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Rigorous assessments of the economic impacts of introduced species at broad spatial scales are required to
provide credible information to policy makers. We propose that economic models of aggregate damages
induced by biological invasions need to link microeconomic analyses of site-specific economic damages with
spatial-dynamic models of value change associated with invasion spread across the macro-scale landscape.
Recognizing that economic impacts of biological invasions occur where biological processes intersect the
economic landscape, we define the area of economic damage (AED) as the sum of all areas on the physical
landscape that sustain economic damage from a biological invasion. By subsuming fine-scale spatial
dynamics in the AED measure, temporal dynamics of the AED can be estimated from an empirical
distribution of the AED effective range radius over time. This methodology is illustrated using the case of a
non-native forest pest, the hemlock woolly adelgid (HWA; Adelges tsugae). Geographic Information Systems
and spatially referenced data provide the basis for statistical estimation of a spatial-dynamic value transfer
model which indicates that HWA is annually causing millions of dollars of economic losses for residential
property owners in the eastern United States.
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1. Introduction

Biological invasions by non-native forest insects and diseases
currently pose a substantial, complex, and long-term threat to forest
ecosystems and the services they provide to societies around the
globe. For millennia, the world's biota has been separated into
independently evolving ecological communities. The growth in
international trade represents but a brief moment in the evolution
of ecological species and yet has provided new linkages between
geographically dispersed markets, and the movement of products has
created new pathways for arrivals of non-native species which
threaten ecological communities (Stanaway et al., 2001; Vilá and
Pujadas, 2001; Levine and D'Antonio, 2003; Work et al., 2005; Caton
et al., 2006; McCullough et al., 2006). Although many invasions have
been inconsequential, history has shown that a few species have the
potential to become major pests (Williamson and Fitter, 1996).

Forests provide suitable habitat for an assortment of invading
organisms (Liebhold et al., 1995). Since the time Europeans discovered
North America, more than 368 exotic phytophagous insects have
become established in forests, woodlots, parks, and orchards (Mattson
et al., 1994). Despite the fact that most non-native forest insects have
proven to be innocuous and cause little harm, a few — such as the
European gypsy moth (Lymantria dispar), emerald ash borer (Agrilus
planipennis), and hemlock woolly adelgid (Adelges tsugae) — have
become major pests. The number of non-native tree pathogens that
have become established in North America is difficult to gauge, asmany
microorganisms colonizing trees are innocuous and, in general, no effort
is expended to document invasions by species unless they have
measurable impacts. However, at least 16 pathogen species have
colonized forest and urban forest trees since European settlement
(Aukema et al., forthcoming), and only a few tree diseases — such as
chestnut blight (Cryphonectria parasitica), Dutch elm disease (Ophios-
toma spp.), and sudden oak death (Phytopthora ramorum) — have had
substantial economic consequences.

Biological invasions of forests invoke a challenging class of problems
for forest economists and policy makers for two principal reasons. First,
economic losses stemming from the establishment and spread of non-
native forest pests are difficult to quantify, and are therefore rarely used
in decision-making (Holmes et al., 2008). This is due, in part, to the fact
that economic damages resulting from biological invasions are
externalities, or side effects, of other economic processes such as
international and domestic trade (Perrings et al., 2002). Indeed,many of
the losses in economic value induced by non-native forest pests are due
to the loss of non-market economic values (Leuschner et al., 1996;
Holmes et al., 2009), and creative methods are required to isolate and
quantify the magnitude of economic impacts. Second, the flow of
economic value in the forest economy is linked to the forest ecosystem
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2 Formally,Areat = ∫∞
0
2πr2uðr; tÞdr; where u(r,t)dr represents the number of

colonies with radii length between r and r+dr at time t.
3 Economic damage often lags behind the general spread of an invasive organism,

and may depend upon the growth rate of invasive species within infected areas. For
example, it is anticipated that, in many cases, economic damage in forests results from
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by a suite of spatial-dynamic processes. The integration of spatial and
temporal dynamics in a joint economic–ecological system requires
creative approaches to modeling, particularly in a data poor environ-
ment (Sharov and Liebhold, 1998; Smith et al., 2009).

In this paper, we provide an economic framework designed to
measure the landscape scale economic impacts of a biological invasion
in forests with explicit recognition of spatial-dynamic processes.
Section 2 provides an overview of the spatial dynamics of invasion
spread based on the use of partial differential equations. We
demonstrate in Section 3 how the temporal dynamics of the integrated
area of economic damage can be directly modeled using empirical
observations on the distribution of the effective range radius over time.
The spread of economic damages across the landscape can then be
combined with microeconomic damage models to estimate economic
damages at the landscape scale. An empirical illustration of the general
model is presented in Section 4 using the case of the hemlock woolly
adelgid. Finally, conclusions are presented in Section 5.

2. Spatial-dynamic Models of Invasion Spread

Three stages of the biological invasion process are generally
recognized: 1) arrival, the transport of the invading species to a new
habitat; 2) establishment, the growthof thenewly arrived population to
a level such that extinction is no longer possible and 3) spread, the
expansionof the invading species range into thegeographical extentof a
suitable habitat (Lockwood et al., 2007, Shigesada and Kawasaki, 1997).
Most invasions are typically not evennoticeduntil they are in the spread
phase and thereforewe focushere on the invasion spread. Theprocessof
invasion spread emerges from the combination of: (1) population
growth, (2) dispersal of organisms, and (3) spatial geometry. The classic
approach to modeling invasion spread uses a partial differential
equation (PDE) which allows modelers to incorporate temporal and
spatial processes simultaneously (Holmes et al., 1994). The first
mathematical statements using reaction–diffusion dispersal equations
to model biological invasion assumed population growth were either
exponential (Skellam, 1951) or governed by density-dependent
mortality (Fisher, 1937). Inone spatial dimension, thepartial differential
equation describing logistic population growth and spread is:

∂Nðs; tÞ
∂t = rN 1−N

K

� �
+ D

∂2Nðs; tÞ
∂s2

ð1Þ

where N(s,t) is the population density of the population as a function
of spatial location s at time t, r is the intrinsic (per capita) growth rate,
K is the carrying capacity, and D is a measure of the mean squared
displacement of individuals per unit time (measured in units of
distance2/time). This simple model, which is regulated by density-
dependent mortality, produces a traveling wave of invaders that
moves across a homogenous landscape at a velocity that approaches
the asymptotic constant rate

v = 2
ffiffiffiffiffiffi
rD

p
ð2Þ

as the invasion unfolds. In a two-dimensional model, the asymptotic
wave speed for the one-dimensional case applies, and circular waves
spread outward across a homogeneous plain (Holmes et al., 1994,
Shigesada and Kawasaki, 1997). The invaded area forms a disk shape
with a center located at the initial point of invasion, and a linear
relationship is predicted between the square root of the area invaded
and time.1
1 The classic invasion model assumes that invasion occurs across a homogeneous
landscape. Considering landscapes as spatially heterogeneous areas, in which the
spatial distribution of habitats and populations affect the invasion process, is a key
perspective in emerging models of biological invasions (Shigesada et al., 1986; With,
2002; Hastings et al., 2005; Dewhirst and Lutscher, 2009). In general, unfavorable
habitats deter invasion speed.
The prediction that the square root of an invaded area is linearly
related to invasion time (i.e. the range expands at a constant rate) can be
tested using empirical observations and statistical methods. Despite the
apparent simplicity of this model, it has been found to be reasonably
congruentwithmany observed rates of spread of non-native organisms
(Levin, 1989), including forest pests such as the gypsy moth (Liebhold
et al., 1992). However, multiple modes of range expansions, such as the
combination of neighborhood diffusion and long-distance dispersal,
have been observed for some invading organisms (Andow et al., 1990,
Shigesada et al., 1995). These organisms may exhibit non-linear
relations between the square root of invaded area and time (Hastings
et al., 2005). A leptokurtic, or fat-tailed, dispersal probability function,
resulting from jump-dispersal facilitated by birds or other wildlife as
well as human mediated transport, can generate spread rates that
increase with time (Kot et al., 1996).

Mathematical models of stratified diffusion, in which organisms
spread locally by Brownian diffusion and create remote colonies by a
jump process, demonstrate that combined processes can greatly
increase invasion rates. By creating multiple foci for range expansion,
stratified diffusion induces a distribution of scattered colonies of various
sizes during each time period. When the size distribution function is
governed by the von Forester equation, which describes the change in
the size distribution as newcolonies are created and the radii of colonies
expand (Trucco, 1965; Shigesada et al., 1995), the total invaded area
invaded at anymoment t, Areat, is obtained by integrating over the area
contained in every colony of each size.2 If suitable data are available, the
total invaded area can be measured and range-versus-time can be
modeled using the effective range radius, defined as the square root of
Areat divided by the square root of π (Shigesada et al., 1995).
3. A Spatial-dynamic Model of Economic Damage

3.1. Temporal Dynamics of the Area of Economic Damage

The arrival and establishment of a non-native organism which
impairs the flow of ecosystem services within an economic neighbor-
hood will spread through that neighborhood according to a spatial-
dynamic process (such as the progression of tree mortality with the
spreadof pests and pathogens).3 Similarly,manynew foci for the spread
of economic damage across the landscape will be created as the
biological organism induces economic damages in new neighborhoods.
We suggest that themethod of spatial aggregation via integration across
colonies of all sizes (sensu Shigesada et al., 1995) be applied to the
economic analysis where the colonies of interest are localities where
economic damage occurs. Subsuming fine-scale spatial dynamics into
the integrated area of economic damage (AED), defined as the sum of
the area within circumscribed economic neighborhoods that sustain
economic damage from a biological invasion, temporal dynamics of the
AED can then be modeled by estimating range-versus-time curves.
Within the forest economy, the AED occurs at the spatial intersection of
forest resources with specific economic values (such as residential
forests) and the presence of biophysical damage that induces a loss, or
transfer, of economic value (Fig. 1).4
reductions in tree growth or tree mortality, which are lagged functions of the arrival
and establishment of an invasive organism.

4 Biophysical damage to trees can cause wealth transfers as well as wealth losses.
For example, tree mortality can induce expenditures for homeowners desiring to
remove dead trees. These expenditures represent wealth transfers from homeowners
to tree removal firms (Kovacs et al., 2010). The empirical example presented in
Section 4 below describes a wealth loss.



Fig. 1. Traveling waves and the area of economic damage (AED). The circles represent
the range of an organism over successive periods. The shaded polygons represent the
areas where economic damage occurs.
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Shigesada et al. (1995) defined the effective range radius (ERR) of
an area invaded by a biological organism as the square root (√) of the
integrated area divided by the square root of pi (π). We adopt a
similar approach and define the effective range radius of the AED as
√(AED)/√(π). As described by Shigesada et al. (1995), three types of
range-versus-time curves can be described: linear, biphasic, and
convex. Following an initial establishment phase (during which no
range expansion is discernable), an organism passes through an
expansion phase, and a final saturation phase. In general, we
anticipate that the AED will be observed during the expansion
phase and possibly during a saturation phase in which all trees have
been damaged in an economic sense. If time series or time series/cross
sectional data are available for the AED, statistical methods can be
used to estimate AED range-versus-time curves.
6 Quantile functions are estimated by minimizing absolute deviations using linear
programming methods (Koenker and Hallock, 2001).

7 Spatial units used for analysis (trees, hectares, etc.) will depend upon the scale of
analysis and the resolution of the available data.

8

3.2. Quantile Regression

The quantile regression method was developed by econometri-
cians (Koenker and Bassett, 1978) as an extension of the ordinary
least squaresmodel inwhich all parts of the distribution of a response
variable can be modeled as a function of a vector of explanatory
variables. It is a semiparametric method in the sense that no
parametric assumptions are invoked regarding the distribution of
the dependent variable in the regression. The median regression
estimator minimizes the sum of absolute errors and other quantile
functions are estimated by minimizing an asymmetrically weighted
sum of absolute errors (Koenker and Hallock, 2001). Parameter
estimates in linear quantile regression models represent the
marginal change in the dependent variable with a unit change in
an explanatory variable holding other explanatory variables
constant.

Quantile regression has been used in ecological applications where
unobserved ecological factors act as limiting constraints on organisms
(Cade and Noon 2003). For example, rates of change for functions near
the upper boundary of the conditional distribution of responses may
be very different than mean or lower boundary responses if there are
many unobserved limiting factors. Because many possible factors
explaining the spread of invading organisms are unknown, such as
diffusion coefficients or the impact of landscape heterogeneity,
quantile regression methods appear to be well suited to estimating
rates of range expansion.5 In general, we suggest that the effective
range radius of the AED can be estimated as a function of the time
5 We note that quantile regression has been used to estimate the rate of range
expansion of the hemlock woolly adelgid using observations on spread distance and
time (Evans and Gregoire, 2007).
elapsed since an invading organism is first observed and a vector of
other explanatory variables using quantile regression:

ERRt =

ffiffiffiffiffiffiffiffiffi
AED

p
tffiffiffi

π
p = β τð ÞXt ð3Þ

where β(τ) is a vector of parameter estimates for specific regression
quantiles τ (for example, the median is represented by τ=0.5) and Xt

is a vector of explanatory variables.6 The specific β(τ) parameter
estimate for elapsed time is interpreted as the rate of AED range
expansion conditional on the effects of other variables in the model.

3.3. Spatial Value Transfer

Models of economic damage from biological invasions within the
AED can be estimated using micro-scale economic models. An
essential first step in modeling the spatial dynamics of economic
damages from an invasive species is to obtain site-specific micro-
economic analysis of producer and/or consumer behavior directly
impacted by a biological invasion. The behavioral economic model
provides information on the economic damage per unit of invaded
area.7

If economic damage sustained at sampled locations can be
characterized as a function of economic units (e.g., households and
firms) and landscapes (e.g., tree species impacted), then losses
estimated for the sample can be transferred to the population of
similar economic units at the landscape level.8 Where spatial data are
available depicting the location of salient economic and landscape
variables characterizing the AED, GIS can be used to identify the
number and location of spatial units that are damaged in the way
described by the behavioral economic model. Then, the economic
damage per economic unit can be multiplied by the number of
economic units identified in the GIS analysis, and maps can be
constructed depicting economic damages in the AED.

Unfortunately, spatial data characterizing the salient character-
istics to be used for spatial value transfer are not always available for
the entire area at risk of damage from a biological invasion. In these
instances, it may be possible to spatially project the macro-scale
economic landscape at risk using statistical or other models. Then, the
spatial-dynamic model of AED growth can be linked with the
projected landscape at risk to compute aggregate economic damages
(Fig. 2).

3.4. Linking Spatial Dynamics with Value Transfer Models

The forecasted landscape at risk identified using GIS needs to be
calibrated to incorporate spatial dynamic factors. In particular, it is
essential to identify the date at which a non-indigenous organism
begins causing economic damage within spatial units so that the
temporal dynamics of economic damages within spatial units can be
applied. Fortunately, data are often available listing the date at which
a non-native pest was first discovered within a geographic area. These
dates will typically need to be adjusted to account for the lag between
the establishment of a non-native organism and the date at which it
begins causing economic damage.
Value transfer methods have been developed by economists to transfer in situ non-
market values to other, ex situ locations (Rosenberger and Loomis, 2003). Although
most benefit transfer studies have been non-spatial, the increasing availability of, and
familiarity with, Geographic Information Systems (GIS) is advancing the ability to
conduct spatial value transfers (Eade and Moran, 1996; Bateman et al., 2002; Troy and
Wilson, 2006).

image of Fig.�1


9 Chemical treatments are available to protect individual ornamental hemlock trees
from HWA. Although we focus attention in this study on the aggregate economic
losses to homeowners from HWA infestations in residential forests, the cost of
protecting healthy hemlocks can be quite expensive. For example, the cost of foliar
spray to control HWA in Maine is roughly $260/tree/year, which can be expensive if
several hemlocks are located on a landowner's property (Holmes et al., 2008).

Fig. 2. General spatial-dynamic value transfer model.
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Once the parameters of a spatial-dynamic model have been
estimated, predictions of the incremental growth of AED can be
applied to all observational units (i). Then, the level of economic
damage for each observational unit and time period can be computed:

Dit = ðAEDit−AEDit−1Þdit ð4Þ

where Dit is the aggregate economic damage across the AED in unit i at
time t, and dit is the economic damage per unit area within the AED. In
general, unit area damages will reflect variation in economic
conditions across observational units. For example, if damages accrue
to residential property values, then dit will reflect variations in the
value of residential properties across different observational units and
periods of time. The unit area damages represent the present value of
all future damages that will occur in that area.

Finally, aggregate economic damage across j observational units
and n time periods (D) can be simply computed:

D = ∑j
i = 1∑

t
t−nDite

κt ð5Þ

where economic damages are summed over n periods, and κ is the
economic discount rate. Economic damages for subsets of the entire
aggregate area can likewise be computed by summing over the area of
interest, such as states or regions.

4. Empirical Application: Hemlock Woolly Adelgid in Eastern U.S.
Forests

In this section, the spatial-dynamic value transfer modeling
approach proposed above is presented to clarify ideas, using a case
study of the hemlock woolly adelgid (A. tsugae, hereafter HWA). The
HWA is a non-native forest pest, which was inadvertently introduced
from Japan during the 1950s, is currently spreading across hemlock
forests in the eastern United States, and threatens the widespread
decline of eastern hemlock (Tsuga canadensis) and Carolina hemlock
(Tsuga caroliniana) forests (Orwig and Foster, 1998). The spreadofHWA
is facilitated by wind as well as the movements of birds, mammals, and
humans, and state quarantines have been established to mitigate the
spread via the movement of nursery stock and hemlock logs. Roughly
25% of the 1.3 million ha of eastern hemlocks in the U.S. are currently
infested with HWA and experts predict that the remaining 75% may
become infested within 20 to 30 years (Morin et al., 2004; Rhea, 2004).
There are no known effective native predators or parasites of this insect
and eastern hemlock has shown little resistance to HWA. Mechanical
control efforts have not been implemented for this species at the
landscape scale, as at this time there are no known controls that can be
used to slow or stop HWA spread that are cost-effective at a large scale.

Recent estimates suggest thatHWA is spreading across the landscape
at a rate of approximately 9–20 km/year, and that spread rates varywith
environmental variables (Evans and Gregoire, 2007; Morin et al., 2009).
Theprincipal difference between these empiricalmodels of HWA spread
rates and the analysis reported here is that, in this paper, we are
interested in directlymodeling changes in the area of economic damage.
Economic damages lag behind the spread of HWA, and depend upon
HWA population growth within invaded areas, responses by host trees,
and the spatial geometry of the economic landscape.
4.1. Microeconomic Losses in Residential Forests

Eastern hemlock forests provide a suite of public and private goods
that have economic value, including terrestrial and aquatic wildlife
habitat, aesthetic quality in residential areas, sales of nursery stock,
and commercial timber (relatively low value). Although the decline of
hemlock forests impacts several sectors of the forest economy,
attention here is focused on the impact of HWA on private property
values in residential forests.

The contribution of landscape attributes to private property values
has been studied using an economicwelfare-theoreticmethod known as
the hedonic property value method. This method has been used to
estimate the value that trees contribute to the sale values of homes from
threeperspectives: (1) yard trees contribute to property values (Morales,
1980; Anderson and Cordell, 1988; Dombrow et al., 2000), (2) forest
preserves near residential neighborhoods convey value (Garrod and
Willis, 1992; Tyrvainen and Mietinnen, 2000), and (3) trees in the
general forest matrix surrounding residential areas convey value
(Patterson and Boyle, 2002). These studies indicate that trees contribute,
roughly, from 1–5% to the property value of private residences.
Consequently, we would expect that non-indigenous forest pests that
cause a visible loss in forest health (Sheppard and Picard, 2006), or that
ultimately cause treemortality, would induce a loss of property values in
residential areas in roughly the same proportionate value range.

A microeconomic analysis of the impact of naturally regenerated
hemlock decline on residential property values in northern New Jersey
indicates that the proportional loss in residential property value is
generally consistent with other hedonic studies of the value of trees to
private residences (Holmes et al., in press). Remote sensing data were
used to identify hemlock health, measured in 5 defoliation categories
(Royle andLathrop, 1997), aswell as a suite of other landscape attributes
(Lathrop, 2000) thought to influence property values. Results of the
micro-econometric analysis showed that severe hemlock defoliation
was the principal cause of the loss of property values in the study area,
and severe hemlock defoliation not only caused property value losses on
the parcel where hemlock standswere located, but also caused losses on
neighboring properties. Severely defoliated hemlocks within 0.1 km
radius of parcel centroids reduced property values, on average, by 1% per
household. This estimate represents the loss of wealth experienced by
households living within the area of economic damage.9

image of Fig.�2


Fig. 3. Data points and range-versus-time curves for the AED with quantile regression
lines shown for the 90th (upper line), median (middle line) and 10th (lower line)
quantiles.
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4.2. Spatial Dynamics of HWA Economic Damages

Geo-referenced data describing hemlock defoliation throughout the
entire state of New Jersey (Royle and Lathrop, 1997), as used in the
hedonic property value study (Holmes et al., in press),were available for
each of the five time periods (1992, 1994, 1996, 1998, and 2001). For
each 30×30 mraster hemlockpixel, hemlockhealthwas represented in
one of the five categories, depicting the level of defoliation (0–20%, 21–
40%, 41–60%, 61–80%, and 81–100%). These geospatial data were then
combinedwithdata delimiting residential neighborhoods inNew Jersey
(Lathrop, 2000). In particular, a 0.1 km buffer (consistent with the
microeconomic study) was created surrounding all hemlock polygons
using GIS. Then, these hemlock areas, including buffers, were inter-
sected with residential polygons for each time step. Focusing on pixels
showing severe (81–100%) hemlock defoliation, this step provided a
map depicting spatially distributed neighborhoods of economic dam-
age, consistentwith themicroeconomicmodel, for each date in the time
series throughout the entire state.

To estimate the dynamics of economic damage, AEDt was
computed for each time period (t) by summing the area of economic
damage across all neighborhoods and for each time period. AEDt was
aggregated to the county level (8 counties), resulting in a cross-
section time series data set containing N=40 observations. Then, the
effective range radius for each point in time (ERRt) was computed
using the identity shown in Eq. (3). Two independent variables were
used to explain the variation in ERRt. First, data on the elapsed time
since HWA was first observed in each county were available from the
Northeastern Area State & Private Forestry, USDA Forest Service.10

Second, Morin et al. (2009) found that the rate of spread of HWA was
positively related with hemlock basal area. Geospatial data (1 km
rasters) characterizing the basal area of hemlock in forest stands in
the U.S. (Morin et al., 2004) were available based on spatial
interpolation of permanent Forest Inventory and Analysis plot data
(Hansen et al., 1993). These data, available at the minor civil division
level (township), were used to compute a localized average of
hemlock abundance.

The parameters for the range radius model were estimated using
quantile regression as shown in Eq. (3) by setting τ=0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7 0.8, 0.9. Fig. 3 shows the data used to estimate the models
as well the fitted model for the 0.1, median, and 0.9 quantiles. Overall,
the linear models fit the data well, and the goodness-of-fit (R1)
statistics ranged from 0.68 for the τ=0.1 specification to 0.79 for the
τ=0.5 specification (for τ=0.9, R1=0.72).11 The linear model is
consistent with the Type 1 range-versus-time curve in Shigesada et al.
(1995), and linear range-versus-time curves estimated for other
invasive species (Andow et al., 1990; Shigesada and Kawasaki, 1997)
including the HWA (Evans and Gregoire, 2007; Morin et al., 2009).
Although we are modeling the spread of severe hemlock defoliation,
and not simply the presence of HWA, our results are consistent with
the Shigesada et al. (1995) stratified diffusion model in which new
colonies are founded by long-distance dispersal ahead of the infested
population front. These colonies then expand via short-distance
dispersal, coalesce, and cause severe hemlock defoliation as local
HWA populations increase in number.

Quantile regression parameter estimates for AED spread as a function
of the elapsed time since first infestation were generally significantly
10 Data are available on the website: http://na.fs.fed.us/fhp/hwa/infestations/infesta-
tions.shtm.
11 A separate goodness-of-fit value (R1) is computed for each value of τ that is
specified. Analogous to the standard goodness-of-fit statistic used in linear regression
models (R2), R1 is computed as 1 minus the ratio of the appropriately weighted sum of
absolute residuals for an unrestricted and restricted model, respectively (Koenker and
Machado, 1999). The restricted model sets all parameter estimates on the covariates to
zero, and therefore is based entirely on the intercept parameter estimate.
different than zero at the 0.10 level (Fig. 4).12 The maximum spread rate,
as represented by the 0.9 quantile parameter estimate (0.07 km/yr) was
similar to the median estimate (0.063 km/yr) but more than twice as
large as the parameter estimate for the 0.10 quantile (0.03 km/yr). These
results suggest that unobserved factors are limiting the temporal rate of
spread of severe hemlock defoliation. Less variation in the quantile
regression parameters was found for hemlock basal area. Parameter
estimates for AED spread as a function of hemlock basal area were
significantly different than zero at the 0.01 significance level, which is
consistent with results reported for HWA spread rates reported byMorin
et al. (2009).

4.3. Statistical Projection of Residential Hemlock Forests at Risk

At the close of 2008, HWA had been found in 15 states and in more
than 300 counties (Morin et al., 2009). Because monitoring data
showing the location of natural stands of hemlock, and their
proximity to residential areas, are not available for most of these
areas, it was necessary to develop a regression model to spatially
project areas in residential hemlock forests that are likely to be similar
to the area where the microeconomic analysis of HWA induced
damages was undertaken.

4.3.1. Data
The dependent variable in the statistical projection model was

designed to replicate, as closely as possible, the area of economic
damage described by the microeconomic model. In particular, it was
necessary to obtain data representing the area of residential, naturally
regenerated hemlock forest. Two sources of data were available for
this purpose. First, geospatial data for New Jersey were obtained from
the Center for Remote Sensing and Spatial Analysis at Rutgers
University (Royle and Lathrop, 1997; Lathrop, 2000), which included
polygons for hemlock forest area and polygons for residential areas. A
second data set was obtained from the Harvard Forest in Petersham,
Massachusetts, which included polygons for hemlock forest area
along a transect in the state of Connecticut (Orwig et al., 2002). GIS
data showing the location of residential areas in Connecticut were
obtained from land use-land cover maps. A 0.1 km buffer was created
around natural hemlock stands in the two states with GIS tools. The
intersection of these polygons with the residential polygons, also
performed using GIS tools, provided information on the area in
residential hemlock forests consistent with the microeconomic
12 Standard errors for parameter estimates were computed using the bootstrap
method (Koenker and Hallock, 2001).

http://na.fs.fed.us/fhp/hwa/infestations/infestations.shtm
http://na.fs.fed.us/fhp/hwa/infestations/infestations.shtm
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Fig. 4. Estimates of the slope parameters from the quantile regression. Slope parameters show the relationship between the rate of range expansion and (a) the elapsed time from the
first infestation (left figure), and (b) hemlock basal area (right figure). The 90% confidence intervals are shown as dotted lines.
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model. For purposes of the projection model, these data were
aggregated to the minor civil division (township) level.

Two variables were used as explanatory variable in the projection
model. First, we used geospatial data characterizing the basal area of
hemlock in forest stands in the U.S. (Morin et al., 2004) as described
above (Section 4.2). Second, geospatial data describing the area of
forest canopy within which economic development has occurred
were obtained from the National Land Cover Database (Nowak and
Greenfield, 2009). Landsat images of tree canopy and impervious
surface, at 30 m2 resolution, were used to construct the developed
canopy layer. Data were aggregated at the minor civil division
(township) level.

4.3.2. Tobit Model for Censored Data
Hemlock canopy in residential neighborhoods is a rare land-

scape feature and occurs where residential neighborhoods are built
within naturally regenerated hemlock stands. Because many
residential neighborhoods do not contain any natural hemlock
cover, the area of natural hemlock cover is zero for a substantial
number of observations. However, for neighborhoods with hem-
lock cover, the amount of cover may take a wide range of values.
Data that display these characteristics are censored, and the
censored (or Tobit) regression model can be used to obtain
unbiased parameter estimates.

The Tobit model assumes that variables affecting the probability of
observing a limit value (e.g., zero) also affect the size of a non-limit
response (Greene, 1997). The general form of the Tobit model is
defined in terms of a latent variable which, in a model used to predict
residential hemlock canopy, can be thought of as the potential
residential hemlock canopy cover (y*):

y �
i = β′xi + εi;

yi = 0 if y�i ≤0;

yi = y�i if y�i N 0

ð6Þ

where y⁎ is a latent variable representing potential residential
hemlock canopy, y is the level of observed residential hemlock
Table 1
Tobit parameter estimates used to project the area of residential hemlock forest.

Variable Coefficient

Latent variable equation
Constant −82.16*** (8.32)
Developed canopy (100 ha) 0.09*** (0.01)
Hemlock basal area (m2) 6.84*** (2.12)

Disturbance standard deviation
σ 47.63*** (4.09)

Note: standard errors in parentheses. *** denotes significance at the 0.01 level. Number
of observations=585 (547 in New Jersey and 38 in Connecticut).
canopy, β is a vector of parameters, x is a vector of explanatory
variables (hemlock basal area and area of developed forest canopy),
and i is the observational unit. For most purposes, an estimate of the
value of the latent variable (β′x) is not useful. Rather, wewould like to
estimate y, the level of actual residential hemlock canopy. In general,
the value of y, given the data on a set of explanatory variables x, is a
non-linear function:

E½yi jx� = Φ
β′xiÞ
σ

� �
β′xi + σλ
� � ð7Þ

where λ is the inverse Mill's ratio (and represents the probability that
the hemlock–residential intersection occurs in each observational
unit),13 and σ is the disturbance standard deviation . Eq. (7) is the
prediction equation for an observation drawn randomly from the
population.

4.3.3. Spatial Projection Results
All of the parameter estimates in the Tobit model have the

anticipated sign and are statistically different than zero at the 0.01
level. Although goodness-of-fit is difficult to assess in a nonlinear
model such as the Tobit, the goodness-of-fit statistics indicate that the
explanatory variables do a satisfactory job in predicting the mean
value of the dependent variable (Table 1).

Given the estimated statistical model, the residential hemlock area
in each township containing hemlock forests was projected using
hemlock basal area and area of developed forest canopy data.
Township estimates were aggregated to the county level and a map
was created showing the forecasted residential hemlock canopy
(Fig. 5). According to the projection, the areas with the greatest
concentration of residential hemlock forest are located in eastern New
York, western and central Massachusetts, western Connecticut, and
sections of Pennsylvania, New Hampshire, and Maine. These areas
may be considered as the residential forest population at greatest risk
of economic damages from HWA. We also note some isolated areas at
risk in western New York/northwestern Pennsylvania, North and
South Carolina, West Virginia, Wisconsin and Michigan.

4.4. Landscape Scale Economic Loss

4.4.1. Computation of Economic Loss Per Unit Area
Not all of the residential forest areas at risk of damage from HWA

have been infested. In order to estimate historic economic damages to
residential forests, county-level records of the year in which counties
were first infested by HWA were used (Morin et al., 2009).
Considering these data as the base year for the establishment and
spread of economic damage, the results of the spatial-dynamic model
13 In particular, λ=φ(β′x/σ)/Φ(β′x/σ), where φ (Φ) is the normal probability
density (cumulative distribution) function, respectively.
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Fig. 5. Map of projected residential hemlock canopy, which is the area at risk of residential property value losses from hemlock woolly adelgid.
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were combined with the spatial projection of the economic area at
risk to compute AEDt for each year from 1999 to 2008. A ten-year
projection period was considered to be reasonable, as the underlying
spatial-dynamic model was calibrated over a ten-year period.

The loss in economicwelfare for households livingwithin the AED
occurs at the point in time during which the hemlock forests are
projected to first enter a severe defoliation state. The number of
households impacted by a severe defoliation in year t is computed by
dividing (AEDit−AEDit−1) by an estimate of the average lot size
within observation unit i. Because residential hemlock forests occur
where residential neighborhoods occur within, and are proximate to,
naturally regenerated hemlock stands, we used data on housing
density within the wildland–urban interface (WUI), which includes
both intermix (places where housing and vegetation intermingle)
and interface (places with housing in the vicinity of continuous
vegetation) communities (Radeloff et al., 2005). Estimates of average
lot size, at the county level, within the WUI were computed by
dividing theWUI area by the number of housing units located within
the WUI.

Having estimated the number of housing units located within the
AED for each county, dit was computed by multiplying the number of
units by the median housing price in that county, which was then
multiplied by the percentage value loss due to severe hemlock
defoliation14:

dit =
AEDit−AEDit−1

average lot size
⁎ðmedian house priceitÞ⁎ðdegrade %Þ: ð8Þ

Eq. (8) is based on the assumption that housing markets behave
similarly in the manner by which they discount damage caused by
14 The percentage value loss due to severe hemlock defoliation is the capitalized loss
of all damages to the property from hemlock defoliation.
HWA, while reflecting variation in median housing values across
different markets.15
4.4.2. Sensitivity Analysis
Three scenarios used to compute landscape scale economic losses

were explicitly based on the quantile regression results. In particular,
high, medium, and low damage spread scenarios were constructed
using parameter estimates for the 0.9, 0.5, and 0.1 quantile regressions.
Data on the elapsed time since initial HWA infestation and hemlock
basal area were available for all counties where residential hemlock
forests were at risk of property value losses. Combining these data with
the quantile regression parameter estimates and the location specific
property values allowed us to compute the economic losses over the
specified ten-year time period. For the sensitivity analysis, we assumed
that the economic loss due to severe hemlock defoliation was equal to
1% of the property value. This percentage is in keeping with the results
reported by Holmes et al. (in press).
4.4.3. Results
The residential areas predicted to suffer the greatest economic

losses, during the period 1999–2008, from HWA are geographically
concentrated in New England (western CT, westernMA, and southern
NH) (Fig. 6). This spatial pattern reflects the projected presence of
residential hemlock forests with high local abundance, relatively high
valued residential properties, and a relatively long period of time over
which these areas have been infested by HWA. Under the medium
damage spread scenario, nearly 10,000 households were estimated to
15 During the period 1999–2008, the national housing price index rose by an average
annual rate of 0.048. To simplify the computational burden, it is implicitly assumed
that this rate equals the discount rate. Economic values are given in 2006 dollars.
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Fig. 6. Map of economic losses to residential property owners from HWA, medium damage spread scenario, 1999–2008.
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have lost wealth due to severe hemlock defoliation during the study
period (Table 2).

The aggregate estimate of residential property value losses,
computed by summing the county-level estimates under the three
different scenarios, ranged from roughly $12.4 million in the low
scenario to $29.5 million in the high scenario. The estimated economic
losses were sensitive to the parameter values used in the alternative
scenarios and the medium damage spread scenario might provide the
most reasonable estimate of economic losses ($20.2 million) given
available data. The states with the largest estimated economic losses
are Connecticut, Massachusetts, New York, New Hampshire and
Pennsylvania which account for roughly 87% of the estimated losses
Table 2
Estimates of the number of households affected and the economic losses for residential
property owners impacted by hemlock woolly adelgid, by state, 1999–2008.

State Low scenario Medium scenario High scenario

Households Value loss
($1000)

Households Value loss
($1000)

Households Value loss
($1000)

CT 1003 3378 1597 5368 2338 7859
DE 0 0 1 2 1 3
GA 0 0 0 0 1 1
MA 1096 2510 1746 4050 2555 5913
MD 8 12 18 34 25 46
ME 242 542 373 835 549 1229
NC 69 76 116 128 168 186
NH 660 1762 1012 2704 1489 3979
NJ 103 161 349 543 464 723
NY 766 2025 1254 3423 1827 4964
PA 1251 1308 2021 2132 2951 3109
RI 1 2 5 8 7 10
TN 326 285 510 447 749 656
VA 174 278 284 475 414 687
WV 152 54 250 92 365 133
Total 5851 12,393 9536 20,241 13,903 29,498
across the 15 states where economic losses were estimated. The
aggregate amount of residential property value loss is anticipated to
increase as HWA continues to defoliate hemlocks in residential areas
where it is already established, as well as by expanding its range into
new residential locations.

5. Summary and Conclusions

Rigorous assessments of the economic impacts of introduced
species, at a national scale, are needed to provide credible information
to policy makers. Although the non-market economic impacts of
invasive species are challenging to measure, we suspect that much of
the economic damage from biological invasions of forests will be due
to the loss of non-timber values. Therefore, innovative methods are
needed to provide realistic estimates of aggregate non-market
damages.

In this paper, we argue that economic assessments of the
aggregate damages induced by biological invasions need to link
microeconomic analyses of site-specific economic damages with
spatial-dynamic models of value change. With this purpose in mind,
the area of economic damage (AED) was defined as the sum of the
areas on the landscape that sustain economic damage from a
biological invasion. A method was described to model short-term
(10 year) economic damage dynamics, and an empirical example was
presented to demonstrate how the model could be implemented. The
empirical estimates suggested that during the period 1999–2008,
hemlock woolly adelgid caused tens of millions of dollars worth of
economic losses to thousands of residential property owners in the
eastern United States.

Other non-native forest pests, such as sudden oak death (P.
ramorum) and the emerald ash borer (Agrilus planipenis Fairmaire),
appear poised to cause major losses to residential property owners
along the California coast and in the mid-western United States,
respectively (Holmes and Smith, 2008; Kovacs et al., 2010).
Additionally, the Asian long-horned beetle (Anoplophora glabripennis)
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has caused mortality of more than 20,000 trees in Worcester,
Massachusetts, causing millions of dollars to be spent by local
governments and the U.S. Department of Agriculture for tree removal,
and undoubtedly causing a reduction in residential property values in
those urban forest neighborhoods.16 A full accounting of the current
and imminent economic losses due to the full constellation of non-
native forest pests is essential for the development of informed policy
that can meaningfully address the economic and ecological threats
imposed by these ongoing threats to forest health. However, the
development of a full suite of economic damage models will require
spatially referenced time series forest disturbance data so that the
integration of economic and ecological analysis can be made in a
rigorous fashion. At present, very few data are available that permit
the development of integrated economic–ecological analysis of
invasive species. Until relevant data become available, analysis of
the economic impacts of forest invasive species will be severely
limited.
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