups of three means, because the real differences
between means in different groups are the same for
each comparison (Fig. 3). The powers of those tests
with EERs =<5% are less than for the SNK and Dun-
can’s test, simply as a consequence of higher type I
error rates for the SNK and Duncan’s test. Higher pow-
er could be achieved using the other tests by setting an
EER of, e.g., 10%. The differences between tests are
largest for real differences of about two standard de-
viations (Fig. 3). Here the power of Ryan’s Q test is
~60%, and the power of Tukey’s test is = 53%, but the
power of Scheffé’s test is only 35%. The relative power
of the tests will vary with the arrangement of the means
into groups and the differences between groups, but the
ranking of the tests will remain the same. The increased
power of Ryan’s Q test relative to the other tests which
control the EER will be greatest when there are many
groups and many means.

Sample size has an important effect on the power of
Tukey’s and Ryan’s Q tests (Fig. 4A, B). While these
tests differ in power by only =7% at most when n =
5 (Fig. 3), the power of each may be increased by up
to 40% by raising the sample size to nine. Sample size
affects the power of other tests in a very similar way.

Nonparametric tests. — When means were in groups
the EERs of the nonparametric tests altered with the
spacing of the groups in a similar way to Tukey’s and
Ryan’s Q tests (Fig. 5A). Results are shown for a sample
size of 9 because the Steel-Dwass test cannot be used
for six treatments with a sample size <6.
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Fic. 4. Effects of sample size on the power of unplanned
multiple comparison procedures (UMCPs). Six treatment
populations with equal standard deviations. Means in 2 groups
of 3. (A) Tukey’s test. (B) Ryan’s Q test. Symbol indicates
sample size. M n=3.0: n=5.0: n=09.

All the nonparametric tests are more conservative
than their parametric equivalents for normally distrib-
uted data, which indicates that they would have less
power to detect differences between means within each
group. The Nemenyi Joint Rank test becomes ex-
tremely conservative as the gap between groups in-
creases because the joint ranking of a group of treat-
ments with other very different treatments reduces the
relative differences between rank sums within a group.
This is an important disadvantage of this test, and one
of the reasons why the stepwise version, which requires
re-ranking within each group, is much more useful.
The stepwise Steel-Dwass Ryan test is extremely con-
servative when the spacing between groups is small,
because two separate criteria are applied in comparing
treatments. Rank sums are used to determine signifi-
cance, but the treatment medians are used to determine
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which treatments are farthest apart and therefore com-
pared first. It is possible that the medians of two of the
treatments may be far apart but their rank sums not
very different. If so, stepwise testing would stop at this
pair, and other treatment pairs with very different rank
sums would be declared nonsignificant.

The relative power of the nonparametric tests are
shown in Fig. 5B, for six treatments in two groups and
a sample size of nine. Note that these power compar-
isons are for normally distributed data. The nonpara-
metric tests were always less powerful than Ryan’s Q
or Tukey’s tests. The Steel-Dwass Ryan test has very
low power because it is so conservative, so that the
most powerful of these tests is the Joint-Rank Ryan
test. The two simultaneous tests have similar power in
this situation, but simulations with three treatments
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F1G. 5. Error rates and power of nonparametric UMCPs,
when data are normally distributed. Six treatment populations
with equal standard deviations, and means in 2 groups of 3,
as in Figs. 2 and 3, but sample size = 9. (A) Experimentwise
error rates as spacing between groups increases. Horizontal
line indicates nominal 5% significance level. (B) Power of tests
to separate groups, as compared to the parametric Ryan’s Q
test. l: Nemenyi Joint-Rank test. [I: Joint-Rank Ryan test.
®: Steel-Dwass test. O: Steel-Dwass Ryan test. {: parametric
Ryan’s Q test.
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Fic. 6. The effect of variance heterogeneity on Tukey’s
test, with three treatments, means equal. The nominal sig-
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showed that the Steel-Dwass test was always more
powerful. As the Steel-Dwass test uses the data in each
pair of treatments separately, it should perform best
where the sample size is large compared to the number
of treatments.

Simulations—unequal variances, normal distribu-
tion.— When the treatments do not differ, the EERs of
the stepwise versions of tests are the same as the si-
multaneous tests, so the effects of unequal variances
when treatments are equal are described below for Tu-
key’s test, the Nemenyi Joint Rank test, and the Steel-
Dwass test only. Tukey’s test is affected in the same
way as the ANOVA F test with respect to Box’s coef-
ficient of heterogeneity and his bias ratio (Rogan et al.
1977; our simulations). High values of Box’s coefficient
can occur because one variance is fairly large while the
rest are small, or as a result of a very wide range of
variances. For example, when the variances are 1, 1,
and 10 or 1, 1, 1, 1, 1.5, and 7, Box’s coeflicient has
the same value as for variances of 1, 16, and 80. As a
narrower range of variances would seem more likely
to occur in practice, this is the situation we illustrate,
and for which ecologists should check their data.

With three treatments and equal sample sizes, the
EER of Tukey’s test increased slowly but markedly as
variance heterogeneity increased; it rose to =~ 10% when
one variance was very large compared to the others
(Fig. 6). Bradley (1978) suggested, as a liberal definition
of robustness, that the type I error rate should not
exceed 1.5 times the nominal rate. This level is shown
by the horizontal dashed line in Fig. 6. Further sim-
ulations with six treatments have shown that high EERs
can occur in many ways when there are many treat-
ments, namely: if one (or a few) of the many variances
is large, if larger variances occur in one subgroup of
treatments, or if there is a wide range of treatment
variances. The effects are also more severe with many
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treatments. Note that the error rates reported here are
for the set of all pairwise comparisons in an experi-
ment. For some particular comparisons, the error rate
may be much greater.

When sample sizes were not equal, and small sam-
ples were associated with larger variances, the error
rate rose much more rapidly as the variance hetero-
geneity increased (Fig. 6). For example, when popu-
lation variances were 1, 1, and 10, Box’s coeflicient
was 1.1 and the error rate was 8.3% with all sample
sizes set at 5, whereas with sample sizes of 5, 5, and
3, Box’s coefficient became 1.3 and the error rate was
18.1%. Table 6 shows how the EER of both the AN-
OVA and Tukey’s test vary with the bias ratio and
sample sizes. Bias ratios > 1.1 (when smaller samples
have larger variances) produce highly inflated error
rates.

The nonparametric tests were investigated only for
equal sample sizes. The effects of variance heteroge-
neity, where one variance is larger than the others, are
shown in Fig. 7A, B. The EERs were much less inflated
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than the EER of Tukey’s test. The Steel-Dwass test was
slightly more robust than the Nemenyi Joint Rank test.
However both tests are less robust when two or more
variances are large, and unequal variances are expected
to have more effect when sample sizes differ.

Fig. 8 A shows the frequency distribution of estimates
of Box’s coeflicient calculated from data in the ecolog-
ical literature. Many of the papers analyzed several
attributes measured under the same treatments, so that
not all of the values are independent, and these results
must be treated with caution. The distribution is highly
skewed, however, with =16% of values > 1, and a long
tail of extreme values. A coeflicient of 1 would lead to
EERs >7.5% even if sample sizes were equal and there
were only three treatments. The non-independence
would probably have reduced the spread of our data,
so that the real situation may be worse. As sample sizes
become more unequal, the bias ratio becomes the ma-
jor factor inflating EERs, and bias ratios > 1.1 produce
highly inflated EERs. The distribution of estimated
bias ratios in the literature survey is shown in Fig. 8B.
Although the non-independence problem is more se-
vere here, and may reduce the spread of the data, <6%
of the values are > 1.1, so that high bias ratios appear
to be rare in practice.

Simulations— lognormal data. — Biological data often
follow a lognormal distribution as a result of under-
lying multiplicative effects. These cause the distribu-
tion of measurements under each treatment to have a
lognormal shape, and also the variances under each
treatment to be related to the means. A log transfor-
mation renders the distribution normal (i.c., on a log
scale) and the variances equal. The simulations in Ta-
ble 7 have been arranged to show these two effects. In
each simulation there were six treatments in two groups,
the second group having larger means (by either 0.6 or
~2 PSDs) than the first.

In simulation A the distributions are lognormal, but
the variances have been set to be equal to investigate
the effect of the lognormal shape alone. This appears
to reduce the EER of the parametric tests, so that they
are conservative. In simulation B, the means and vari-
ances of the second group are larger (as expected in
lognormal biological data). A log transformation would
result in treatment populations with equal variances
and means 2 PSDs apart, but the simulated data were
analyzed without transforming. The EERs of the para-
metric tests are inflated, and their power is dramatically
reduced, but the nonparametric tests are not affected.
Simulation C is similar to B, but the means and vari-
ances of each treatment have been chosen so that, as
in simulation A, the average variance of the two groups
is 4 and the difference between the groups is =2 PSDs.
The EERs of the parametric tests remain somewhat
inflated, but less than in B. In simulation D the data
are as in B but have been transformed to the log scale
before analysis. The parametric tests have EERs much
closer to 5% and much better power than the non-
parametric tests.
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FiG. 8. Frequency distributions of estimated values from
experiments in ecology. (A) Box’s coefficient of variance het-
erogeneity. (B) Box’s bias ratio.

These results illustrate that, for lognormal data, non-
parametric tests perform well if variances are equal
either on the original scale of measurement or on some
transformed scale. They also show that the most im-
portant problem of lognormal data in biology is the
unequal variances in such data, and demonstrate the
value of graphing means against variances as a check
of whether a log transformation should be used. On
transformed data the parametric tests behave well. Fi-
nally, these data confirm that the Joint-Rank Ryan test
is the most powerful of the nonparametric UMCPs.

DISCUSSION AND RECOMMENDATIONS
Assumptions

The parametric statistics used for the ANOVA and
for comparisons are often claimed to be robust to the
assumptions on which they are based (e.g., Hays 1981).
Robustness, however, is a relative term (Bradley 1978),
and some assumptions, such as that sampling is ran-
dom and that observations are independent, are es-
sential. The consequences of various kinds of non-
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TaBLE 7.
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Effect of lognormal data on parameteric and nonparametric unplanned multiple comparison procedures (UMCPs).

In each simulation there were 6 treatments with means in 2 groups, n = 9. EER = experimentwise Type I error rate. PSDs

= population standard deviations.

. Variances . UMCPs*
Simu- Spacing
lation Group | Group 2 (PSDs) Statistic Tukey Ryan S-D N-J-R S-D-R J-R-R
A 4 4 2 EER (%) 1.9 4.1 1.1 0.3 3.0 3.9
Power (%) 89 94 65 65 62 87
B 5.7 38.1 0.6 EER (%) 7.5 12.5 1.2 0 3.7 4.7
Power (%) 28 32 64 65 62 86
C 1.7 6.3 1.8 EER (%) 5.7 9.3 1.1 0 32 4.5
Power (%) 81 88 65 65 63 86
D 5.7 38.1 0.6 EER (%) 2.4 5.0 0.9 0.1 3.0 4.2
Power (%) 90 94 65 65 63 86

* S-D: Steel-Dwass test, N-J-R: Nemenyi Joint-Rank test, S-D-R: Steel-Dwass Ryan test, J-R-R: Joint-Rank Ryan test.

independence are discussed by Kenny and Judd (1986).
Ecologists should consider how correlations between
observations may arise in their data, and describe what
precautions have been taken to minimize possible cor-
relations.

The effect of non-normal distributions has been in-
vestigated in many studies (e.g., F statistic: Gayen 1950;
t statistic: Boneau 1960, Ratcliffe 1968, Posten 1984;
Q statistic: Ramseyer and Tcheng 1973, Brown 1974).
It would appear that, if sample sizes and variances are
close to equal, only severe non-normality (e.g., bimodal
distributions or extreme skewness) or the presence of
outliers is a problem for parametric one-way ANOVAs
and UMCPs. We have shown that data that follow a
lognormal distribution as a result of multiplicative pro-
cesses can result in inflated EERs for parametric
UMCPs, but the major problem is the resulting un-
equal variances (discussed later in this section). Mil-
ligan et al. (1987) have shown that non-normality also
affects the computations for unequal cell sizes in fac-
torial ANOVA designs. Thus ecologists should consid-
er what processes give rise to the variation in their
data, especially when sample sizes differ, and whether
these might produce discontinuous effects (resulting in
outliers) or a multimodal distribution. An ecological
example of processes producing a bimodal distribution
might be the growth rates of animals where an unde-
tected parasite affects growth markedly. The distri-
bution of growth rates in the population would then
have a mode for parasite-free animals and another for
infected animals. This is similar to a case described by
Bradley (1977) that affected tests severely.

Tests for normality are rarely considered in biology,
probably because of the small sample sizes used. Ecol-
ogists should at least take simple, commonsense pre-
cautions to check for non-normality, particularly as the
processes which produce non-normal distributions may
also result in variance heterogeneity. Such precautions
are discussed in texts on exploratory data analysis (Tu-
key 1977, Hartwig and Dearing 1979, Hoaglin et al.
1983; see also Miller 1986, Dunn and Clark 1987).

Some non-normal distributions can be detected from
the relationship between sample means and variances
or residuals. Alternatively, one can use a probit plot
of the data in each treatment, where sample sizes are
large enough (say, >8), or a probit plot of the residuals
in all treatments if the variances and shape of the dis-
tributions can be assumed to be the same (Winer 1971,
Miller 1986).

A transformation to a different scale of measurement
will often produce normality of distributions within
treatments (e.g., Snedecor and Cochran 1980, Sokal
and Rohlf 1981; see Underwood [1981] for application
of transformations to ecology). We have demonstrated
that where multiplicative processes produce lognormal
data, transforming to a log scale is the best strategy, as
the more powerful parametric UMCPs control the EER.
The interpretation of analyses of transformed data,
however, needs considerable care (see below in this
section). Nonparametric tests should be considered in
situations where it is impossible to tell if the data are
close to normal.

Outliers may affect even tests robust to the usual
normality assumptions (Dunnett 1982), and therefore
some objective “check™ for outliers is useful. Dunn
and Clark (1987) discuss significance tests as checks
for outliers (assuming normal distributions), and
Chambers et al. (1983) and Hoaglin et al. (1983) de-
scribe ““outlier cutoffs” based on certain ways of sum-
marizing batches of data. These summaries can be very
usefully presented as box plots {(or schematic plots),
which provide visual checks for outliers. McGill et al.
(1978) provide some useful refinements to the box plots
technique. Identifying outliers allows the ecologist to
check for errors. Underwood (1981) correctly cautions
against the routine removal of ‘“‘unsatisfactory” data
unless they are clearly impossible from the nature of
the experiment. Techniques for removing outliers are
usually based on winsorizing (see Winer 1971) and are
discussed in some detail in Hoaglin et al. (1983).

Relatively few studies have investigated the as-
sumption that all treatments have the same type of
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distribution. Error rates for the ¢ test can be inflated
when samples are small or unequal and the treatment
distributions are skewed to different extents or direc-
tions (Boneau 1960). This might occur if the biological
processes producing variation differed between treat-
ments. One-tailed tests were especially affected. How-
ever, Ramseyer and Tcheng (1973) found that the error
rate of Tukey’s test, taken over all the pairwise com-
parisons, was little affected by distributions with dif-
ferent shapes, even when they were skewed in different
directions. Neither transformations nor the standard
nonparametric methods can bypass this problem, al-
though robust nonparametric methods have recently
been proposed that rely on the distributions being sym-
metrical rather than the same (Fligner and Policello
1981, Rust and Fligner 1984).

Early studies (e.g., Box 1954, Boneau 1960, Ram-
seyer and Tcheng 1973) stressed the robustness of the
F, 1, and Q statistics to heterogeneity of variance. Later
studies (Games and Howell 1976, Rogan and Kesel-
man 1977, Rogan et al. 1977, Dunnett 19805, Wilcox
etal. 1986, our data) have emphasized the severe effects
of more unequal variances on the ANOVA and Tukey’s
test. Yet the commonly used textbooks contain only
vague statements such as “‘the consequences of mod-
erate heterogeneity of variance are not too serious”
(Sokal and Rohlf 1981:408). An important point is that
in factorial experiments where variances are hetero-
geneous, treatments cannot be pooled across one factor
to make comparisons between levels of another factor.
The standard computational routines for unequal cell
sizes in factorial ANOVA designs are also not robust
to variance heterogeneity (Milligan et al. 1987).

As with non-normality, the problems of variance
heterogeneity for one-way designs are more severe with
unequal sample sizes. When all treatment means are
equal, our simulations show the EERs of Tukey’s test
are very similar to those for the ANOVA F, and closely
related to Box’s coefficient of heterogeneity and bias
ratio. Our sample of the ecological literature suggests
that the bias ratio is seldom extreme, but the coeflicient
is often high enough to seriously increase error rates.
For equal sample sizes and normal distributions the
nonparametric UMCPs appear more robust to vari-
ance heterogeneity than their parametric counterparts,
although seriously inflated EERs still occur. The effects
of combinations of variance heterogeneity and non-
normal distributions have not been studied in detail.

Some patterns of variance heterogeneity can be de-
tected with the methods for exploratory data analysis
referred to above (e.g.. relationships of means and vari-
ances). More commonly, significance tests of the equal-
ity of variances are used. Ecologists should be aware,
however, that if preliminary tests of variances are used
to determine how to analyze the data, this will change
the error rate of the overall analysis. Tests to detect
heterogeneity of variance are useful only in some cases
(R. W. Day and G. P. Quinn, personal observations).
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The most powerful variance check that is robust to
non-normality, the Levene test (Snedecor and Cochran
1980) using medians instead of means (Brown and For-
sythe 1974a), provides very little protection for Tu-
key’s or Ryan’s Q tests unless sample sizes are equal
and >9. Wilcox et al. (1986) studied the effect of pro-
tecting the ANOVA F test using the Levene-median
test, and reached the same conclusion. We are not aware
of any other studies of this type.

Unless distributions are known to be normal, Coch-
ran’s, Bartlett’s, or Hartley’s tests (Winer 1971, Un-
derwood 1981), or any F test for variances, should not
be used, as they all have inflated type I error rates for
non-normal distributions (Box 1953, Snedecor and
Cochran 1980, Rivest 1986). Our results for simulated
normal data have shown that, for a given range of
variances in the data, the most severe effect on the EER
of an UMCP occurs when there is one deviant large
variance. Cochran’s test is the most powerful for de-
tecting this situation (R. W. Day and G. P. Quinn,
personal observations). When several variances are large,
a much greater range of variances is required to pro-
duce the same effect on UMCPs. Other variance checks
are then more powerful, but such situations seem less
likely to occur in practice. We therefore recommend
Cochran’s test if data are normal. However, Cochran’s
test only affords protection when sample sizes are fairly
balanced and >5 if three treatments are compared;
slightly larger sample sizes will be needed with more
treatments (R. W. Day and G. P. Quinn, personal ob-
servations). With unequal sample sizes, the effect of
unequal variances is more severe. An F test of the
variance of the smallest sample vs. the average vari-
ance of the others may be useful (R. W. Day and G.
P. Quinn, personal observations) if used at a 25% sig-
nificance level to ensure detection of cases where the
smallest sample has a large variance, as this has the
most severe effect on UMCPs. This F test will not
detect other kinds of variance heterogeneity, so that it
should only be used alongside Cochran’s test.

Many ecologists appear to transform the data when
variances are found to be significantly different. We
have shown how effective this is when using UMCPs
on suitable lognormal data. Snedecor and Cochran
(1980) pointed out that this will change the distribution
of the data, and the additivity of effects in factorial
designs, as well as the variances. In our example, the
log-transform changed the distribution from lognormal
to normal and multiplicative effects to additive effects,
as well as made variances equal. Snedecor and Cochran
(1980) described a technique to assess simultaneously
the different effects of transformations in factorial AN-
OV As. Although changes to the distribution would ap-
pear to have relatively minor effects (see above in this
section), the additivity problem affects the biological
interpretation of interactions. Other problems arise if
means have to be converted back to the original scale
to draw meaningful biological conclusions. In this re-
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gard, Games and Lucas (1966:326) conclude that ““the
use of a clearly interpretable scale of measurement cer-
tainly should be the dominant consideration.” While
transformations are an important method of overcom-
ing variance heterogeneity (see Underwood 1981), the
problems outlined above should be kept in mind. The
alternative is to use UMCPs and versions of ANOVA
which are robust to variance heterogeneity; although
standard nonparametric tests are better than paramet-
ric ones in this regard, they are not fully robust to
variance heterogeneity (see rext section, below).

Alternatives to the ANOVA

Parametric. —Our simulations and those of Kohr and
Games (1974), Tomarken and Serlin (1986), and Wil-
cox et al. (1986), indicate that the standard ANOVA
F may be severely affected by variance heterogeneity.
Unweighted-means ANOVA is even more affected
(Milligan et al. 1987). As variance checks are not useful
at small sample sizes, robust versions of ANOVA may
be warranted. At least four alternatives to one-way
ANOVA, the W test (Welch 1951), the BF test (Brown
and Forsythe 19745b), the Fisher-Pitman permutation
test (Still and White 1981), and the two-stage Bishop-
Dudewicz procedure (Bishop and Dudewicz 1978,
1981) have been proposed. The permutation test, how-
ever, has been shown to require equal variances when
used as a test of equality of means (Boik 1987) and is
unsuitable as a robust alternative. Wilcox et al. (1986)
found that for a nominal significance level of 5% and
equal sample sizes >6, W appears to control the type
I error at <7.5% when variances are unequal, whereas
BF sometimes does not. For extremely unequal sample
sizes (max/min ratio = 4), W may be too liberal; in
fact neither test is robust to some patterns of variance
heterogeneity, especially for many treatments (m > 4).
However both Kohr and Games (1974) and Tomarken
and Serlin (1986) found that W is robust for three or
four treatments when the max/min ratio of sample
sizes was 3. Clearly, very unequal sample sizes should
be avoided. While the results of Brown and Forsythe
(1974b) and Dijkstra and Werter (1981) suggest BF
may sometimes be more powerful for n < 6, we rec-
ommend W on the basis of better control of type 1
errors.

The Bishop-Dudewicz procedure is a two-stage test
in which a random sample of observations is taken
from each treatment group and, after some calcula-
tions, based partly on required power, the number of
additional observations needed can be determined. The
null hypothesis of equal means is then tested with a
modified F statistic for which approximations or tables
are available (Bishop and Dudewicz 1978, Wilcox
1986). Limited simulation data (Bishop and Dudewicz
1981) suggest its robustness and power are as good as
the W test. The advantages of the Bishop-Dudewicz
procedure are that it provides excellent control of pow-
er of the test and is suitable for factorial designs. Its
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applicability to ecology, however, appears restricted
because few field ecologists have the resources for two-
stage sampling (hence the rarity of pilot studies) and
the sample size needed at the first stage is often large
>19).

The loss in power, for normal distributions, of the
robust alternatives to one-way ANOVA and tests for
comparisons, relative to the standard methods, is typ-
ically <5% in simulations, so that in cases where the
variance checks are ineffective the standard methods
could simply be abandoned in favour of the robust
methods. No robust alternative is available for nested
and factorial ANOVA designs because variance-pool-
ing assumptions are involved (see discussion in Mil-
ligan et al. [1987]).

The above applies to normal distributions. The ro-
bustness of these tests to variance heterogeneity com-
bined with non-normal distributions i1s not clear (Levy
1978, Clinch and Keselman 1982, Tan and Tabatabai
1986, Wilcox 1986). We suggest that, until more in-
formation is available, these robust alternatives should
be avoided when distributions are likely to be non-
normal.

Non-parametric. — The Kruskal-Wallis test for one-
way designs and the Friedman test for two-way designs
without replication do not require that the distribu-
tions be normal. However, except for a difference in
medians, the distributions must be identical in all the
treatment populations compared, either for the original
data or for some transform of the data (Hollander and
Wolfe 1973, Conover 1980). It follows that, while the
variances need not be equal in the raw data, there must
be a suitable transform to stabilize the variances. If
transforms are appropriate (see above, Assumptions),
parametric analyses of transformed data would be more
powerful. The standard nonparametric tests should not
be used as a simple means to avoid the problem of
unequal variances, as some authors of the papers sur-
veyed appeared to do. In our simulations, the EER of
the Kruskal-Wallis test increased as variances became
more unequal, although not as rapidly as for the AN-
OVA F test. Rust and Fligner (1984) have described
a robust version of the Kruskal-Wallis test which re-
quires only that the distributions be symmetrical, not
identical.

Although these nonparametric procedures do not al-
low the elegant partitioning of the sources of variation
provided by the ANOVA, significance tests of main
effects and interactions in factorial designs can be car-
ried out (Bradley 1968, Patel and Hoel 1973, Groggel
and Skillings 1986; see also Zar 1984).

Choice of error rates for comparisons

A consideration of type I error rates is important in
determining which of the many UMCPs should be used,
and leads to a discussion of whether biologists should
frame their questions to use more powerful techniques,
such as planned comparisons. Only two choices of type
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I error rate for comparisons seem reasonable: a per-
comparison error rate or an experimentwise error rate
(EER). Which of these should be used depends to a
large extent on the objectives of the experiment.

Many texts point out that if the experiment is done
without any plans as to how to examine the results,
and the results suggest a comparison of means or com-
binations of means to the researcher, then an EER
should be used (e.g., Snedecor and Cochran 1980). The
analysis is picking a result from among the possible
ways to compare the means, and the EER is then the
probability of finding one or more such results that are
significant by chance.

Similarly, if the experiment is conducted in order to
make a collection of pairwise comparisons, i.e., to ex-
plore and interpret how the treatments differ, an EER
also seems appropriate, as recommended in a number
oftexts (e.g., Snedecor and Cochran 1980, Keppel 1982).
This 1s both because the comparisons are not orthog-
onal, and because one is ‘‘picking winners” from the
possible comparisons, such that conclusions will be
based on the differences which are significant. How-
ever, opinions on this topic vary. Some authors (e.g.,
Carmer and Swanson 1973, Carmer and Walker 1982)
argue that each pairwise comparison is of individual
interest, and should be tested using a per-comparison
error rate. One form of this argument is that if three
different researchers each compared two treatments,
the per-comparison error rate would be used, and
therefore one researcher who compares three treat-
ments (three comparisons) should not be forced to use
a less powerful test. We do not subscribe to this ar-
gument. The single researcher does not have three in-
dependent sets of data for the three comparisons. He/
she does, however, have a better estimate of the vari-
ance within groups than if only two treatments were
studied, provided the treatment variances are homo-
geneous. This estimate of variance with more degrees
of freedom allows for a more powerful test, given the
EER used.

Another common argument against using an EER
for unplanned comparisons is the lack of power of the
tests. Sokal and Rohlf (1981:243) state that this loss
of power “is the price one pays for testing unplanned
comparisons.” Power can obviously be increased by
using tests with less stringent type I error rates than
experimentwise. We have already argued against using
a per-comparison error rate and, in agreement with
Ryan (1959), Scheffé (1959), and Miller (1981), we find
tests with an indeterminate error rate, i.e., one that can
exceed the nominal level by an unknown amount, un-
acceptable. One of the bases of using statistics to test
hypotheses is that a reliable probability statement con-
cerning type I errors can be associated with any deci-
sion. Those tests with an indeterminate error rate (e.g.,
Duncan’s and the SNK) do not allow this.

The power of UMCPs, as with other statistical tests,
can be increased by increasing the sample size. Indeed,
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our results show that increasing the sample size slightly
will increase power far more than choosing, say, the
SNK rather than Tukey’s test. Morley (1982) pointed
out that the power of all the UMCPs decreases as the
number of treatments increases, so that small focused
experiments are better than larger ““hope-something-
shows-up” experiments. If sample sizes are unavoid-
ably small, we suggest two alternative strategies. First,
one can decide to risk more type I errors, at a known
rate, by increasing the nominal significance level used
with an experimentwise test—there is nothing ““sacred”
about 5%. Snedecor and Cochran (1980) suggested that
those worried about power should use a 10% or 25%
EER. If a more sophisticated assessment of the seri-
ousness of type I and type II errors can be made, the
Waller-Duncan k-ratio ¢ tests might be appropriate
(but see Unplanned Comparisons, below). Second, one
might consider a category of results (or decision rules)
advocated by Keppel (1982) called “‘suspend judge-
ment” —make no decision on rejecting the null hy-
pothesis when the test statistic falls between the critical
values at the per-comparison and experimentwise levels.
In a strict sense, however, this conclusion should apply
to any non-significant result. Although often not fea-
sible, the ideal approach is for biologists to design their
experiments and analyses with the kind, and size, of
effect they wish to detect in mind. This idea is far from
original, and includes both planning comparisons and
a priori power analysis (Winer 1971, Cohen 1977, Un-
derwood 1981), although the application of power
analysis to multiple comparison procedures is rare.

Planned comparisons

Planned comparisons of means or combinations of
means have definite advantages (Winer 1971, Snedecor
and Cochran 1980, Sokal and Rohlf 1981, Keppel
1982). They test a specific hypothesis about the treat-
ments which flows from the logic of the experiment
and can be stated in advance. Often several planned
comparisons are made. If they are orthogonal, and the
researcher is not “picking a winner,” then each com-
parison provides a separate answer to a separate bio-
logical question, and therefore a per-comparison error
rate is appropriate. This means that planned compar-
isons are more powerful tests than unplanned com-
parisons. Planned comparisons also facilitate the use
of a priori power analysis. The reason few ecological
papers used planned comparisons may be simply be-
cause most experiments in ecology are exploratory, but
we suspect planned comparisons, in particular trend
analysis (described later in this section), could have
been useful in many papers. Ecologists should consider
whether they can ask meaningful, focused questions,
and use planned comparisons in their analyses to take
advantage of these methods. Rosenthal and Rosnow
(1985) discuss parametric planned comparisons exten-
sively, with numerous examples.

Unfortunately, the relevant and interesting compar-
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isons in an analysis are often not all orthogonal. In this
case, the hypotheses tested by the comparisons may
be interrelated in some way; for example, if one tests
whether A differs from B and whether A differs from
C, then the answers both depend on whether the sample
for A is unusual or not. Winer (1971) argued that the
meaningfulness of the comparisons in the context of
the experiment is more important than their orthog-
onality. Where a number of comparisons are not or-
thogonal to each other, however, the significance levels
should be adjusted for these comparisons to control
the EER (Sokal and Rohlf 1981). The Dunn-Sidak
method provides the most powerful experimentwise
test for a predetermined number of such comparisons
(Miller 1981, Sokal and Rohlf 1981). To maximize the
power of the tests the number of non-orthogonal tests
should be small. The researcher should also realize that
the information from each non-orthogonal comparison
is not independent, and interpret them cautiously to
avoid ambiguities. When the number of planned com-
parisons exceeds the number of degrees of freedom,
some must be non-orthogonal. Keppel (1982) suggests
these can be managed by making some tests only if
others are significant.

A useful branch of planned comparisons is trend (or
response-curve) analysis, which is used when the treat-
ments are levels of some quantitative factor (e.g., den-
sity, depth, temperature). A series of orthogonal planned
comparisons can be designed to answer such questions
as whether the means show a trend with increasing
levels of the factor, or whether a threshold exists be-
yond which the factor has a greater (or lesser) effect.
These questions may be more informative than
UMCPs; in fact, Petersen (1977), Little (1978, 1981),
Baker (1980) and others have argued that UMCPs
should never be used for agricultural experiments where
trend analysis is appropriate. Dawkins (1983) suggest-
ed that biologists do not use trend analysis because it
is not in most elementary texts, and it appears more
complex than it is. Parametric methods are extensively
reviewed by Mead and Pike (1975) and presented in
Keppel (1982). They are described under ““orthogonal
polynomials” in commonly used texts (e.g., Winer 1971,
Sokal and Rohlf 1981), but these often deal with com-
plex polynomials, which would seldom be required for
comparisons, and do not cover the methods needed
when the levels of the factor are unequally spaced (see
Robson 1959, Kendall and Stuart 1967, Keppel 1982).
Keppel (1982) discusses traps in the use of parametric
trend analysis (e.g., problems with interpolation, ex-
trapolation, and transformed data). There are also non-
parametric tests for orderings of the treatments. These
do not require numerical values for levels of the factor.
Hollander and Wolfe (1973) discuss these tests in one-
way and two-way designs, and Page’s test of trend is
described in Sokal and Rohlf (1981).

Variance heterogeneity may seriously affect planned
comparisons (Keppel 1982), so that a test of the vari-
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ances involved in a planned comparison would seem
appropriate. Such tests, however, would have very low
power with the small sample sizes commonly used,
and it may be best to always use a test robust to unequal
variances. Studies by Mehta and Srinivasan (1970),
Wang (1971), Davenport and Webster (1975), Kohr
and Games (1977), and Best and Rayner (1987) all
suggest that the Welch (1938) ¢ test, generalized with
Satterthwaite’s degrees of freedom (see Winer 1971),
is the most powerful and robust test. Best and Rayner
(1987) state that the loss in power is so small for n >
5 that the Welch ¢ test should always be used in place
of Student’s ¢ test.

Unplanned comparisons

Parametric tests (see Table 8).— 1. Pairwise com-
parisons—equal sample sizes and variances. — A num-
ber of UMCPs commonly used in ecology for com-
paring all pairs of means do not control the EER at or
below the value required. Our simulation results show
that Duncan’s test uses an indeterminate type I error
rate which is between comparisonwise and experi-
mentwise; i.e., the EER is not controlled at the chosen
significance level. This is stated in a number of texts
(e.g., Scheffé 1959, Steel and Torrie 1960, Winer 1971),
but does not seem to be acknowledged by ecologists
who use it. The error rate is often much higher than
the significance level chosen. Qur simulations also
demonstrate that the SNK method controls the EER
at the chosen significance level only if the treatments
do not fall into groups. This problem has been noted
by Ryan (1960), Petrinovich and Hardyck (1969),
Snedecor and Cochran (1980) and Klockers and Sax
(1986), but is apparently not widely known. Com-
monly used references for the SNK test either imply
that it does control EERs at the nominal level (e.g.,
Zar 1974; but see also Zar 1984) or discuss the test in
the context of EERs without describing how it performs
(e.g., Sokal and Rohlf 1969, Underwood 1981). We
suspect that many biologists using the SNK test assume
that the EER is at or below the nominal significance
level. When treatments fall into groups, which may
occur if there are >3 treatments, the EER varies, be-
coming higher if there are many treatment groups and
the groups are well spaced.

We therefore argue that these two tests (Duncan’s
and SNK), with their unknown EERs, are not appro-
priate. It is impossible to determine how often inflated
error rates for these tests occur in ecology, because the
true means of treatments are not revealed by the re-
sults. Our survey suggests that it may occur often, be-
cause means often appear to fall into two or more
groups, and large F ratios indicate that in many cases
large differences occur. Making these tests conditional
on a significant ANOVA F test (i.e., “protected”) does
not substantially alter the error rates unless the differ-
ences between treatment groups are very small.

Carmer and Swanson (1973) and others have claimed
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TaBLE 8. Summary of suggested or commonly used parametric tests for pairwise comparisons and contrasts (comparing
combinations of means). C = per-comparison (comparisonwise); E = experimentwise; I = indeterminate; NS = not si-
multaneous.

Usage and Type I Confidence
Test assumptions error intervals Recommended/remarks

Single-df orthogonal con- pairwise/contrasts, equal C Yes (NS) Recommended: planned comparisons or
trasts variances contrasts

LSD pairwise, equal variances C Yes (NS)  Planned pairwise comparisons only

Bonferroni or Dunn-Sidak pairwise/contrasts, equal E Yes Fixed no. unplanned comparisons or

variances contrasts

Scheffé’s pairwise/contrasts, equal E Yes Any no. of unplanned comparisons or

variances contrasts or selected contrasts

Tukey’s pairwise only, equal vari- E Yes Confidence intervals for pairwise com-

ances parisons

Duncan’s pairwise only, equal vari- I No Unsuitable for planned or unplanned

ances comparisons

Student-Newman-Keuls pairwise only, equal vari- I No Unsuitable for >3 treatments; un-
(SNK) ances planned pairwise comparisons

Ryan’s Q pairwise only, equal vari- E No Most powerful test for all pairs compar-

ances isons; Recommended

Welsch’s Step-Up pairwise only, equal vari- E No Step-up version of Ryan’s, slightly less

ances powerful

Waller-Duncan k-ratio test pairwise only, equal vari- I No Error rate not always experimentwise,

ances type II error importance hard to set a
priori

Kramer’s modification of above tests As without Recommended for use with previous

for unequal » modification tests when n unequal

GT2 pairwise only, equal vari- Yes Less powerful than Tukey/Ryan-Kramer

ances, unequal n for unequal »

T’ method pairwise only, equal vari- E Yes Less powerful than Tukey/Ryan-Kramer

ances, unequal » for unequal »

Games-Howell (GH) pairwise only, unequal vari- E Yest Recommended if unequal variances,

ances, equal or unequal » error rate can be slightly high

C (modified Cochran’s ¢) pairwise only, unequal vari- E Yes Less powerful than GH, more powerful

ances, equal or unequal » than T3 if n < 15
73 pairwise only, unequal vari- E Yest Less powerful than GH, more powerful
ances, equal or unequal » than Cif n > 50

Bryant-Paulson-Tukey pairwise only, on means ad- E Yest Recommended: pairwise comparisons of
(BPT) justed in ANCOVA adjusted means

Conditional Tukey-Kramer  pairwise only, on means ad- E Yest Dependent on covariate values, suitable

justed in ANCOVA as for BPT test

Dunnett’s treatments versus control, E Yest Recommended. Use Kramer modifica-

equal variances

tion for unequal »

T or § This simultaneous test can be used in a stepwise

manner for hypothesis tests, with adjusted significance levels

(t Ryan’s; £ SNK), to control the experimentwise error rate.

the Fisher’s protected LSD test controls the EER at the
specified level by virtue of the preliminary overall F
test. This will only be true when there are no real
differences between treatments, as shown by Carmer
and Swanson’s (1973) own simulation results (see also
Keselman et al. 1979, Ryan 1980). Where some means
differ, the protected test functions as a simple LSD test
for comparisons within groups; it has a per-comparison
type I error rate, which is unacceptable for unplanned
comparisons.

In the Waller-Duncan k-ratio test, the value of the
F test in the ANOVA is used to set the error rate per
comparison (Waller and Duncan 1969; see also Dun-
can 1965). The critical value is high, with an EER
similar to Tukey’s test, when the F is small; and low,
similar to the LSD test with a per-comparison error
rate, when the ANOVA Fis large (Duncan and Brant
1983). This test appears to suffer from the same prob-
lem as Fisher’s protected LSD test: The EER would
not be controlled at the desired level when some of the

means differ. The error rate used for a comparison of
two treatments would depend on the differences be-
tween other treatments. It also seems unlikely that many
biologists will have clear-cut grounds for estimating
the relative costs of type [ and II errors in experiments,
as is required for this test. Estimating costs of errors
would presumably require that specific alternatives to
the overall null hypothesis are considered. If so, then
planned comparisons would be more appropriate.

Of those tests that do control the EER, stepwise tests
are more powerful than simultaneous tests if signifi-
cance tests of all pairwise comparisons are required.
We have illustrated Ryan’s Q test as an alternative to
Duncan’s and the SNK tests because it is the most
powerful test that is simple to apply and controls the
EER. Ramsey’s revised Ryan’s test (see Appendix 1)
offers a slight gain in power, and Ramsey (1981) has
compared the power of this test, used with the F rather
than the @ statistic, with the other new stepwise pro-
cedures described in the Introduction. Welsch’s Step-
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Up test and Shaffer’s modification to Welsch’s test (used
in a step-down manner like Ryan’s test) had no power
advantage over Ryan’s (F) test (Ramsey 1981). We
prefer Ryan’s test used with Q because it is similar to
the methods ecologists are already familiar with. We
believe the small gains in power offered in some cases
by Peritz’s test and the model-testing procedure over
Ryan’s test (see Einot and Gabriel 1975, Begun and
Gabriel 1981, Ramsey 1981) are outweighed by their
being much more complex to use.

The simultaneous tests enable simultaneous confi-
dence intervals on the differences between means to
be calculated (see below, Presentation and Interpre-
tation of Unplanned Comparisons). These tests are also
appropriate when a pair of treatments is compared
because the data suggest they are different. As our sim-
ulation results show, all the simultaneous UMCPs have
actual EERs smaller than the significance level required
if the treatment means are not all the same. The most
powerful of these UMCPs is Tukey’s test. Scheffé’s
method is always extremely conservative (i.e., it will
hold the EER well below the nominal level) because it
was not designed for pairwise comparisons only, but
for situations where any possible combination of means
may be tested (Scheffé 1953). There is an infinite num-
ber of such contrasts possible. The Dunn-Sidak meth-
od is also always conservative for pairwise compari-
sons, and therefore also the more commonly used
Bonferroni ¢ test, because they rely on inequalities which
dictate that the EER must be less than the nominated
rate (Neter and Wasserman 1974, Miller 1981).

2. Pairwise comparisons for unequal sample sizes. —
Dunnett (1980a) showed that using the harmonic mean
of all the sample sizes, as suggested by Winer (1971)
and Snedecor and Cochran (1980), can produce very
high EERs and is therefore not recommended. Hayter
(1984) has proved that the Kramer modification of
Tukey’s test for unequal sample sizes will hold the EER
at or below the nominal level. Dunnett (19804) and
Stoline (1981) show that the Tukey-Kramer procedure
produces narrower confidence intervals, i.e., it is more
powerful, than the GT2, 7', Dunn-Sidak, and Scheffé
methods. Gabriel’s (1978) approximation to GT2 can
result in EERs above the nominal level. Dunnett (1980a)
presumes that the Kramer modification will also be
conservative when applied to the stepwise tests, and
our results support this for Ryan’s Q test, which re-
mains more powerful than the Tukey-Kramer test when
some means differ. Note, however, that no significant
difference may be declared if the extreme treatments
have small sample sizes, so that the test to compare
them has low power. This might prevent detection of
differences between closer treatments with larger sam-
ple sizes, which would have been significant if tested
under the stepwise procedures (Klockers and Sax 1986).
The only solution to this “inconsistency problem™ is
to avoid unequal sample sizes, which would also mark-
edly improve the robustness of all tests to violations
of assumptions.
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3. Pairwise comparisons robust to heterogeneous
variances (equal or unequal sample sizes). —Dunnett
(19805b) has shown that for equal sample sizes the T3
and C procedures are both conservative, even under
conditions of extreme variance heterogeneity. 73 is
more powerful for small sample sizes (roughly n < 15),
while C is best for # > 50. Korhonen (1982), however,
has shown that if the sample sizes are very unequal
and some are <4, then only C is conservative, but it
has very low power. Ecologists generally use small sam-
ple sizes (=35), so the T3 procedure is probably best,
but very uneven sample sizes should be avoided. The
GH test can produce EERs slightly above the nominal
level (Dunnett 19805), particularly for cases with many
treatments (e.g., » = 8) and small sample sizes (n =
7), and small samples with larger variances, but it is
often more powerful than the other tests (Keselman
and Rogan 1978, Games et al. 1983). Thus GH is
recommended where the power of the test is more
important than a very strict significance level. The GH
and C methods use the Q statistic which appears robust
to non-normality (see Assumptions, above). While
stepwise versions have not been suggested previously,
it seems that Ryan’s stepwise significance levels could
be applied to these tests. However, the inconsistency
problem described for unequal sample sizes will also
arise here. Note that in factorial designs these methods
cannot be used to compare marginal means as variance
pooling assumptions are involved.

4. Non-pairwise comparisons.—Scheffé’s test con-
trols the experimentwise error correctly for any number
of unplanned non-pairwise comparisons. Often the re-
sults of an experiment will suggest a choice of one or
more comparisons of means. If the choice included, or
could have included, comparisons involving combi-
nations of means, then Scheffé’s test should be used.
However, if the comparison(s) chosen could only have
been pairwise, then Tukey’s test is appropriate and
more powerful.

5. Non-independence. —Repeated-measures analy-
ses are still rarely used in ecology and no example of
UMCPs following them was found in the literature
surveyed. There have been few studies of suitable tests.
Jaccard et al. (1984) discussed the tests possible. Max-
well (1980) found that the Bonferroni method remains
conservative, whereas the method suggested by Keppel
(1973) did not. It should be emphasized that the vari-
ance pooling involved in the F tests and comparisons
in univariate repeated-measures analyses are very sen-
sitive to the assumptions of homogeneity of variances
and covariances, and that multivariate approaches are
often more applicable to such designs (see Harris 1985,
Gurevitch and Chester 1986).

Twenty-one of the 385 papers that used a posteriori
comparisons compared regression slopes or adjusted
means after ANCOVA. Normal pairwise UMCPs were
used in most cases, although such tests are not appro-
priate, as we discussed earlier. The use of the GT2
method, as suggested by Sokal and Rohlf (1981), is also
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TaBLE 9. Summary of suggested or commonly used nonparametric tests for unplanned comparisons of pairs of means.

Symbols as in Table 8.

Usage and Type [ Confidence
Test assumptions error  intervals Recommended/remarks
Mann-Whitney U pairwise only, equal C Yes (NS) Recommended only for planned comparisons
test variances

Fligner-Policello pairwise/contrasts, C Yes (NS) Recommended when variances may differ
unequal variances

Steel-Dwass pairwise only, equal E Yes Nonparametric equivalent of Tukey’s. Best simul-
variances taneous test. Limited exact tables, suspect ap-

proximation

Steel-Dwass Ryan pairwise only, equal E No Very low power, due to median ordering
variances

Nemenyi Joint-Rank pairwise only, equal E No Joint ranks, very low power in subgroups; but rea-
variances sonable tables, easy to use

Joint-Rank Ryan pairwise only, equal E No Joint ranks, but high power, reasonable tables
variances

Dunn’s pairwise only, equal E No Approximation to Nemenyi Joint-Rank using unit
variances normal z statistic

Steel’s treatments vs. con- E Yest Recommended. Fligner modification for unequal »n

trol, equal vari-
ances

not suitable as it is not robust to unequal variances
(Dunnett 1980aq, b, Stoline 1981). Scheffe’s test and the
Bonferroni methods can be used, but they are generally
regarded as too conservative for pairwise comparisons.
It is also possible to test the homogeneity of covari-
ances as well as variances (e.g., see Winer 1971): When
homogeneity conditions hold for repeated-measures
ANOVAs or adjusted means, standard techniques are
more powerful than the more robust tests. As for ho-
mogeneity of variance tests, however, tests for ho-
mogeneity of covariances may not be powerful enough
to ensure that the standard techniques are appropriate
(see Harris 1985).

We recommend either the Bryant-Paulson-Tukey
(BPT) procedure (Bryant and Paulson 1976, Huitema
1980) or the Conditional Tukey-Kramer procedure
(Hochberg and Varon-Salomon 1984) for UMCPs on
adjusted means. The latter has the advantage of not
requiring special tables (the Q statistic is used) and
appears to be more powerful than the BPT procedure
(Hochberg and Varon-Salomon 1984). When confi-
dence intervals are not required both can be used as
stepwise tests using Ryan’s adjusted significance levels.

Nonparametric tests (see Table 9).—It is important
to note that the usual nonparametric tests in many
textbooks assume that the distributions are identical
on some scale, except for a difference in medians, in
all the treatments compared, so that standard non-
parametric ANOVAs and UMCPs should not auto-
matically be used when variances are heterogeneous.
The use of the robust Fligner and Policello test when
variances are unequal is described in Appendix 1. Also,
the null hypothesis being tested by nonparametric
UMCPs is not the equality of means but the equality
of medians. The relation between means and medians
depends on the underlying distribution. Ecologists
should be careful not to express the null hypothesis in
terms of means when using these tests. Finally, the
fundamental difference in rationale between the joint-

and pairwise-rank nonparametric UMCPs (see Intro-
duction; Hollander and Wolfe 1973, Miller 1981, Zwick
and Marascuilo 1984) should be considered.

As in the parametric case, using two-sample tests
(e.g., the multiple Wilcoxon-Mann-Whitney tests used
in many ecological papers) will result in high EERs.
The test described in Conover (1980) is a nonpara-
metric version of the LSD test and will not control the
EER either. “Protecting” these tests with an overall
Kruskal-Wallis test will control the EER only when
none of the treatments are different (Zwick and Mar-
ascuilo 1984), as we and others have shown for the
parametric case. Most ecologists did not protect their
multiple two-sample tests anyway. Applying stepwise
procedures to joint-rank sums (e.g., Zar 1974) will also
yield EERs above the nominated level unless re-rank-
ing is carried out for each set of treatments; even then,
Duncan’s and SNK tests using rank sums will have
inflated and indeterminate EERs as in the parametric
case (Dodge and Thomas 1980, Campbell and Skillings
1985). However, adjusting the significance levels as in
Ryan’s Q test will control the EER (our data; Campbell
and Skillings 1985).

The simultaneous joint-ranking tests (including those
commonly used in the ecological literature, based on
the Kruskal-Wallis statistic or Dunn’s large-sample ap-
proximation), do control the EER, but may have little
power except for separating extreme treatments from
the rest (our data; Dodge and Thomas 1980, Campbell
and Skillings 1985). Simultaneous paired-rank tests
(e.g., Steel-Dwass) are more powerful when the sample
size is large compared to the number of treatments and
especially for two adjacent treatments lying between
other treatments (Dunn 1964, Skillings 1983, Fairley
and Pearl 1984), a type of difference ecologists often
wish to detect. We have shown that the Joint-Rank
Ryan test is considerably more powerful than the si-
multaneous Nemenyi or Steel-Dwass tests (see also
Campbell and Skillings 1985) and the Steel-Dwass Ryan
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test we illustrate. This last test uses the medians to
order treatments, which can be inconsistent with the
rank sums used for comparisons when treatments are
not very different, resulting in very low power.

Although the Steel-Dwass and Steel-Dwass Ryan tests
are the nonparametric equivalents of Tukey’s and
Ryan’s tests (using Q or F), they have very limited
exact tables and the large sample approximation (Mil-
ler 1981, 1986) can be very conservative when there
are many treatments (Gabriel and Lachenbruch 1969).
Also, these tests can only be used for one-way designs,
in contrast to the joint-rank tests and the parametric
tests (Miller 1981). A Nemenyi joint-rank test follow-
ing the Friedman rank two-way analysis is described
in Hollander and Wolfe (1973) and Miller (1981).

We therefore recommend that ecologists use the Joint-
Rank Ryan test with treatments ordered by their joint-
rank sums (this is the ad hoc procedure described by
Campbell and Skillings 1985). The all-subset stepwise
tests of Campbell and Skillings (1985) may be slightly
more powerful but are much more complex to use. As
the simultaneous joint-rank tests cannot provide si-
multaneous confidence intervals, the Steel-Dwass test
is the only option when these are required or when a
pair of treatments is compared because they look dif-
ferent. It is also more powerful than the simultaneous
Nemenyi Joint-Rank test in many cases.

Comparing treatments with a control (see Tables 8
and 9).—For parametric testing of each treatment
against a control, Dunnett’s test used in a stepwise
manner (Miller 1981) is recommended; in this special
case (i.e., treatments vs. a control), the SNK signifi-
cance levels are suitable because groups of means can-
not occur. The simultaneous Dunnett’s test (described
in Winer 1971) is best when confidence intervals are
required or treatments are tested because they look
different from the control. With unequal sample sizes,
use the Kramer modification on Dunnett’s test. With
unequal variances, apply the GH or 73 methods (see
above in this section) to Dunnett’s test (Dunnett 1985).
The method in Dunnett (1964) requires special tables
in that paper.

In the nonparametric case, Steel’s test (described in
Winer 1971, Miller 1981) is suitable, used in a simul-
taneous or a stepwise manner as in Dunnett’s test;
Fligner’s (1984) modification handles unequal sample
sizes. We do not know of a procedure for unequal
variances in the nonparametric case, but the Dunn-
Sidak method could be applied to the Fligner-Policello
test.

Presentation and interpretation of
unplanned comparisons

It is most important that ecologists state unambig-
uously which method was used. Given the variety of
strategies possible, authors should explain their choice
of methods, particularly in terms of error rates. Using
statistical texts or computer packages in a “cookbook”
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fashion is possibly more dangerous for multiple com-
parison tests than for most other procedures.

Two approaches can be used when examining pairs
of means. One can test a large number of non-orthog-
onal hypotheses to find which means differ at a given
significance level. This is the approach almost invari-
ably used in ecology; we have indicated which UMCPs
are best suited for this purpose. When applicable, the
stepwise tests are the most powerful. Alternatively, one
can admit that there are no specific predetermined hy-
potheses about how the means may differ, and proceed
to describe and interpret the results provided by the
experiment using simultaneous confidence intervals.
These are intervals that should contain the true differ-
ences between the population means. With intervals
at the 95% level, for example, there is a probability of
95% that all true differences are contained within the
intervals; i.e., the probability refers to the whole col-
lection of intervals, just as the experimentwise error
rate refers to the whole collection of significance tests.
Huitema (1980) provided a good description of si-
multaneous confidence intervals (see also Sokal and
Rohlf 1981).

Simultaneous confidence intervals are useful ways
of presenting and interpreting pairwise comparisons.
The estimate of the true difference between means may
be an important aspect of the results, or important to
readers planning other studies. It is surprising that so
much emphasis is placed on the degree of significance
of differences between treatments in ecological papers,
and so little on estimating the size of the differences.
Indeed, in many papers it was impossible to determine
the size of the difference(s) from the information pre-
sented. If needed, the equivalent of the usual hypoth-
esis test can be done simply by seeing if a difference
of zero between two means is contained within the
interval, although this will be slightly less powerful
than a stepwise hypothesis test such as Ryan’s. How-
ever, a difference between means other than zero may
be biologically important. For example, one may wish
to see, using confidence intervals, if a naturally occur-
ring difference is produced by an experimental treat-
ment. Debates on the relative importance of statistical
estimation vs. statistical hypothesis-testing are current
in much of biology, including entomology (Jones and
Matloff 1986, Perry 1986) and medicine (Salsburg 1985,
Bailey 1986, Salsburg 1986). Ecologists should keep in
mind why they did the experiment(s): Is the size or
relative size of differences between treatments impor-
tant, or is the detection of any differences sufficient?
Estimation and significance testing are not mutually
exclusive approaches, and could be used together in
many analyses.

However the results are analyzed, means, sample
sizes, and standard errors should be given so that read-
ers may interpret the results. Such basic information
was often not present in the papers we surveyed. This
information, coupled with the ANOVA, would alle-
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viate problems such as the use of the Duncan and SNK
tests with unknown error rates, since readers could then
choose and calculate their own tests.

A common criticism of significance testing in bio-
logical papers is that the distinction between biological
and statistical significance has been overlooked. Large
sample sizes may produce significant statistical results
when the differences are trivial in the context of the
experiment, and small sample sizes can produce non-
significant statistical results in spite of real differences
large enough to be important. Prior power analysis
would help to avoid the problem, but if simultaneous
confidence intervals or sufficient basic information were
presented, rather than only the results of tests, readers
could assess the importance of differences themselves.

Possibly more than any other type of statistical test,
multiple comparisons focus attention on the concepts
behind statistical hypothesis testing. In spite of the
arguments put forward in some areas of biology and
statistics against the usefulness of statistical hypothesis
testing, we believe that it has an important role to play
in ecology. The current debate brings up three points,
however. First, the interpretation of the results of sig-
nificance tests should be done with more care. While
sample sizes in ecology are often small, and thus un-
likely to produce significant results that are not bio-
logically important, overreliance on the “religion of
significance” (Salsburg 1985) can limit the usefulness
of results to other researchers. Second, statistical es-
timation, particularly of differences between treat-
ments, may be more applicable to ecology than has
been appreciated. Finally, since much research in this
field is still exploratory, ecologists should consider the
techniques of exploratory data analysis, and we refer
them to Tukey (1977) and Hoaglin et al. (1983).

Recommendations

1) Enough information should be presented in papers
to allow the readers to judge the results for themselves.
This is particularly true for potentially ambiguous pro-
cedures such as multiple comparisons. At a minimum,
means, sample sizes, and standard errors are required.

2) Authors should state unambiguously what tests
were used and explain their choice of methods.

3) All assumptions of tests should be considered
carefully. Much more emphasis needs to be placed on
obtaining equal sample sizes, because nearly all anal-
yses are much more sensitive to assumptions when
sample sizes are not equal.

4) Biological knowledge of the situation should be
used in deciding whether distributions will be the same
across treatments, and whether they are near normal.
Plots of residuals or box plots should be used to detect
severe non-normality and/or outliers. Use transfor-
mations and/or nonparametric tests if non-normality
is extreme.

5) Biological data are often lognormal, with unequal
variances when the means differ. A plot of means against
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variances or standard deviations should be used to
detect this situation, and indicate whether a log-trans-
form may be appropriate.

6) The assumption of variance equality should be
tested if sample sizes are large enough. For normal
populations Cochran’s test provides reasonable pro-
tection, with three treatments, for fairly equal sample
sizes =5. With more treatments slightly larger samples
are needed. For unequal sample sizes =5, an F test of
the variance of the smallest sample vs. the average
variance of the other samples can be used at the 25%
level, in conjunction with Cochran’s test. When pop-
ulations may be non-normal, the Levene-median test
is useful for equal sample sizes =9. Where no variance
check is suitable, assume variances are not equal.

7) For unequal variances use transformations if ap-
propriate, or robust ANOVA and comparison methods
in situations where these are available. Welch’s robust
ANOVA, and ¢ test for planned comparisons, are rec-
ommended. Standard nonparametric ANOVAs and
UMCPs should not be used with unequal variances.
In the nonparametric case, use the robust alternatives
now available for the Kruskal-Wallis ANOVA and
Mann-Whitney U test. Note that the robust methods
cannot be used in factorial designs to compare marginal
means.

8) Ecologists should always consider whether they
can frame specific questions to test, using orthogonal
planned comparisons (and associated techniques) with
a per-comparison error rate. Non-orthogonal planned
comparisons should be kept few in number, and in-
terpreted carefully.

9) When an unplanned comparison is made because
the results suggest it, Scheffé’s method is appropriate
unless the comparison could only have been pairwise,
in which case use Tukey’s test.

10) For all pairwise comparisons, the parametric
Ryan’s Q test or the nonparametric Joint-Rank Ryan’s
test are recommended for hypothesis testing, because
they are the most powerful tests which control the ex-
perimentwise type I error rate and are also easy to use.
Duncan’s multiple range test and the SNK test (para-
metric or nonparametric) are not recommended, be-
cause they have an indeterminate error rate. If simul-
taneous confidence intervals are required, the
parametric Tukey’s test or the nonparametric Steel-
Dwass test are appropriate.

11) When a control is compared to all other treat-
ments, use the parametric Dunnett’s test or the non-
parametric Steel’s test. The more powerful SNK-like
stepwise versions of these tests are recommended if
simultaneous confidence intervals are not required.

12) For pairwise comparisons with unequal sample
sizes, the Kramer modification of Tukey’s, Ryan’s, and
Dunnett’s tests is recommended in the parametric case.
The Joint-Rank Ryan’s test and the approximations
to the Steel-Dwass test handle unequal sample sizes,
and Fligner’s modification applies to Steel’s test.
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13) For parametric all-pairwise comparisons with
unequal variances, the 73 procedure seems appropri-
ate for small sample sizes, but it may not be robust
with very uneven sample sizes. If a small increase in
EER is acceptable, then the Games-Howell test is rec-
ommended since it is more powerful, but the user should
check if smaller samples have larger variances. For
other types of multiple comparisons the parametric
Welch (1938) robust ¢ test or the nonparametric Flig-
ner-Policello robust Mann-Whitney U test can be used
with Dunn-Sidak adjusted significance levels.

14) For pairwise comparisons of adjusted means af-
ter a parametric ANCOVA, either the Bryant-Paulson
generalization of Tukey’s or Ryan’s Q test or the Con-
ditional Tukey-Kramer test are recommended. Stan-
dard UMCPs are not suitable. Comparisons after re-
peated-measures ANOVA should be viewed with
caution. The Bonferroni or Dunn-Sidak methods may
be appropriate.
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APPENDIX 1

This section provides the necessary formulae to implement
the tests that are commonly used or that we recommend.
Parametric tests compare treatment means. In nonparametric

tests, the data in all treatments in the experiment (joint rank-
ing), or the data in the two treatments in each pairwise com-
parison (pairwise ranking), are combined into one set and
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ranked from smallest to largest. These tests compare treat-
ment mean ranks or rank sums. An alternative approach to
pairwise nonparametric tests, based on the Wilcoxon-Mann-
Whitney test, is to use placements (the position of an obser-
vation in one sample relative to a second sample).

The following general notation will be used in these formulae;

a is the chosen (i.e., nominal) significance level; e.g., .05 or
5%.

b is an adjusted significance level used to keep the experi-
mentwise level at a.

CVis the critical value for each test. The difference between
treatments must be greater than this value to be declared
significant.

df is the degrees of freedom, and for parametric tests this
is the df of the standard error (Sg). df* is Satterthwaite’s
adjusted degrees of freedom (see Welch’s ¢ test, below in this
Appendix).

r is the number of comparisons to be made.

m is the number of means (or treatments) in the experiment.

n; is the number of replicates in treatment /.

Q1s the Studentized Range statistic, 7 is Student’s 7 statistic,
Fis the F(variance ratio) statistic; these are tabulated in most
standard texts.

For parametric tests:

SE, = the standard error of the comparison being tested. For
pairwise comparisons with equal n and homogeneous vari-
ances, SE. = \/(2mMs,/n), where Ms, is the mean square in the
denominator of the ANOVA Fratio. For heterogeneous vari-
ances use SE* (see Welch’s 7 test, below in this Appendix).
For other cases, see below.

For non-parametric tests:
R, = rank of an observation in treatment i.
2 R, = sum of ranks in treatment i.

R, =2 R/n; ie., mean rank of treatment i.

Consider a pair of treatments (/ and ), and let », > n;. Then:

P, = the “placement” of an observation in treatment
1. Then P, is the number of observations in treat-
ment j less than this observation in treatment /.
the sum of placements for sample ;. Rank sums
can be converted to placement sums by 2 P, =
DR, — nfn, + 1)/2.

mean placement for treatment i (= 2 P/n).

2P =

P -
For pairwise rankings of treatments / and j, convert maximum
to minimum rank or placement sums using: 2 R, =(n +

n)n, + n,+ 1)/2 — 2 Rand X P, =nn — % P,

1. PARAMETRIC PLANNED COMPARISONS

Specify the comparison as a linear combination of means
Li=cX +...¢X,+...¢,X,, where X, is the mean and
¢, the coefficient of treatment i. L; is a valid comparison (with
one degree of freedom) if 2 ¢, (or 2 n,c; for unequal n,) =
0. Two comparisons, L, and L,, are orthogonal if E CaiCyi (OT
E n,c,Cy; for unequal #) = 0.

Equal variances (sample sizes equal or unequal)

In the formulae below, sg. = \/[Ms, 2 (c*/n))], which re-

duces to \/(2ms,/n) for pairwise comparisons with equal 7.
Either use means, where CV for the comparison = ? 4anySE,, OF
calculate a sum of squares (ss) with 1 df, and hence also a
mean square, in the context of the ANOVA:ss = L»,l/z n.c?,
where L, is a comparison of treatment totals (with means
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replaced by totals in the linear combination). Test this against
the appropriate Ms, in an F test.

Urnequal variances (sample sizes equal or unequal)
Welch’s (1938) Approximate ¢ test (using Satterthwaite’s ad-
justed df):

CV = t,qSE* where Sg* = \/W and df* =
(s n )Y/ teds3/[nHn, — 1)]}. Standard ¢ tables are used.
For pairwise comparisons these formulae become Sg* =

V(s2/n, + s/n), and df* = (s*/n, + s°/n)/{s/[n(n, — 1)]
+ 54[nXn, — DI

2. NONPARAMETRIC PLANNED COMPARISONS
Equal variances (sample sizes equal or unequal)

Mann-Whitney-Wilcoxon test (comparing treatments / and J,
treatment / is largest):

Calculate U = ) R, — n{n, + 12, or U= D, P, and
compare U* = maximum of U and nn, — U with tabulated
values in most standard texts.

Unequal variances (sample sizes equal or unequal)

Fligner-Policello test (comparing treatments { and j, where
treatment / is largest):

Calculate
U=(Z P - 2ZP)
2V (P.— Py + 3 (P, — Py + PP)

and use tables in Fligner and Policello (1981).

3. PARAMETRIC UNPLANNED COMPARISONS —ALL PAIRS
Equal sample sizes and variances
Simultaneous tests.—Note that, for most tests (see Table
7) simultaneous confidence intervals on differences between

all pairs of treatment means can be calculated by X, — X =
CV, at the chosen significance level a.

LSD (Least Significant Difference) test:

CV = 14anSE. OF \/Fo 4pSE. O Qo anSE/\/2. In pairwise
multiple 7 tests the same formulae apply, except that s, is
calculated from the standard errors of the means in each pair.

Bonferroni method:

CV = t,.4sSE., Where the adjusted significance level b = a/
r.

Dunn-Sidak method:
CV as in Bonferroni method except b =1 — (1 — a)'.
Scheffé’s test:
CV=\[(m -
Tukey’s test:
CV = Q. anSE/N2.

Stepwise tests.—For all the tests below, CV = Q,, 4SE./\/2,
where p is the number of means in the group to be tested and
b is the adjusted significance level for a test of the equality of
p means.

DF i 1 an]SE..

For Duncan’s (new) multiple range test, b=1 — (1 — ap~".
For the Student-Newman-Keuls (SNK) test, b = a.

For Welsch’s step-up test (GAPA), b = ap/m except b = a
when p=m — 1.

For Ryan’s Qtest, =1 — (1 — gy Thisis the test proposed
by Einot and Gabriel (1975); and because p < m, ap/m < 1
— (1 = ay’m, so that the test using 1 — (1 — a)”” is more
powerful.
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For Ramsey’s revised Ryan’s test, b = 1 — (1 — a)y for p
<m-—landb=aforp=m m— 1.

Note: To obtain table values of Q, where b =1 — (1 —
ay’™ one must interpolate in the available tables. When the
5% significance level is chosen (¢ = .05) and <10 means are
compared, calculate Q, = Qs + (Qo) — Qos)[In(.05) — In(d))/
[In(.05) — In(.01)] where “In” denotes natural logarithms. For
more means or other nominal significance levels, similar in-
terpolations can be based on Q tables in Harter (1970) or Zar
(1974). Alternatively, Q values between 1 and 5% may be
calculated from an algorithm in Lund and Lund (1983). It is
easy to program the interpolation to produce a set of ““Ryan’s
Q tables” which can be used in the same way as the Q tables.

Unequal sample sizes and equal variances

The Kramer Modification of Tukey’s test and stepwise tests
uses the harmonic mean of the two sample sizes, 2/(1/n, +

1/n)), so that s, = \/[Ms,(1/n, + 1/n)].
Unequal variances (equal or unequal sample sizes)
Games and Howell (GH) method:
CV = Quom amSEFN/2.
T3 method:
CV = SMM,,,, 40SE.*.

These tests use SE.* and Satterthwaite’s adjusted degrees of
freedom, df*, as for Welch’s (1938) approximate ¢ test (above,
Parametric Planned Comparisons: Unequal Variances). SMM
is the Studentized Maximum Modulus statistic, tabulated in
Rohlf and Sokal (1981).

C method:
CV = [Qum. dﬂslz/nl + Qa(m, dﬁsjz/nj]/
Non-independence in one-way ANCOVA
Let S = VMs [1 + (Ms,/ss, )], where Ms, is the residual
mean square from the ANCOVA, ms, is the between-groups
(or treatments) mean square from the ANOVA on the co-

variate (x), ss, is the residual sum of squares from the AN-
OVA on the covariate (x).

[2(s/n, + s7/n)]

Bryant-Paulson-Tukey test for adjusted means:

CV = OPuim asS/\/n, where Qp is the generalized student-
ized range distribution, tabulated in Huitema (1980).

Conditional Tukey-Kramer test (Hochberg and Varon-Salo-
mon 1984):

CV'= Qo anVMS V170 + (X, — /\_’j)z/ZSS,\], where X, and
X, are the two covariate means of the treatments for which
adjusted means are being compared.

Note: Both tests can be used in stepwise manner, substi-
tuting Qp, for Op, and Q, for Q, where b=1 — (1 — a)»™ as
in Ryan’s Q test.

4. NONPARAMETRIC UNPLANNED COMPARISONS —
ALL PAIRS, JOINT RANKING

Equal or unequal sample sizes and equal variances

Simultaneous.—Nemenyi Joint-Rank test:

Use the absolute value of differences between mean ranks
(IR, — R;|) of treatments in the joint ranking of all treatments.
For m < 4 and various combinations of n between 2 and 6,
compare N*(|R, — R;|) with exact C¥s tabulated in Damico
and Wolfe (1987), where N* is the lowest common multiple
of sample sizes. Further exact CVs for |R, — R;| for small
(and equal) » with m < 11 are in Hollander and Wolfe (1973:
Table A9); multiplication by N* is unnecessary for these tables.
For other combinations of m and n, compare |R, — R,| with the
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large-sample approximation Qmuf,,ﬂ\/[z (> n+ 1y12]
VI1/2(1/n, + 1/n)] where 2 n is the total number of obser-

vations in all treatments.

Stepwise.— Joint-Rank Ryan test:

Use test as above with adjusted significance levels, as in
Ryan’s Q test, where b = 1 — (1 — a)*”. Note that at each
p-mean level, the new subset of treatments must be reranked.

Unequal variances

UMCPs may be calculated from the robust Kruskal-Wallis
procedure recently described by Rust and Fligner (1984), but
the formulae are complex.

5. NON-PARAMETRIC UNPLANNED COMPARISONS —
ALL PAIRS, PAIRWISE RANKING

Equal sample sizes and variances
Simultaneous—Steel-Dwass test:

Compare each pair of treatments, ranked separately, with
Mann-Whitney-Wilcoxon tests (see Nonparametric Planned
Comparisons, above). For m = 3 and n» = 2 to 6, convert
calculated Uto minimum rank sum (see general notation) and
compare with exact CVs in Steel (1960). For larger m and/or
n, convert calculated U to maximum rank sum and compare
with the large sample approximation n(2n + 1)/2 + 1/2 +
Q. a=e)V 1321 + 1)/24]; some values are tabulated in Steel
(1961) and Miller (1981: Table IX).

Stepwise. —Steel-Dwass Ryan test:

Use the Steel-Dwass test with adjusted significance levels, as
in Ryan’s Q test, where b= 1 — (1 — a)". Treatments should
be ordered by medians.

Unequal sample sizes and equal variances

Exact tables are not available for the Steel-Dwass test with
unequal sample sizes. Calculate U* = U/n,n, and compare
with large sample approximation (Miller 1986, based on Dunn

1964): (1/2) + Q.. ar- V(0 + n, + 1)/(24n,n)]

Unequal variances

Use pairwise Fligner-Policello tests (sce Nonparametric
Planned Comparisons, above) and adjust significance levels
with Dunn-Sidak method.

Simultaneous confidence intervals (Gibbons 1988)

There are n,n; differences between each observation in treat-
ment / and each observation in treatment j. Arrange these
differences (D,) in ascending order so that D,” is the difference
ranked “Y.” Calculate L = | + [n(2n, + n, + DI/2 — r¥,
where r* is the CV of the Steel-Dwass test (maximum rank
sum). Calculate H = n;n; + 1 — L. Lower confidence limit =
D/ (i.e., the difference ranked ““L” in ascending order). Upper
confidence interval = D/ (i.e., the difference ranked “H”" in
ascending order). Repeat for each pair of treatments.

6. TREATMENTS vS. A CONTROL— PARAMETRIC

In the formulae below, #, is sample size of control and »,
is sample size of treatment ¢.

Equal sample sizes and variances
Dunnet’s test:

Simultaneous. —For each treatment vs. control pair, CV =
@, anSE. Where m (number of treatments) includes the control
and d is found in tables for Dunnett’s test (Dunnett 1964,
Winer 1971, Zar 1974, 1984).

Stepwise.— Use Dunnett’s test by comparing treatment fur-
thest from control first, then next furthest from control, etc.,
as in an SNK test (SNK significance levels are suitable for
this case).
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Unequal sample sizes and equal variances

Use Dunnett’s test with the Kramer modification: sg, =
vMmsl/n, + 1/n)

Unequal variances
Apply GH or C methods (see above) to Dunnett’s test.

Simultaneous confidence intervals
(each treatment mean vs. control mean)

Upper and lower confidence limits = X, — X, + d,,,, 4SE..
where s, as for unequal n, and »,.

7. TREATMENTS vS. A CONTROL— NONPARAMETRIC

Equal treatment sample sizes (can be different
from control sample size) and equal variances

Steel’s test with Fligner’s (1984) modification:

Simultaneous. —For each treatment vs. control, find max
of 2 R and n(n, + n, + 1) — X, R, and compare with CV’
=nn,+n+ 1y2+1/2+4d, . Vinnn + n, + 1)/12],
whered,,, , .,1s from tables for Dunnett’s test (Dunnett 1964,
Winer 1971, Zar 1974, 1984), with df = co and (m — 1)
means (including control). Steel (1959) provides a few exact
values of the minimum rank sum. Approximate tables in Steel
(1959) and Miller (1981) assume #, = 1, and are conservative,
as they are calculated from earlier tables for Dunnett’s test.
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Stepwise.— Use Steel’s test as for stepwise Dunnett’s test.

Unequal treatment sample sizes and equal variances

Fligner(1984) provides a solution based on iterative solving
of a complex formula for the distribution. An approximate
test for small sample sizes is to replace d,,,_;, in the formula
above by the Mann-Whitney U at a significance level of
a’2(m = 1).

Unequal variance

No test described. Use Fligner-Policello test (see Nonpara-
metric Planned Comparisons, above) and adjust significance
levels with the Dunn-Sidak method for m — 1 comparisons.

Simultaneous confidence intervals (Fligner 1984, Gibbons 1988)

As for Steel-Dwass except that there are nyn, differences
between each observation in treatment ¢ and each observation
in the control, and L = 1 + [#,(2n, + n, + 1)/2] — r*, where
r*is CV of Steel’s test (maximum rank sum) for treatment ¢
vs. control. Repeat for each treatment vs. control.

8. ALTERNATIVES TO THE PARAMETRIC ANOVA
Welch ANOVA (robust to unequal variances; Welch 1951):
W= (m+ 1) D [wdx, — 2 wx)V[42m? — 1) + 2(m
— 2)B], where w, = n/s3 A= 2 w; B= 2, [(4 — w)¥(n, —

1)]; degrees of freedom = m — 1, A¥(m? — 1)/3B. Compare
with F table.

APPENDIX 2

Fictitious data are presented to illustrate points about the
tests used. An experiment examining the effects of four surface
types on the recruitment of an intertidal animal (e.g., bar-
nacles) was set up (see Underwood 1981 for a similar example)
(Table Al).

We illustrate parametric and nonparametric analyses of the
data, each with three alternative strategies to compare treat-
ments: (a) planned comparisons, (b) stepwise unplanned com-
parisons of all treatment pairs, and (¢) simultaneous un-
planned comparisons of pairs (with simultaneous confidence
intervals on the differences). The planned comparisons are
tests of three specific hypotheses relevant to the experiment:
(1) the numbers of recruits are the same on the two types of
algae, (2) the numbers of recruits are the same on natural bare
rock and scraped areas, and (3) the numbers of recruits are
the same on algae and bare areas. Unplanned comparisons

TaBLE Al. Barnacle data. Two treatments were types of al-
gae (Al and A2) that occurred naturally on the rocks; one
treatment was naturally bare rock (NB); the last was a rock
surface which had been manually scraped clean (S), to see
how closely this technique represented natural bare rock.
There were five replicate areas of each of the four treat-
ments, and after 4 wk the number of barnacles that had
recruited to each area was recorded.

Treatments

Al A2 NB S

27 24 9 12

19 33 13 8

18 27 17 15

23 26 14 20

25 32 22 11
Mean 22.4 28.4 15.0 13.2
Variance 14.8 15.3 23.5 20.7
Total 112 142 75 66

would only be carried out in the absence of such specific
hypotheses. Confidence intervals would be used if estimates
of the differences were required. Formulae for the tests are in
Appendix 1.

1. PARAMETRIC ANALYSES
Checks of assumptions

Although the small sample size (n = 5) does not permit
powerful tests of normality or homogeneity of variances, rough
preliminary checks should still be carried out. Plots of resid-
uals, the absence of any positive relationship between means
and variances, and Cochran’s test (C = 0.32, P > .05) sug-
gested there was no serious violation of normality or variance
homogeneity. ANOVA is thus appropriate (Table A2).

Planned comparisons

Totals are used to partition the treatments sum of squares
(ss) into three orthogonal (see below) comparisons; each com-
parison ss is tested against residual mean square (Ms) using
an F test (1,16 df). Alternatively, means and ¢ tests could be
used as shown in comparison number 1.

1) Hy: there is no difference in the number of barnacles
between the two algal surfaces (treatments Al and A2). L, =
(+1)142 + (—1)112, where +1 and —1 are coeflicients (¢,).
Note that E ¢, = (+1) + (=1) = 0, so this is a legitimate
comparison with 1 df; ss = 90.0, F = 4.84, df = 1,16, P <
.05.

or

TABLE A2. ANOVA.

Source of

variation ss df MS F ratio P
Treatments 736.55 3 245.52  13.22 <.05
Residual 297.20 16 18.58
Total 1033.75 19
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L(of means) = (+1)28.4 + (—1)22.4, where +1 and —1 are
coefficients. L = 6.00, s = 2.726,t = 2.20, df = 16, P < .05.
Note that F = £2.

2) H,: there is no difference in the number of barnacles
between the naturally bare and scraped surfaces (treatments
NBand S). L, = (+1)75 + (—1)66; ss = 8.1, F = 0.44, df =
1,16, Ns. Because E ¢, =0 [(+1)0) + (—1)0) + (O}+1)
+ (0)(+1) = 0], Hy, is orthogonal to Hy,.

3) H,: there is no difference in the number of barnacles
between algal-covered surfaces and bare surfaces (i.e., be-
tween the average of treatments Al and A2 and the average
of treatments NB and S). L, = (+1/2)142 + (+1/2)112 +
(—1/2)75 + (—1/2)66; ss = 638.5, F = 34.45, P < .001. Hy,
is orthogonal to H,, and H,, because 2 ¢,.¢; = 0 and E
€03 = 0.

Note: ss(Hy,) + ss(Hp,) + ss(Hy;) = treatments ss, and
there are three comparisons with 1 df, and three treatments
df. This is a check for orthogonal comparisons.

Stepwise unplanned comparisons

Overall question: Are there differences between pairs of
treatments?

Ryan’s Q test

4 means apart: @, = 4.05, CV =781, A2 - S=152,P <
.05.

3 means apart: Q, = 3.85, CV' =742, Al —S=92, P <
.05, A2 - NB=134, P < .05.

2 means apart: O, = 3.48, CV =671, NB - S = 1.8, P >
.05, A1 —NB=74,P < .05 A2 — Al =
6.0, P > .05.

Result: S NB < Al A2 (lines join treatments not significantly

different, P > .05).

Simultaneous unplanned comparisons

Overall question: Are there differences between pairs of
treatments?

Tukey’s test

Q,=4.04,CV =179

A2 - S§=15.2,P < .05,A2 - NB= 134, P < 05,
A2 — Al =60,P> .05,Al —S=192 P < .05,
Al —NB=74 P> .05 NB—S=18 P> .05

Result: S NB < Al A2,

95% Simultaneous confidence intervals

The probability is at least 95% that the true differences
between all pairs of population means are within the following
ranges:

A2 — Al = —1.79 t0 13.79 (i.e., 6.0 = 7.79); Al — NB =
—0.39t0 15.19;NB — S = —5.9910 9.59; A2 — NB = 5.61
to 21.19; A1 — S = 1.41t0 16.99; A2 — S = 7.41 10 22.99.

2. NONPARAMETRIC ANALYSES

Nonparametric analyses are used when the approximate
normality of the data cannot be confirmed. Nonparametric
methods test for differences between population medians. Note
that checks of the variance homogeneity assumption are im-
portant for this analysis. Plots of residuals are suitable, but
since the data are presumably not normal, Cochran’s test
would not be used. For larger sample sizes, the Levene-me-
dian test would be appropriate.

Summary of the data: the treatment medians are: S = 12.0,
NB = 14.0, A1 = 23.0, and A2 = 27.0.

Kruskal-Wallis test, using Chi-square approximation = 13.614
(tie-corrected = 13.625), P < .01.
Planned comparisons

Planned comparisons are handled the same as for the para-
metric case except for the use of Wilcoxon-Mann-Whitney
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tests, here using placements. In cases 1 and 2, n, = n, = 5;
in case 3, n, = n, = 10.

1) A2 vs. Al, U = 21.5, Ns.
2) NBvs. S, U =16, Ns.
3)A2 + Al vs. NB+ S, U=96, P < .001.

Stepwise unplanned comparisons

Joint-Rank Ryan test (difference between mean ranks), using
Miller’s (1981, 1986) large sample approximation. New joint
ranks must be determined for each set in the stepwise pro-
cedure. Treatments should be ordered according to joint rank
sums.

Sets of 4 treatments: @, = 3.63, CV = 9.62, A2 — S=12.1,
P < .05.

Sets of 3 treatments: Q, = 3.45, CV = 9.14; Al — S =17.0,
P> .05, A2 — NB=8.9, P> 05.

Sets of 2 treatments: no tests.

Result: S NB Al A2.

Steel-Dwass Ryan test (maximum rank sum of each pair of
treatments), using Miller’s (1981) large sample approximation
(nearest integer). Treatments should be ordered according to
sample medians.

4 medians apart: Q, = 3.63, CV'=40; A2 — S=40,P < .05
3 medians apart: Q, = 3.45, CV=40; Al — S= 38, P > .05,
A2 — NB =40, P < .05
2 medians apart: Q, = 3.14, CV = 39; A2 — A1 =35, P >

.05

Result: S NB Al A2.

Simultaneous unplanned comparisons

Nemenyi Joint-Rank test, using Miller’s (1981, 1986) large
sample approximation. Joint ranks in 4 treatment set used
for all comparisons.

0, = 3.63, CV = 9.60 (difference between mean ranks).
A2 —-S=121,P< 05 A1 -—S=177 P> .05

A2 — NB=10.7,P < .05,NB - S=14,P > .05
Al — NB=6.3, P> .05,A2 — Al =44, P> .05
Result: S NB Al A2.

Steel-Dwass test, using Miller’s (1981) large-sample approx-
imation.

Q, = 3.63, CV = 40 (maximum rank sum).

A2 — S=40,P < .05, A1l —S =138, P> .05
A2 — NB=40, P < .05, NB—-S=31,P> .05
Al — NB =38, P> .05; A2 — A1 =35, P> 05.
Result: S NB Al A2.

95% Simultaneous confidence intervals
(pairwise rankings must be used)

These are confidence intervals on differences between me-
dians. CV = 40 (maximum rank sum); L = 25, H = 1; the
confidence limits are the Ist- and 25th-ranked differences
between observations in any pair of treatments. Therefore the
probability is at least 95% that the true differences between
all pairs of population medians are within the following ranges:

S—NB=-11t014;Al —S=-21t019,A2 - S =410
25;A1 — NB=—-41t018, A2 - NB=21024; A2 — Al =
-3 to 14.

3. WELcH ANOVA FOR UNEQUAL VARIANCE CASE

This is calculated in stages below, following the formula in
Appendix 1.

w, = .242, w, = .213, w, = .338, w, = .327;

% = 132, %,=150,% =224, %, = 28.4;

1.119, m =4, B =.707,

= 11.837, df, = 3, df, = 8.8 (approximately = 9),
CV (F table) = 3.86; Significant, P < .05.
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