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a b s t r a c t 

The implication of small amounts of cohesion within relatively small rubble pile asteroids is investigated 

with regard to their evolution under the persistent presence of the YORP effect. We find that below a 

characteristic size, which is a function of cohesive strength, density and other properties, rubble pile as- 

teroids can enter a “disaggregation phase” in which they are subject to repeated fissions after which 

the formation of a stabilizing binary system is not possible. Once this threshold is passed rubble pile 

asteroids may be disaggregated into their constituent components within a finite time span. These con- 

stituent components will have their own spin limits – albeit potentially at a much higher spin rate due to 

the greater strength of a monolithic body. The implications of this prediction are discussed and include 

modification of size distributions, prevalence of monolithic bodies among meteoroids and the lifetime of 

small rubble pile bodies in the solar system. The theory is then used to place constraints on the strength 

of binary asteroids characterized as a function of their type. 

© 2017 Elsevier Inc. All rights reserved. 
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. Introduction 

That asteroids are rubble pile bodies is no longer a controver-

ial theory, with the real questions migrating to what the relative

ix of rubble pile to monolithic asteroids may be. There are many

pecific observations that support the idea of rubble pile asteroids,

ncluding the presence of a spin limit for larger asteroids, the uni-

ormly high porosity observed in asteroids as compared to their

xpected meteorite matches, and the direct observations and mea-

urements of asteroids from spacecraft, such as occurred for aster-

ids Mathilde, Itokawa and Eros. The evidence and implications of

hese observations are based on decades of observations and has

een summarized recently in Scheeres et al. (2015) . 

Not as commonly discussed is the connection between the rub-

le pile structure of asteroids and the size distribution of their

opulation. That these are inextricably linked is clear, as the rub-

le pile structure of asteroids is created from catastrophic disrup-

ions which also create asteroid families and forms the fundamen-

al process that shapes the size distribution. The relevant work in

he area of impacts is summarized in Bottke et al. (2015) . 

The distinction between rubble pile structure and population

s important, but not necessarily linked for larger asteroids. How-

ver, smaller asteroids – specifically those less than ∼ 10 km in

ize – are physically modified by the non-gravitational YORP ef-

ect. One of the implications of the YORP effect is that the spin

ates of smaller asteroids are changed over timescales that are
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hort relative to their collisional lifetime in the main belt, or their

ynamical lifetime in the Near Earth Asteroids (NEA) population

 Gladman et al., 20 0 0 ). When their spin rates become large enough

ORP causes rubble pile asteroids to deform (hence the genesis

f the spin deformation limit) and to undergo fission processes

hich can cause rubble pile bodies to separate into multiple com-

onents and, through dynamical and physical evolution, create bi-

ary or multiple component asteroid systems. On average these

ssion processes will cause a decrease in any particular asteroid’s

ize, through loss of one of the components in creation of an as-

eroid pair or through the direct shedding of material that es-

apes from the parent body. The timescale over which these fis-

ion processes will reduce the size of an asteroid can be long, and

ot solely tied to the YORP effect. In particular, binary asteroids

an settle into long-term stable configurations that balance tides

gainst the Binary YORP effect ( Jacobson and Scheeres, 2011b ) or

or doubly synchronous system balance non-gravitational forces in

 stable equilibrium ( Golubov and Scheeres, 2016 ). Even if an as-

eroid does not settle into one of these configurations, the tidal

imescales of a multicomponent system can be very long ( Jacobson

t al., 2014 ) – essentially conserving the asteroid’s mass over long

ime periods. Despite this, such asteroids undergo a slow erosion,

osing the components of their rubble pile structure either as indi-

idual pieces, or perhaps more commonly by separating into com-

onents that are themselves rubble piles. Such processes have been

hown to be consistent with the current structure of the asteroid

ize population, e.g. Jacobson et al. (2016) . 

http://dx.doi.org/10.1016/j.icarus.2017.05.029
http://www.ScienceDirect.com
http://www.elsevier.com/locate/icarus
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This gradual erosion also raises an interesting question regard-

ing the relative size distribution of the asteroid population and the

size distribution of strong components within a rubble pile body.

Data on the latter are limited, with the most precise information

coming from observations of Eros and Itokawa. Their components,

i.e., competent boulders and grains, would in general have differ-

ent physical properties than rubble pile asteroids, specifically they

would be able to spin faster ( Holsapple, 2007 ) and would have

larger densities. They would also not be subject to the same fission

processes that rubble pile asteroids are subject to, of course. The

size that such components could reach is a question of some inter-

est, and may be visible in the population as fast spinning bodies

that must have strength greater than that predicted for rubble pile

bodies. These bodies may already be observed as the fast rotators

in the asteroid population (first reported in Pravec et al., 2002 and

more recently seen in Chang et al., 2014 ). However, as has been

noted previously ( Holsapple, 2007; Sánchez and Scheeres, 2014 ),

for smaller asteroids the spin rate at which they can no longer be

rubble pile bodies increases if there is some cohesive strength in

the body. 

This paper probes the transition between rubble pile asteroids

and their monolithic components, developing a theory for a physi-

cal process which may “disaggregate” rubble pile bodies efficiently

into their monolithic components. To do this we jointly analyze

the different effects which are known to dominate for small aster-

oids and explore the implications of their physics. Based on this

analysis we develop a theory for the disaggregation of asteroids

into their component parts that occurs over relatively short time

spans (less than a few million years) and is a function of an aster-

oid’s size, density and other physical characteristics. In it, we trace

out a process by which small asteroids can be disaggregated from

rubble pile bodies into their constituent aggregates, and provide a

range of timescales over which this process can occur. The intent

of the paper is to identify this process and its physical markers,

enabling targeted observations to be made in order to check and

constrain unknown parameters of our theory. We also discuss the

application of this theory to asteroids of different types to probe

differences that may exist between asteroids of different composi-

tions. 

The paper is structured as follows. In Section 2 the basic physi-

cal theories that are combined together in this paper are discussed,

summarizing their models and providing nominal values for key

parameters. In Section 3 we combine these effects to develop spe-

cific predictions on the time scales and physical transition points

that the physics suggest. In Section 4 the theory is applied to well

characterized binary asteroids to develop strength and disaggrega-

tion time limits. In addition we make some notes on applying this

theory to type sub-groups in the database. Based on our models,

Section 5 provides a number of specific predictions and identifies

a number of observations that should be pursued to better con-

strain and test the theory. 

2. Background physics and models 

Physical descriptions and theory for the YORP effect, the

strength of rubble pile bodies and conditions for a fissioned body

to escape have been developed previously in the literature (briefly

reviewed below). Here we summarize the main features of these

models and define the controlling equations. 

2.1. YORP theory 

The YORP effect is by now a wholly accepted, if not fully un-

derstood, theory for how small asteroids can be subject to chang-

ing spin rates over time. The YORP effect for asteroids was first

proposed by Rubincam (20 0 0) and later confirmed on a number of
steroids ( Lowry et al., 2007; Taylor et al., 2007; Kaasalainen et al.,

007 ). It describes the average effect of solar illumination on an

symmetric, rotating body. It can be shown that the averaged effect

f YORP is to cause a uniformly rotating body to spin up or spin

own over time. The effect has been probed down to small sizes,

here at a size much less than a meter the physical manifestation

f this effect has been predicted to become altered ( Breiter et al.,

010 ). At larger sizes, the YORP effect for a uniformly rotating as-

eroid can be described by a single coefficient which is a func-

ion of the solar inclination in the spinning body’s equatorial refer-

nce frame ( Scheeres, 2007a ). The action of YORP when the body

s in a complex rotation state is more difficult to assess ( Cicalò and

cheeres, 2010; Breiter et al., 2011 ), but we will avoid this issue

y assuming the body relaxes back to a uniform rotation state in a

haracteristic time which will be estimated. It is important to note

hat the YORP theory developed by Rubincam was based, in part,

y earlier work by Paddack (1969) (the “P” in YORP), which was

roposed as an effect that would cause small meteoroids to spin

o disruption. In essence, the current study shows that Paddack’s

dea may be applied to smaller rubble pile asteroids. 

Following the notation and derivation of Scheeres (2007a ), the

ORP induced spin rate acceleration acting on a body is found to

e 

˙  = 

3�

4 πA 

2 
√ 

1 − E 2 

C 
ρR 

2 
(1)

here C ∼ 0 . 001 → 0 . 01 is a non-dimensional constant that is a

unction of the shape and obliquity of an asteroidal body ( Scheeres,

007a ), the parameter � ∼ 1 × 10 17 kg-m/s 2 is the radiation con-

tant, A is the orbit semi-major axis and E the eccentricity. Also of

elevance is the YORP timescale, which is defined by the current

pin rate ω divided by ˙ ω 

Y = 

4 πA 

2 
√ 

1 − E 2 

3�

ωρR 

2 

C (2)

his is the time it takes an asteroid to double its current spin rate,

r conversely to reduce its current spin rate to zero. We note that

ecent analysis has shown that the YORP effect can sometimes lead

o stable equilibria in spin rate ( Golubov et al., 2014 ), which could

ffect YORP timescales, and is an important topic for future re-

earch. 

elaxation timescales. One prediction of rubble pile fissions are

hat the component bodies of a fissioned rubble pile will immedi-

tely start to tumble, due to the conservation of the body spin vec-

or across a breakup and the immediate mis-alignment of this spin

ector from the principle moments of inertia of the body ( Sánchez

nd Scheeres, 2014 ). While extensive study of the YORP effect on

 tumbling body has not been made, it is believed that the YORP

ffect will be less significant for a tumbling body. Thus, the re-

axation time of a body is important to consider. Taking the clas-

ical analysis found in Burns and Safronov (1973) , the relaxation

imescale of a tumbling body back to uniform rotation about the

aximum moment of inertia equals the ratio of the spin rate over

he estimated rate of change in spin rate, 

R ∼ f 
μQ 

K 

2 
3 
ρR 

2 ω 

3 
(3)

here f is a correction factor discussed below, K 

2 
3 ∼ 0 . 01 → 0 . 1 and

s a function of the body’s shape and the rigidity μQ takes on val-

es from 1.3 × 10 7 → 2.7 × 10 9 . The lower value has been recently

onstrained by observation of a body in the BYORP-tide equilib-

ium ( Scheirich et al., 2015 ) while the upper number is based on

onstraining the tidal expansion rate of binaries ( Taylor and Mar-

ot, 2011 ). More recent analyses by Pravec et al. (2014) indicate

hat the timescale should be reduced by a factor of 7–9, leading
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s to use a correction factor f = 1 / 8 . Further, constraints on singly

ynchronous binary asteroids that are members of pairs also indi-

ate that relaxation times may be short in general ( Pravec et al.,

016 ). 

To compare this with the YORP effect, divide the relaxation

imescale by the YORP timescales to find 

R /τY = f 
3�

4 πA 

2 
√ 

1 − E 2 

μQC 
K 

2 
3 

1 

ρ2 R 

4 ω 

4 
(4) 

hich will be evaluated later. Recent work has shown that the dis-

ipation parameter μQ may have a size dependence ( Goldreich and

ari, 2009; Jacobson and Scheeres, 2011b ), although we do not as-

ess this potential effect. 

.2. Rubble pile strength 

Evidence for cohesion in rubble piles has been proposed

ecently based on theoretical predictions and observations. In

cheeres et al. (2010) and Sánchez and Scheeres (2014) ; 2016 ) the

hysics and implications of cohesive forces on rubble pile bodies

as explored. Predictions from the physics of the bodies, and from

omparisons with lunar regolith material (which is the only space

aterial to have been measured), indicate cohesion with a conser-

ative range of values within 1–10 0 0 Pa. Recent observations of

ntact and disintegrating asteroids also allows for cohesive strength

imits to be placed on asteroids, with values being greater than

5 Pa for Asteroid 1950 DA ( Rozitis et al., 2014; Hirabayashi and

cheeres, 2015 ) and range between 50 and 100 Pa for P/2013 R3

 Hirabayashi et al., 2014; Jewitt et al., 2017 ). Thus exploration of

he implications of cohesion is a well motivated endeavor. 

For a rubble pile with a given level of cohesion the nominal fail-

re rate of the body is a combination of overcoming gravitational

ttraction and cohesion. Holsapple (20 01; 20 04) has studied the

onditions under which failure of a rubble pile will occur. Sánchez

nd Scheeres (2014) have applied this theory to a general, elongate

ody to develop an approximate expression for failure spin rate, 

 

2 
F = ω 

2 
c + 

2 σ

ρα2 

3 − sin φ

3 + sin φ
(5) 

 c = 

√ 

4 πGρ

3 

(6) 

here ω F is called the failure spin rate and represents when the

ody will undergo plastic deformation, ω c is the spin rate at which

he asteroid begins to experience tensile forces at its surface, and

s the rate where deformation definitely starts for a cohesionless

ody, σ is the tensile, uniaxial strength that holds components of

he body together and is measured in Pascals, ρ is the density of

he body, α is the longer radius of the body and φ is the angle of

riction. The angle of friction for a granular asteroid is thought to

ie between 30 ° and 45 °, giving the ratio (3 − sin φ) / (3 + sin φ) a

alue ranging from 0.71 → 0.62. Taking an extreme value of 90 °
ust gives a value of 0.5, which we will adopt for conservatism in

he following. 

From this result we can clearly see that for a given strength, a

maller body must spin more rapidly before it will fail. Conversely,

e note that for a larger body, this term becomes small and the

ohesionless spin limit will be larger in magnitude and cannot be

gnored. Due to the presence of strength in our model we will of-

en only be considering bodies spinning considerably above the co-

esionless spin limit, which will be relatively small compared to

he cohesive component. Thus we use the approximation 

 F ∼
√ 

σ

ρR 

2 

[
1 + 

1 

2 

4 πGρ

3 

ρR 

2 

σ
+ · · ·

]
(7) 

lso replacing the body’s long axis with the mean radius R . 
.3. Fission and conditions for escape 

Fission and its role in the formation of asteroid pairs has been

ocumented with clear evidence in Pravec et al. (2010) and its

oncordance with the underlying theory of fission by Scheeres

2007b ). More generally, this process can yield cyclic systems, bi-

ary systems that are stable over long time periods, or can also

ead to the persistent – if not slow – loss of mass from a rub-

le pile system ( Jacobson and Scheeres, 2011a ). A main way this

ccurs is through the formation of asteroid pairs, which requires

he fissioned component of a body to satisfy a size constraint as a

unction of the initial body’s morphology ( Scheeres, 2002; 2017 ). 

In the simplest case for a body split into two components, the

ondition for these two components to be able to escape from each

ther is that the total energy of the system (including rotational

nergy of the individual bodies) be greater than zero, which was

ound to be consistent with the majority of detected asteroid pairs

 Pravec et al., 2010 ). If the body splits at low or no cohesion (i.e.,

f the body is large enough so that this is not an important factor)

he orbital energy will never be positive in general and escape can

nly result after a period of intense (but relatively brief) orbital

volution of the system where excess energy is transferred from

he larger body’s rotation state to the mutual orbit, eventually re-

ulting in escape and the primary body spinning at a slower rate

 Jacobson and Scheeres, 2011a ). 

In fact, when bodies are subject to the fission conditions de-

cribed above, there are many mechanisms that can occur, leading

o the formation of (possibly long-lived) binary systems, or cap-

ure into a recurring cycle that conserves the system mass, or at

ost only allows small fractions of the body to escape after any

iven fission event. However, as a body that undergoes fission be-

omes inexorably smaller, the cohesion that exists within a rubble

ile body causes the spin rate for fission to increase, and hence

he total orbital energy of the fissioned system will increase. One

utcome is that for smaller bodies, the mass fraction of the system

hat will have a positive total energy will increase, and thus this

ould allow for bodies with a larger mass fraction to form asteroid

airs. For even smaller bodies, however, there will come a point

here the body spins fast enough at failure so that the orbital en-

rgy of the fissioned system is positive, meaning that the system

omponents will immediately escape and will not have a period of

rbital interaction. We are ultimately interested in this transition

oint, as once a body is small enough for this to hold its evolution

ill no longer be subject to the complex evolution described above

 Jacobson and Scheeres, 2011a ), but instead the fissioned compo-

ents will abruptly escape from each other. This point also de-

nes where we expect binary asteroids to no longer form, since

he characteristic interplay between the components implicated in

he formation of binaries can no longer occur ( Walsh and Jacobson,

015 ). 

To derive the spin limit for a positive orbital energy we use a

imple model consisting of two spheres resting on each other, with

adii R 1 and R 2 . Assuming a common density, the total mass of the

ystem will be 4 π
3 ρ

(
R 3 

1 
+ R 3 

2 

)
, the distance between the mass cen-

ers will be R 1 + R 2 , and once failure occurs the relative velocity

etween the components will be ω(R 1 + R 2 ) . Putting this into the

rbital energy equation and making it greater than zero yields 

1 

2 

ω 

2 ( R 1 + R 2 ) 
2 − 4 πGρ

3 

(
R 

3 
1 + R 

3 
2 

)
R 1 + R 2 

> 0 (8) 

here G is the gravitational constant. Solving for a condition on

he spin rate we find 

 

2 > 

8 πGρ

3 

(
R 

3 
1 + R 

3 
2 

)
( R 1 + R 2 ) 

3 
(9) 
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Table 1 

Increase factor per generation as a function of 

the number of components. 

N 2 3 4 5 6 

N 2/3 1.59 2.08 2.52 2.92 3.30 
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For this system, the mean radius of the parent body is R 3 = R 3 
1 

+
R 3 

2 
, and thus we can introduce the scaled radii r 1 = R 1 /R and r 2 =

R 2 /R, with the constraint r 3 
1 

+ r 3 
2 

= 1 . The right hand side then has

the functional form 

1 

( r 1 + r 2 ) 3 
. It can be easily shown that this factor

takes on a minimum value of 1/4 and a maximum of 1. 

To be consistent with our failure theory, which does not ac-

count for the lower spin rates needed for a bimodal shape model,

and for conservatism, we take the upper limit for escape, thus

defining the criterion for when a body will start to disaggregate

as 

ω E = 

√ 

8 πGρ

3 

(10)

or 
√ 

2 ω c . The lower limit for positive energy occurs when the bod-

ies are equal in size, and yields a spin rate for abrupt escape of

ω c / 
√ 

2 , but would also require us to change the failure criterion. 

2.4. Mass conservation 

To proceed with our analysis requires that we develop a rule

for how a rubble pile body will split into its components. This is

a question of interest in general and has been studied using a va-

riety of techniques ( Holsapple, 2010; Sánchez and Scheeres, 2012 ).

Our main concern is that the process conserve mass and provide

a simple and recursive result that can be scaled across arbitrary

sizes. This is a clear simplification, and indeed it may be expected

that the manner in which a rubble pile component will split may

change as a function of size. Consideration of such effects is left for

future studies, however. A key component of our model is that the

body splits into components of finite size relative to each other.

This is to be expected based on the mechanics of fission ( Scheeres,

2009 ) and conforms with recent investigations of the fission of co-

hesive rubble pile bodies ( Sánchez and Scheeres, 2016 ). 

With the main goal of mass conservation across such an abrupt

fission event, we develop a rule for relating the size of the new

asteroids with its parent. If the body breaks into N distinct compo-

nents, then on average NR 3 
i +1 

= R 3 
i 
, where R i is the mean radius of

the body that splits. This also provides a means to link the size of

a body through a number of different fissions. Applying this rule,

we can define the size reduction at each step, and if we assume

that there are i fission events starting from an initial size R 0 we

have 

R i = 

1 

N 

1 / 3 
R i −1 (11)

R i = 

1 

N 

i 
3 

R 0 (12)

This simple rule, with its free parameter N , will be used through-

out the analysis. 

3. Combination of effects 

Given the different physical elements, as described above, we

now combine them into specific relationships to predict the size at

which a body will begin an abrupt escape phase upon failure, and

estimates of the time between such fissions once it has entered

this phase. 

3.1. Size for abrupt escapes 

First compare the failure spin rate, ω F , with the condition for

escape, ω E . Note that for defining the start of this process we use

the full failure spin rate formula. In order for the process of abrupt
scape to start requires that ω F > ω E . Using the squares of these

uantities, this yields 

4 πGρ

3 

+ 

σ

ρR 

2 
> 

8 πGρ

3 

(13)

hich leads to the condition on R < R 0 , where 

 0 = 

1 

ρ

√ 

3 σ

4 πG (14)

he size R 0 then defines when we would expect a specific asteroid

o enter its disaggregation phase and will also serve as a lower

imit on binary asteroid sizes. 

.2. Time between fission events 

To estimate the time between fission events we must bring to-

ether several of the above effects. First, in Eq. (5) we note that

he cohesive term is in general larger than the cohesionless term

hen the body size R < R 0 . Thus, as the body continues to dis-

ggregate we can gauge how fast this term grows relative to the

ohesionless term as the bodies become smaller. If these terms are

qual at R 0 , then the cohesive term increases by a factor N 

2/3 for

ach new generation. Table 1 shows these values as a function of

 . Noting the significant increase of the cohesive term even over a

ew generations, we justify treating the cohesionless term as small

n the following, allowing for the simplification 

 F ∼
√ 

σ

ρR 

2 
+ 

2 πGρ
√ 

ρR 

3 

√ 

σ
+ . . . (15)

Then, in general, the time it takes a body to spin from a zero

pin rate up to the failure spin rate ω F equals the failure spin rate

ivided by the YORP acceleration from Eq. (1) , yielding in general 

F = 

4 πA 

2 
√ 

1 − E 2 

3�

R 

√ 

ρσ

C (16)

here we completely neglect the cohesionless term for the mo-

ent. 

Using these results we can compute the time it takes to go from

ne fission state to the next. We adopt two approaches, one is to

ompute the shortest time possible, essentially assuming that the

omponents continue to spin up in the same direction until they

it the next fission spin rate. The other is to assume the bodies

pin up in the opposite direction, pass through zero, and then spin

p to the next fission rate. These two computations will bracket

he timespan required until the subsequent fission. It is important

o account for possibly significant changes in the YORP coefficient

ollowing fission or reconfiguration of the asteroid. The sensitivity

f a body’s YORP coefficient has been well documented ( Scheeres

t al., 2007 ) and studied in some detail ( Statler, 2009 ). Some theo-

ies show a continuous coupling between changes in spin rate and

he YORP coefficient ( Cotto-Figueroa et al., 2015 ), however these

odels do not account for plastic deformation of the body and do

ot include cohesive forces, which are expected to be important for

maller rubble pile bodies, and thus are not accounted for here. 

onsistent spin-up direction. To calculate the time between fissions

n this case, directly difference the fission spin rate ω F,i +1 with the
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Table 2 

Increase factor for spinning in the opposite direction as a 

function of the number of components a body breaks into. 

N 2 3 4 5 10 100 

N 1 / 3 +1 
N 1 / 3 −1 

8.69 5.52 4.40 3.82 2.73 1.55 

O  

a  

s  

T  

r  

v  

s  

w  

a  

(  
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c

2
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g  

c

T
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u  

c  

i  

“  

e  

i  

t  

t
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t  

h  

n  

t  

s

 

s  

R  

l

τ

rior rate ω F, i to compute 

ω F,i +1 = 

√ 

σ

ρ

[
1 

R i +1 

− 1 

R i 

]
(17) 

= 

√ 

σ

ρ

[ 
1 − 1 

N 

1 / 3 

] 
1 

R i +1 

(18) 

he time to cover this change in spin rate is found by dividing by

˙  in Eq. (1) evaluated for a body of radius R i +1 , as above, to find 

t i +1 = 

4 πA 

2 
√ 

1 − E 2 

3�

√ 

ρσ

C R i +1 

[ 
1 − 1 

N 

1 / 3 

] 
(19) 

ubstituting in for our general model of R i +1 as a function of the

nitial radius R 0 then yields 

t i +1 = 

4 πA 

2 
√ 

1 − E 2 

3�

√ 

ρσ

C R 0 

[ 
1 − 1 

N 

1 / 3 

] (
1 

N 

1 / 3 

)i +1 

(20) 

To compute the total time T i +1 it takes to go from the ini-

ial fission at size R 0 to the current i + 1 generation, we compute

he summation of the times, T i +1 = 

∑ i +1 
j=1 
t j which can be conve-

iently expressed as 

 i +1 = 

4 πA 

2 
√ 

1 − E 2 

3�

√ 

ρσ

C R 0 

[ 
1 − 1 

N 

1 / 3 

] i +1 ∑ 

j=1 

(
1 

N 

1 / 3 

) j 

(21) 

owever, we recognize the summation as a simple power series,

ith the partial sum 

∑ i +1 
j=1 ε

j = (1 − ε i +2 ) / (1 − ε) , which in our

ase yields 

 i +1 = 

4 πA 

2 
√ 

1 − E 2 

3�

√ 

ρσ

C R 0 

[
1 −

(
1 

N 

1 / 3 

)i +2 
]

(22) 

f we take the limit as i → ∞ we find the lifetime to be finite and

qual to 

 ∞ 

= 

4 πA 

2 
√ 

1 − E 2 

3�

√ 

ρσ

C R 0 (23) 

inally, replace R 0 with the expression from Eq. (14) to find 

 ∞ 

= 

√ 

4 π

3 

A 

2 
√ 

1 − E 2 

�

σ

C 
√ 

Gρ
(24) 

There are a few interesting elements to point out. First, for the

onsistent spin up direction we find that the lifetime is indepen-

ent of the number of components the body fissions into. Second,

e see that the time is proportional to the strength of the body,

hus a stronger rubble pile will take proportionately longer to spin

o full disaggregation (this in fact is driven by the original body

 0 being larger as well). Next, the time is inversely proportional

o the square root of ρ . This is a bit counterintuitive, and implies

hat rubble piles with lower densities will take longer to disag-

regate, and those with larger densities take a shorter time. This

rises due to the competition between the YORP timescale, where

 more dense body will take longer to spin up, versus the failure

pin rate, which decreases with increasing density due to the iner-

ial forces which pull the body apart, and to the initial body radius

 0 , which is smaller for a larger density. Third is that the lifetime

quals the YORP timescale for a body of radius R 0 divided by 
√ 

2 .

his can be seen by substituting the appropriate values into Eq. (2) .

Thus, for a consistent spin up we find that the lifetime once

brupt escape begins is T ∞ 

, given in Eq. (24) . If we wish to add

o this the overall YORP timescale of the body, accounting for the

ime it would take to initially spin a body of size R 0 up to this rate,

he total disaggregation lifetime then equals (1 + 

√ 

2 ) T ∞ 

. 
pposing spin direction. Next, let us apply the same analysis, but

t each step allow for the body to first be spun down to a zero

pin rate and then spun up to disruption in the opposite direction.

his simple model sidesteps known issues with how an asteroid’s

otational dynamics evolves when it gets to a slow spin rate. Pre-

ious investigations have detected a statistically larger number of

lowly rotating asteroids ( Pravec et al., 2008; Rossi et al., 2009 ),

hich could be a signature of more complex rotational evolution

nd a slow-down in the rate at which a body’s spin rate varies

 Vokrouhlick ̀y et al., 2007; Cicalò and Scheeres, 2010; Breiter et al.,

011 ). We do not pursue this topic here, however, and instead use

 simple model which could be adjusted by a scale factor, once a

onsistent theory for the evolution of a slowly-rotating and tum-

ling asteroid is developed. 

The analysis is much the same as before, however at each step

 + 1 we must add twice the YORP timescale for a body of radius

 i +1 at a spin rate of ω F, i . Thus, to every term 
t i +1 in Eq. (20) we

ust add 

 T ∞ 

(
1 

N 

1 / 3 

)i +2 

(25) 

here the definition of T ∞ 

in Eq. (24) has been used to simplify

he expressions. Summing this expression from j = 1 , i yields a

onvergent power series again, and equals 

 T ∞ 

1 − 1 
N (i +1) / 3 

N 

1 / 3 − 1 

(26) 

etting the limit i → ∞ and adding to the original lifetime T ∞ 

we

et the disaggregation lifetime once the body enters the abrupt es-

ape phase as 

 

′ 
∞ 

= T ∞ 

N 

1 / 3 + 1 

N 

1 / 3 − 1 

(27) 

hich is just a correction to the consistent spin up direction life-

ime. If we wish to account for the initial spin up of R 0 to its fail-

re rate then we just add 

√ 

2 T ∞ 

again. A few additional comments

an be made about this term. First, we see that as the body breaks

nto more components, or as N � 2, that this time approaches the

consistent direction” time. Second, we can evaluate the lifetime

xtension as a function of how many components the body fissions

nto, with some specific computations given in Table 2 . We note

hat the lifetime extension is always less than an order of magni-

ude, but that it decreases somewhat slowly as N increases. 

.3. Relaxation time effects 

We can also account for relaxation time, where we may assume

hat the YORP effect will not become strong again until the body

as settled into near principal axis rotation. Although this phe-

omenon is not fully understood, both for the relaxation time and

he response of an asteroid to YORP when in a complex rotation

tate, we add this discuss for conservatism. 

Let us compute the relaxation time when the body splits from

ize R i to R i +1 . The spin rate will then be at ω F, i and the size at

 i +1 . Inserting these values in Eq. (3) gives the relaxation time fol-

owing this split as 

R,i +1 = f 
μQ 

K 

2 

√ 

3 

4 πG 
N 

σ
√ 

ρ

1 

N 

(i +1) / 3 
(28) 
3 
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1 http://www.asu.cas.cz/ ∼asteroid/binastdata.htm , update 2015 09 18. 
2 http://earn.dlr.de/nea/table1 _ new.html , update Mon Apr 03 17:42:09 2017. 
Summing over all the splits again, and letting the summation

go to ∞ , we find the total relaxation time is 

T R = f 
μQ 

K 

2 
3 

√ 

3 

4 πG 
1 

σ
√ 

ρ

N 

1 − 1 /N 

1 / 3 
(29)

Here we see different dependencies relative to the time T ∞ 

. First,

as the body becomes stronger or more dense we see that the time

shortens. This seems counterintuitive, but is driven by the fact that

a stronger body must spin faster in order to fission, which also de-

creases its relaxation time. Second, we note that when the bodies

disaggregate into a large number of components, N , that the life-

time increases significantly. This is due to a smaller body having a

longer relaxation time in general. 

For context, we divide by T ∞ 

to gauge the significance of this

term relative to the YORP effect. Doing so yields 

T R /T ∞ 

= f 
3 

4 π

μQ 

K 

2 
3 

�

A 

2 
√ 

1 − E 2 

C 
σ 2 

N 

1 − 1 /N 

1 / 3 
(30)

The main points of interest here is that the relative time is in-

dependent of the density and it varies inversely with strength

squared. 

3.4. Correction for cohesionless spin 

Finally, we can evaluate the error introduced in our analysis by

neglecting the contribution of ω c to the overall spin rate of the

body. By performing a higher order expansion one can show that

the true failure spin rate must be accelerated above the regular for-

mula when accounting for the cohesionless term. Specifically, the

first order correction for a body of radius R i becomes 


ω F,i = 

2 πG 
3 

√ 

ρ3 

σ
R i (31)

Thus we see that this contribution reduces linearly with the radius

of the i th body, and becomes less and less important. The addi-

tional time that must be added per fission is found by dividing this

rate by the YORP acceleration, evaluated at a body size R i . Carrying

out this division we find 


t F,i = 

1 

2 

(
4 π

3 

)2 A 

2 
√ 

1 − E 2 

�

ρ5 / 2 

√ 

σC 
R 

3 
i (32)

Summing this over all contributions gives us the additional time

that should be accounted for. This can be conveniently expressed

in terms of the disaggregation time T ∞ 

as 


T F = 

1 

2 

T ∞ 

1 

1 − 1 /N 

(33)

We see that the time is at most doubled when N = 2 , and asymp-

totically approaches a 50% increased time for N � 1. 

3.5. Limits on disaggregation lifetime 

Now the different com putations and corrections to the disag-

gregation times derived in this Section are combined into limits on

the disaggregation time, denoted as T D . The lower limit is given by

the direct spin up case and the upper limit by the reversing spin

up case. To both we add the correction 
T F derived above. We do

not add the relaxation time addition, but will evaluate the range

of values for this term in the following. We also do not add in the

time estimate for the initial body of radius R 0 to be spun up to its

failure rate, which initiates the disaggregation process. 

Then the theory predicts that the disaggregation time for a

body of radius R 0 is bounded between 

3 

2 

T ∞ 

(
1 − 2 

3 N 

)
(
1 − 1 

N 

) ≤ T D ≤ 3 

2 

T ∞ 

1 + 

(
1 /N 

1 / 3 − 2 /N − 2 /N 

4 / 3 
)
/ 3 

[ 1 − 1 /N 

1 / 3 ] [ 1 − 1 /N ] 
(34)
These results end up having a somewhat complex relationship

ith the number of components the body breaks up into, N . Thus

e give the limits for two special cases, N = 2 and N � 2. If the

ody consistently splits into two components we find 

 T ∞ 

≤ T D ≤ 9 . 69 . . . T ∞ 

(35)

f instead the body splits into N � 2 components we have the ap-

roximate results 

3 

2 

T ∞ 

[ 
1 + 

1 

3 N 

+ . . . 

] 
≤ T D ≤ 3 

2 

T ∞ 

[ 
1 + 

4 

3 N 

1 / 3 
+ . . . 

] 
(36)

or this result, note that the 1/ N term at the lower limit is negli-

ible with respect to the 1/ N 

1/3 term on the upper limit and can

e ignored at the given order of accuracy. The interesting item to

ote again is that as N grows large these two limits converge to

/2 T ∞ 

, which is shorter than the limiting time for disruption into

wo equal components. 

. Bounds on the strength and disaggregation lifetime of 

ubble pile asteroids 

The theory is now applied to known binary asteroids and the

inary asteroid population in general in order to develop upper

nd lower bounds on the strength of these rubble piles, and their

orresponding disaggregation lifetimes. Considering binary aster-

ids provides us with an estimate of the density of the body. This,

n conjunction with the size of the primary is then used to de-

elop an upper limit on the body’s strength. Using this value, in

onjunction with other parameters discussed shortly, we can also

nd upper bounds on the disaggregation lifetime of the body. We

onsider the smallest binary asteroids for which we have a spectral

ype classification in order to develop the most restrictive bounds

n asteroids in these populations. Independent of asteroid type, we

lso develop a lower bound by choosing a minimum binary size

hat is less than all binaries discovered to date, and consider the

orresponding strength limits for different density assumptions. In

his way we bracket the strength of rubble pile asteroids and their

isaggregation lifetime. 

For the binary asteroid populations we use the current best es-

imates for the asteroid binary population physical data from the

ndrejov Observatory database 1 ( Pravec et al., 2016 ) and for the

steroid spectral types from the Near-Earth Asteroids Data Base 2 

 Binzel et al., 2002 ). Thus, our analysis can be easily updated in

he future as more observations are accumulated and binary as-

eroids discovered. We also note that the binary size data is given

n terms of diameter, thus our specific implementations switch to

iameter instead of radius, or R = D/ 2 . 

For the disaggregation time calculations there are important

hysical parameters beyond the bulk density which must be as-

umed. These are the YORP coefficient C and the dissipation pa-

ameters μQ and K 

2 
3 . Also of relevance is the number of compo-

ents a body will split into, N , although this is just a model pa-

ameter. 

For the YORP coefficient we rely on the observations made in

cheeres (2007a ), which performed a limited survey of the YORP

oefficients of a number of different asteroid shapes. From that

tudy it was found that most bodies have a non-dimensional YORP

oefficient in the range 0 . 001 ≤ C ≤ 0 . 01 , which provides for an or-

er of magnitude variation in this parameter. A useful item for fu-

ure study would be a better characterization of the YORP coeffi-

ient across asteroid shapes. 

We must also make assumptions for the dissipation param-

ter values, which are quite uncertain in general. Here for the

http://www.asu.cas.cz/~asteroid/binastdata.htm
http://earn.dlr.de/nea/table1_new.html
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hape parameter we adopt K 

2 
3 

∼ 0 . 1 which is the value from Harris

1994) for oblate bodies. For the parameter μQ we consider a

ange of values going from the inferred value of 2.7 × 10 9 Pa based

n population studies ( Taylor and Margot, 2011 ), to a lower value

f 1.3 × 10 7 Pa based on direct measurement of parameters from

he binary asteroid 1998 FG3 ( Scheirich et al., 2015 ), which is pre-

umed to be in a BYORP-Tide equilibrium ( Jacobson and Scheeres,

011b ). 

.1. Evaluation procedure 

For a given binary asteroid we use the estimated density of the

rimary body to supply the bulk density needed. The size of the

rimary, D , also provides an upper limit on the disaggregation size,

 0 , defined above. With these two determinations we then find an

pper bound on the strength of the asteroid to be 

≤ πG 
3 

( ρD ) 
2 (37) 

Given a strength value we can consider the range of values for

he predicted disaggregation time parameter T ∞ 

. Expressing the bi-

ary orbit in terms of AU, the value of the parameter is 

 ∞ 

= 5 . 6 × 10 

10 A 

2 
√ 

1 − E 2 
σ

C √ 

ρ
s (38) 

= 1 . 8 × 10 

3 A 

2 
√ 

1 − E 2 
σ

C √ 

ρ
yr (39) 

Finally, we compare the additional time for relaxation with the

isaggregation time T ∞ 

, from Eq. (30) . Taking N = 2 for definite-

ess, we find 

 R /T ∞ 

= 1 . 3 × 10 

−5 1 

A 

2 
√ 

1 − E 2 

μQC 
σ 2 

(40) 

e can consider the different ranges of these values separately for

ur different binary asteroid examples. 

For our lower bounds, we note that no binary asteroid has been

ound of size lower than 100 m. This despite a relatively rich set

f asteroid populations at sizes smaller than this limit ( Warner

t al., 2009 ). The other controlling parameter is the bulk density,

nd here we can consider typical densities associated with differ-

nt asteroid complexes. 

.2. Minimum-size binary asteroids for different types 

In Table 3 we list the binary asteroids considered. The relevant

nformation for each system is given, and the interested reader is

irected to the Ondrejov Observatory database for additional de-

ails. We do not take the full range of uncertainties from that

atabase, although this could be done. However, as these lifetimes

nd strengths are upper bounds for the different asteroid types,

e do not find it useful to add yet another layer of ambiguity to

he calculations. From the data the overall minimum binary aster-

id size is 120 m for asteroid 2003 SS84. This asteroid has no

ype designation, thus serving as an ambiguous lower bound on

he population. For added conservatism we can take a lower size

f 100 m. The change in strength by using the lower size is on

rder of 44%. 

For the T ∞ 

and T R / T ∞ 

computations we use the larger value of

he YORP coefficient, C, noting that it can decrease by an order of

agnitude. For the parameter μQ we take the larger value, noting

hat it can decrease by over 2 orders of magnitude. Thus, T ∞ 

can

ncrease by an order of magnitude and T R / T ∞ 

can decrease from

he values in the table by 3 orders of magnitude. 

First consider the upper and lower bounds on rubble pile

trength in Table 3 . For the C/B complex the minimum lowest up-

er bound is 70 Pa for the C type asteroid 2007 LE, while the
ell determined binary 1996 FG3 gives a much larger bound, over

00 Pa. Across the S/Q complex the minimum bound is 25 Pa for

007 DT103. The V complex has a lower upper bound of only 6 Pa

or 2004 FG11. On the other hand, taking the minimum size binary

cross all types as 100 m, we get a lower strength of 1 Pa for a

ensity of 1300 kg/m 

3 and about 3 Pa for 20 0 0 kg/m 

3 . The upper

ounds are consistent with other estimates of cohesive strength

hat have been developed, using similar theory. Most recently,

ewitt et al. (2017) developed a strength estimate of 50–100 Pa

or the active asteroid P/2013 R3 (still of uncertain type) assuming

 density of 10 0 0 kg/m 

3 (we note that the strength would increase

ith a larger density), while Hirabayashi and Scheeres (2015) de-

eloped a lower limit on the strength of 1950 DA of 70 Pa, which

s listed as a EM type in the EARN database. These comparisons

how cohesive strengths that lie between a few and a few hun-

red Pa. According to the theory of rubble pile cohesion ( Sánchez

nd Scheeres, 2014 ), this bulk strength is strongly dependent on

inimum grain size, porosity and mineralogy. Thus, there is likely

ariation across asteroid types and even within complexes due to

ifferent morphological structures. 

The minimum values of T ∞ 

across each complex are on the or-

er of a few hundred thousand years or less. This leads to dis-

ggregation times that are a factor of 1.5 or up to a factor of 10

onger. We note that T ∞ 

scales with strength, thus the weakest

odies have very short disaggregation times. Competing with this,

owever, is the relaxation time which becomes larger for weaker

odies. Still, as weaker bodies have shorter lifetimes, the additional

ime for relaxation is still relatively short. Consider asteroid 2004

G11, the lowest upper bound on strength with a T ∞ 

of 26,0 0 0

ears and the largest ration of relaxation time to T ∞ 

of 8.5. Adding

he relaxation time to T ∞ 

gives a total time of under 250,0 0 0 years.

. Discussions and implications 

Now a number of implications of this theory are explored,

hich provide a future means to test it and to motivate new ob-

ervation interpretations. 

eteoroid implications. We note that for any level of cohesion, as-

eroids are expected to enter a disaggregation phase once their di-

meter is reduced below D 0 . While the time for a given rubble

ile to shed components or lose mass to get below this size can

e quite long, once this occurs we note that disaggregation times

re generally short, lasting less than a few Myr in general. As dis-

ggregation times decrease as asteroids move into the inner solar

ystem, there should be more and more rubble pile asteroids be-

ng disaggregated into their fundamental components. Thus, this

ould predict that meteoroids that encounter the Earth may pref-

rentially be single, monolithic components of a parent rubble pile

hat no longer exists. Further, this would indicate that the mete-

roid population would be representative of the size distribution

f boulders and grains within rubble pile bodies. 

Stronger rubble piles could have lifetimes long enough to en-

ure that they do not become completely disaggregated before im-

acting the sun or one of the inner planets. However, “stronger”

ere must be taken with a grain of salt, as even a body with a

trength of a few hundred Pa is still extremely weak and would

ecome disaggregated at high altitude if entering the Earth’s atmo-

phere. This general trend could provide a discriminant between

eteorites that fall as solid objects and which could have come

rom a weaker rubble pile that had previously disaggregated, and

hose that come from a stronger rubble pile that has not yet disag-

regated and may fail at high altitudes. If specific trends regarding

eteorite type and where they are seen to fail is available, this

ould provide insight on the cohesive strength of rubble piles of

hese respective types. 
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Table 3 

Minimum size binary asteroids for upper and lower bounds on strength and disaggregation time. We list all type desig- 

nations that are given in the Near-Earth Asteroids Database, yet also loosely group them into different complexes. 

Asteroid Type Complex ρ (kg/m 

3 ) D (m) σ (Pa) T ∞ (yr) T R / T ∞ 

Upper bound 

481532 2007 LE C C/B 20 0 0 500 6.987E + 01 2.922E + 05 6.914E −02 

175706 1996 FG3 Xc;B;Ch C/B 1300 1640 3.176E + 02 1.647E + 06 3.346E −03 

3671 Dionysus Cb;X C/B 20 0 0 1430 5.715E + 02 2.390E + 06 1.033E −03 

2007 DT103 Sq/Q S/Q 20 0 0 300 2.515E + 01 1.052E + 05 5.335E −01 

85938 1999 DJ4 Sq S/Q 20 0 0 350 3.424E + 01 1.432E + 05 2.879E −01 

399774 2005 NB7 S/Sr S/Q 20 0 0 500 6.987E + 01 2.922E + 05 6.914E −02 

185851 20 0 0 DP107 Sq S/Q 1300 860 8.733E + 01 4.529E + 05 4.425E −02 

136617 1994 CC Sq;Sa S/Q 20 0 0 620 1.074E + 02 4.492E + 05 2.924E −02 

31345 1998 PG Sq;Q S/Q 20 0 0 820 1.879E + 02 7.858E + 05 9.557E −03 

162483 20 0 0 PJ5 Q S/Q 20 0 0 820 1.879E + 02 7.858E + 05 9.557E −03 

385186 1994 AW1 Sa S/Q 20 0 0 900 2.264E + 02 9.466E + 05 6.586E −03 

153958 2002 AM31 Q S/Q 4300 450 2.616E + 02 7.460E + 05 4.932E −03 

1862 Apollo Q S/Q 20 0 0 1550 6.714E + 02 2.808E + 06 7.486E −04 

363599 2004 FG11 V V 20 0 0 150 6.288E + 00 2.629E + 04 8.535E + 00 

5381 Sekhmet V V 1800 10 0 0 2.264E + 02 9.978E + 05 6.586E −03 

164121 2003 YT1 V,R,Sr V 20 0 0 10 0 0 2.795E + 02 1.169E + 06 4.321E −03 

65803 Didymos Xk X 20 0 0 750 1.572E + 02 6.573E + 05 1.366E −02 

Lower bound 

C/B 1300 100 1.181E + 00 6.124E + 03 2.421E + 02 

S/Q 20 0 0 100 2.795E + 00 1.169E + 04 4.321E + 01 
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General size distribution evolution. Once the disaggregation phase

starts, a given body of size D will ultimately be transformed into a

size distribution defined by its rubble pile structure. This is analo-

gous to the transformation of two impacting asteroids into a size

distribution of debris resulting from their destruction. Incorpora-

tion of this approach into standard population models can be made

and should be explored for the smallest components of the aster-

oid population. 

This effect could also contribute to the zodiacal dust, as it pro-

vides a method for bodies to disaggregate into their fundamental

constituents. We should note that at the end game, when the final

blocks are rapidly rotating yet may still have some regolith cover-

ing, to release ∼ 100 micron grains from the surface of a boulder

requires spin rates that are extremely high. At this small scale limit

we can question whether the simple rules developed here will still

apply. 

Small asteroid limit. We also note that as a body becomes small

it has been shown that the YORP effect goes to a 1/ R dependence

( Breiter et al., 2010 ). This means that the time between fissions

no longer decreases once a body is sufficiently small, but should

approach a constant value. Thus in reality the end game at small

sizes should flatten out. This occurs at such a small size, however,

that we essentially ignore this effect for our model. If it does oc-

cur, then the limiting time to disaggregation becomes a constant

(replacing 1/ R 2 by 1/ R in Eq. (1) and carrying out the summation).

Thus, depending on how many components the rubble pile breaks

up into once disruption rates are reached at a given size, the disag-

gregation time will be proportional to the number of components

in the rubble pile. 

Future work. We finally note that the range of possible values for

disaggregation time and rubble pile strength are relatively large

and should be reduced for the theory to have a sharper appli-

cation. Major uncertainties currently exist in the modeling of the

YORP effect, the fission characteristics of cohesive asteroids and in

the relaxation time for complex rotators. On the observational side,

it would be of interest to probe the binary cutoff size across aster-

oid populations of different mineralogies. 
. Conclusions 

It is shown that small levels of cohesion within a rubble pile

steroid will, when combined with the YORP effect, cause rubble

ile asteroids to disaggregate into their fundamental constituents

ithin relatively short time spans, on the order of a million years

r potentially much less. The size at which this disaggregation

hase starts and the time for disaggregation are functions of the

ody density, strength, and other geophysical parameters. The the-

ry is applied to well characterized binary asteroids to find upper

nd lower limits of strength as a function of density and spectral

ype. Lower bounds are at a few Pascals while upper bounds are

enerally less than a few hundred Pascals, in some cases less than

 few tens of Pascals. 
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