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Abstract–We explore the hypothesis that, due to small van der Waals forces between
constituent grains, small rubble pile asteroids have a small but nonzero cohesive strength.
The nature of this model predicts that the cohesive strength should be constant independent
of asteroid size, which creates a scale dependence with relative strength increasing as size
decreases. This model counters classical theory that rubble pile asteroids should behave as
scale-independent cohesionless collections of rocks. We explore a simple model for asteroid
strength that is based on these weak forces, validate it through granular mechanics
simulations and comparisons with properties of lunar regolith, and then explore its
implications and ability to explain and predict observed properties of small asteroids in the
NEA and Main Belt populations, and in particular of asteroid 2008 TC3. One conclusion is
that the population of rapidly rotating asteroids could consist of both distributions of
smaller grains (i.e., rubble piles) and of monolithic boulders.

INTRODUCTION

The strength and morphology of small asteroids in
the solar system remains an open and fundamentally
interesting scientific issue. The strength of a rubble pile
body will control how fast it can rotate before shedding
mass or disrupting, influence the process by which
binary asteroids are created, and could have significance
for the mitigation of hazardous near-Earth asteroids
(NEA) should this be necessary in the future. The
morphology of these bodies, including the size
distribution of boulders and grains internal to the
system, the macro-porosity of these bodies, and the
shapes and spin states of these bodies, are important for
understanding and interpreting spacecraft imaging of
asteroids, for predicting the end-state evolution of these
bodies and for gaining insight into their formation
circumstances. Despite these compelling issues and
questions, real insight on the strength of rubble pile
bodies and their morphology remains elusive. In this
study, we provide a brief review of past and current
models of these bodies and offer theory, data
interpretation, and simulations that could shed light on
these properties.

A key effect that operates on small asteroids, and
which provides a specific motivation and defining
example of evolution for this study, is the YORP effect
(Rubincam 2000). Small asteroids subject to the YORP
effect experience a net torque due to solar photons
interacting with the asymmetric surfaces of these bodies
(Pravec and Harris 2000; Rossi et al. 2009). If an
asteroid is a rubble pile body, consisting of a size
distribution of boulders, grains, and fines, it is an
inherently interesting question to understand how such
a self-gravitating assemblage of bodies will react should
it be spun to rates where significant internal stresses are
present within the body (S�anchez and Scheeres 2012). If
the rubble pile has strength, i.e., if there exists cohesive
strength between its components as has been posited in
earlier research (Scheeres et al. 2010), then it may even
be possible for the body to spin beyond the point where
centripetal accelerations exceed gravitational attraction.
The interplay between morphology and strength will
directly influence how a rubble pile body will respond
and react to such extreme events.

Information on the strength and morphology of
small asteroids arises from three main sources. First and
foremost are space missions to these bodies. In the class
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of small asteroids, the Hayabusa mission to asteroid
Itokawa, with a mean radius of 162 m, has provided
unprecedented measurements of the total mass, shape,
surface morphology, and material properties of a small
asteroid (Fujiwara et al. 2006). The NEAR mission to
asteroid Eros also provides crucial insight, although that
asteroid is large enough (mean radius of 8.4 km) to fall
into a class of bodies we do not specifically focus on in
this study, as similarly we do not consider the dwarf
planets Vesta or Ceres. Second are ground-based radar
measurements, which can provide a detailed shape and
spin state of asteroids that come close enough to Earth
to be imaged (Ostro et al. 2002). Radar observations
provide important insight into the shape morphology of
these bodies and can also unambiguously detect the
existence of binary members. Third are ground-based
photometric observations of asteroids, specifically the
measurement of spin rates, spin states, and binarity from
light curves and the inferred sizes from overall absolute
magnitude (Warner et al. 2009). These photometric
observations provide a large database of asteroid size
and spin rates, which can be used to place constraints on
asteroid theories and to test specific hypotheses. Along
with these more traditional observations, we should also
include the recent observations of rotationally disrupted
Main Belt asteroids (Jewitt et al. 2010, 2013), as these
observations can provide insight into the constituent
grain sizes found in rubble pile asteroids. In this study,
we also utilize information from sample return analysis
of asteroid and lunar regolith as sources of information
and constraints for the development of a theory for the
strength of rubble pile asteroids.

There exist current theories on the strength and
morphology of small rubble pile asteroids that are
largely motivated by a direct and simple interpretation
of the asteroid size/spin rate curves. In their initial
study on this subject, Pravec and Harris (2000) posited
that all bodies spinning at rates beyond the surface
disruption spin period of approximately 2.3 h were
coherent bodies, or monoliths. Figure 1 shows these
data with binaries and tumblers called out in different
colors (A.W. Harris, personal communication). The
surface disruption spin period is the spin period at
which gravitational attraction is overcome by centripetal
acceleration at the surface of a rapidly spinning
spherical asteroid. According to this theory, rubble piles
cannot be spun beyond this limit, as they will then
undergo some sort of disaggregation into their
component boulders, gravels, and fines. This theory
presupposes that rubble piles have no cohesive strength
between their components and that the disaggregation
process is eventually catastrophic and separates all of
the constituent components of the asteroid. The
remaining components are then small relative to the

larger rubble pile bodies and can be spun by the YORP
effect to spin rates that are much faster, as their
material strength can sustain large tensile loads.

In a series of studies, Holsapple (2001, 2004, 2007,
2010) pushes at several aspects of this theory to probe
the relationship between the deformation of a rubble
pile body and its spin rate, and the level of cohesive
strength necessary to keep fast-spinning rubble pile
bodies bound together. His analysis shows that the level
of strength necessary to keep all of the known fast-
spinning asteroids bound together is modest at best, and
corresponds to relatively weak rock (Holsapple 2007).
His analysis of stress and failure within rapidly spinning
rubble pile bodies also shows that the relationship
between the observed spin period barrier and the
deformation of a rubble pile is more complex.
Specifically, he shows that when additional angular
momentum is added to a rapidly spinning cohesionless
rubble pile, it may actually undergo a decrease in its
spin rate (increase in spin period) due to body
deformation. Granular mechanics simulations by
S�anchez and Scheeres (2012) also show this behavior for
cohesionless rubble pile bodies. Holsapple does not
specifically propose a theory for how cohesion could
arise within rubble pile bodies or provide specific
predictions of body morphology. However, his work
introduces the application of continuum mechanics
properties such as friction angle, cohesion, and failure
theories to the realm of rubble pile bodies. It should
also be mentioned that Sharma has been independently

Fig. 1. Size/spin rate distribution of all asteroids, circa 2010.
Binaries are called out in green, tumblers in red. All of the
spins and morphological types are taken from the asteroid
lightcurve database (Warner et al. 2009). The slanting lines
indicate relaxation timescales for tumbling asteroids, assuming
material properties as specified in Harris (1994). (see online
version for color figure.)
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investigating the geophysics of rubble pile bodies using
a similar continuum mechanics approach (Sharma et al.
2009; Sharma 2013).

Theories for the morphology of small rubble pile
asteroids have been proposed in the past, although such
models are difficult to prove without subsurface
knowledge of a rubble pile body. Britt et al. (2002)
provide a heuristic description of the possible
distribution of material within a rubble pile body to
explain the observed high porosities of these asteroids.
In their model they suppose that the interior of a rubble
pile consists mainly of larger boulders with the finer
gravels trapped, in some sense, at the surface of the
asteroid. Other descriptive models have been proposed
for the migration of grains within rubble pile bodies,
specifically in Asphaug et al. (2001) an application
of the “Brazil nut effect” is applied to a simple model
of an asteroid surface. Along these lines, an analysis of
Itokawa images is made by Miyamoto et al. (2007) to
show that there is flow of smaller gravels across the
surface of Itokawa, with the finest material settling into
the geopotential lows on the surface of that body. While
simulations of asteroid disruption and reaccretion have
been carried out, such as by Michel et al. (2001, 2003),
these computations generally do not resolve the
dynamics and distributions of the meter size and smaller
boulders and gravels that are created in such disruptive
events. In this study, we attempt to link a model for the
interior morphology of a rubble pile body to its
observed strength characteristics, motivated by a desire
to establish what the observable characteristics of a
body’s interior morphology may be.

The outline of this study is as follows. First, we
motivate our understanding of asteroids as rubble piles
through a discussion of the size distributions of the
asteroid Itokawa as inferred from the Hayabusa mission
and through recent observations of disrupting Main
Belt asteroids. Following this, we develop a simple
analytical model for the strength of a rubble pile
asteroid described by a size distribution, using standard
physics models of van der Waals cohesive attraction
between grains. This motivates a view of rubble pile
asteroids where interstitial grains of finer size may play
an important role in holding larger boulders and grains
together, enabling them to spin more rapidly. Following
this, we evaluate and validate this model of finer
regolith holding larger grains in a matrix through a
series of simulations that probe a more realistic model
of how this effect can work. We then develop a simple
model for an asteroid’s strength to provide a theoretical
link between cohesive strength and failure. This
provides a bridge between our strength computations
and predictions for how rapidly a rubble pile body
could rotate before it undergoes failure—either

deformation or fission. Finally, we end the study by
explicitly comparing the theoretical limits defined by the
theory with observational data on asteroids.

RUBBLE PILE COMPONENT SIZE

DISTRIBUTIONS

This section reviews results from observations of the
surface of Itokawa and analysis of its sample return.
We also discuss properties of lunar regolith as a
possible model for granular materials on an airless
body. Finally, we note recent observations of disrupted
asteroids in the Main Belt, and comment on how they
support aspects of our size distribution and asteroid
morphology model.

Measured Size Distributions on Itokawa

The Hayabusa mission to asteroid Itokawa
measured several key morphological properties of that
asteroid. Michikami et al. (2008) estimated the surface
size distribution of rocks and boulders from millimeter
to tens of meters in size and determined that it follows
a cumulative distribution on the order of d�2.8, where d
is the diameter of a grain. The largest boulder found on
the surface was Yoshinodai, approximately 40 m in size.
They speculated that the lower limit for this size
distribution was on the order of mm to cm, but this was
not based on direct measurement. More recently,
Mazrouei et al. (2014) studied Itokawa imagery and
determined a block size distribution up to d�3.5 for
blocks larger than 6 m. On the basis of this range of
measured distributions, we will use an analytically
tractable d�3 size distribution (see the Appendix for
more details on the d�3 size distribution).

The main purpose of the Hayabusa mission was to
collect samples of the asteroid surface, which it
successfully did (Krot 2011). The sampling mechanism
that was flown on Hayabusa was supposed to fire a
pellet into the surface to create a cratering event and
collect the resulting ejecta field in a sample horn, which
connected to a sample chamber (Yano et al. 2006).
Instead, the pellet did not fire during contact between
the sample horn and the asteroid surface, although the
spacecraft did collect a minute amount of material from
the surface of the asteroid. It is significant that the
sampling took place nondestructively, without
fragmenting the asteroid surface with a high-speed
bullet (Tsuchiyama et al. 2011), meaning that the
collected sample represents a sample of naturally
occurring grain sizes on the asteroid surface. Analysis of
the grains removed from the sample chamber yielded a
size distribution of order d�2.8 from <100 lm down to
1 lm sizes, with the original sample potentially being as
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shallow as d�2 prior to removal from the chamber due
to disaggregation of larger clumps of grains into smaller
constitutive pieces during removal. Tsuchiyama et al.
(2011) speculate that this size distribution would extend
up to the millimeter size range. We note that our theory
is based on the size distribution of individual grains,
and thus the d�2.8 is the appropriate distribution for us
to reference, similar to the macroscopic distribution.

As a caveat, we note that both the macroscopic and
microscopic size distribution measurements are based on
surface observations and sampling, and do not provide
any direct insight on the interior of the body. Using
these surface-derived size distributions, for interior size
distributions we make a clear assumption. Also,
although both the macro-observations and sample
analysis indicate a similar size distribution, this does not
prove that the true particle size distribution on this
body should extend continuously from decameter-sized
boulders down to micron-sized grains. This represents a
second key assumption in this study.

Given the measured mass of Itokawa of 3.58 �
0.18 9 1010 kg (Abe et al. 2006) and the revised volume
of 1.77 9 107 m3 (Gaskell et al. 2008), a revised bulk
density of 2.0 g cm�3 can be computed, slightly
different than that computed in (Abe et al. 2006;
Fujiwara et al. 2006). Assuming a grain density of
3.4 g cm�3, as measured from the samples, yields a bulk
porosity of 40.6%, or packing fraction of 0.59.

Observed Grain Sizes from Disrupted Asteroids

In a series of recent studies, Jewitt and
collaborators have reported extensive observations of
disrupted Main Belt asteroids, which, they suppose,
have been disrupted through rapid spin rates (Jewitt
et al. 2010, 2013). By tracking the evolution of the
debris fields over time, Jewitt et al. place constraints
on the size, number, and volume of grains liberated
from the asteroids. For the body P/2010 A2,
observations of the debris field occurred at least a year
after the event, and the observed grain sizes only
extended down to the <0.1 mm level (Jewitt et al. 2010).
However, in the more recent observation of P/2013 P5,
where the debris fields have been imaged just weeks
after disruption, the observed grain sizes extend down
to at least the 10 lm level (Jewitt et al. 2013). We
interpret these observations as further evidence that
there exist substantial finer grains associated with
rubble pile asteroids. While the detailed mechanics of
how these bodies disaggregated are not available, on the
basis of detailed simulations of spin disruption (S�anchez
and Scheeres 2012), we assume that the debris field
contains material from the surface and at least the
shallow sub-surface of the asteroids.

Synthesized Size Distribution and Packing

If we assume a d�3 distribution across the full span
from micron to tens of meters, we can explore a range
of computed quantities for a rubble pile body. The
Appendix carries out a series of computations related to
this size distribution, some of which we highlight in the
following. For our discussion, we will be assuming
Itokawa-motivated examples, with N1 largest boulders
of mean radius r1 = 20 m and smallest particles of
r0 = 1?10 lm (based on the Itokawa sample;
Tsuchiyama et al. 2011), and explicitly assume that
r0 << r1. For such a size distribution, we find that the
mean grain size is 1.5r0, that the total surface area
across the entire rubble pile is 12N1r

3
1/r0, and that the

total volume is 4N1r
3
1ln(r1/r0). Thus, we note that such a

rubble pile will be dominated in number by the smallest
grains, and that they will also dominate the surface area
open for contact between grains. The volume, on the
other hand, is distributed equally throughout the
logarithm of grain sizes. A few comparisons make this
point. The grain size at which half the total surface area
is evenly split between smaller and larger grains is the
harmonic mean of the minimum and maximum grain
sizes, 2r0r1/(r1 + r0) ~ 2r0, which means that the
smallest grains in the distribution dominate the surface
area distribution. The grain size at which half the total
volume is evenly split between smaller and larger grains
is the geometric mean

ffiffiffiffiffiffiffiffi
r0r1

p
, and thus for our above

example would equal 4.5 mm.
To evaluate whether there are sufficient quantities

of small grains to coat the larger boulders, we can carry
out a few estimates based on the size distribution. For a
boulder of radius R, the volume of material required to
coat it to a depth of DR equals DV = 4pR2DR. Let us
assume that we cover the surface with smaller spheres
of radius DR. As the volume of a sphere will cover
approximately 1/2 of the “cube” it can fit into, we make
the assumption that if the boulder is covered with
spheres of radius DR and volume V0 = 4p/3DR3, that
their total volume is <DV. The number of grains
required is found as N1 = DV/V0 = 3(R/DR)2. Assuming
our size distribution, the number of grains available for
one boulder at a size R at a grain radius of DR is
approximated as N0 ~ n(DR)DR = 3(R/DR)3. Thus, the
number of layers that the boulder can be coated with
equals N0/N1 = R/DR. As we will see, our model only
requires a few layers of interstitial regolith to surround
a boulder in order for the physics to work. Thus, for
decameter-sized boulders and grains down to the 1–
10 lm range, we see that there should be more than
enough fine regolith to cover the bodies. In fact, it
appears that a more shallow size distribution should
also be able to supply adequate covering; however, we
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do not probe how shallow the size distribution can be.
This implies that there are ample grains to multiply
cover larger boulders, at least partially filling the
interstitial voids between them.

REGOLITH STRENGTH MODELS

AND OBSERVATIONS

In the asteroid environment, the forces affecting a
small asteroid composed of a size distribution of rocks,
such as Itokawa, have traditionally been identified with
gravity, internal friction, and inertial forces from
rotation. These are all scale independent, and this fact
has driven the study of rubble pile bodies for the last
few decades. More recently, however, the work by
Holsapple (2007) has shown that some cohesion within
an asteroid can strengthen it against spin disruption at
rapid rotation. In Scheeres et al. (2010), it was shown
that the expected strength of cohesive forces will rival
and exceed these other forces as the size of a body is
reduced, and thus must be accounted for in the study of
their mechanics. This section reviews the measured
strength of asteroid regolith and develops a simple
analytical model for how regolith strength can vary with
grain size. These results provide some foundation for
our simulations in the following section.

Cohesive Forces

Minerals exhibit weak attractive forces between
collections due to several physical effects, which are
generally lumped together with the catch-all term van
der Waals forces. In terrestrial settings, these forces and
their effects are only significant at particle sizes below
100 lm, and become dominant for powders of size
<10 lm (Castellanos 2005). The attractive force between
two spheres of radius r1 and r2 in contact is
approximated by

Fc ¼ Ahr1r2=ðr1 þ r2Þ (1)

where Ah is a material constant related to the Hamaker
constant. For lunar regolith with an assumed “clean”
surface, the published values of Ah are <0.036 N m�1

(Perko et al. 2001) and we will use this as a
representative value throughout the study. For powders
on Earth, the significance of these cohesive forces only
becomes evident when they become larger than the
other forces in the system, most generally when cohesive
forces are a factor of 10 or larger than the particle
weight. At and below these sizes, the mechanical
properties of cohesive powders change significantly and
they act as weak solids (Castellanos 2005).

Under this cohesion model, the attraction between
equal-sized grains of radius r is 1

2Ahr. For an attraction
between a grain of radius r and a larger object of radius
R > r, the net cohesive force is always greater than the
attraction between equal-sized grains. Thus, the model
predicts that fine grains will preferentially attach to
larger grains, and thus that larger grains embedded in a
matrix of fine grains could be held in place by the
strength of the matrix. This is a classical result in
granular mechanics and explains why cohesive grains
preferentially coat larger intruder surfaces. This result
also motivates our model of asteroid rubble pile
strength, with larger boulders and grains being held in
place by finer grains.

Computed Strength

The strength that van der Waals cohesion between
grains produces will be a function of how the particles
are packed together. This can be computed, in principle,
using the following standard approach. Let Ab ¼ r2b be
the area of a cross sectional cut, rb the dimension of this
cut, φ the packing fraction, and C# the coordination
number (the average number of neighboring particles
that touch a given grain). Then, the number of contacts
would ideally be the product of the number of particles
that are cut and the number of contacts these particles
have:

Nc ¼ r2b/
�r2p

C#

4
(2)

where C# is divided into four, as, in average, half of the
particles in contact are going to be above the cut and
the other half below it, and only half of them would be
in a contact angle that put them completely below (or
above) the cutting surface. Equation 1 is how we
calculate the cohesive force between the particles, so for
two particles of the same size (or the average size), this
would be:

fc ¼ Ah
�rp
2

(3)

where �rp is the average grain size. Equations 2 and 3
give us the total number of contacts across the cross
sectional surface in a specified direction and the force
per contact. Later, we will determine correction factors
to account for the randomized orientations of contacts,
the existence of both tensile and compressive contacts,
and further considerations. These corrections will be
determined from our randomly packed simulations.
However, given our current ideal formulation, the total
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force across the surface area for yield (ry) would then
be the result of putting together all these assumptions,
which results in:

ry ¼ Ncfc
Ab

(4)

¼ 1

r2b

r2b/
�r2p

C#

4
Ah

�rp
2

(5)

¼ 0:125AhC#/
1

�rp
(6)

Let

Sy ¼ 0:125AhC#/ (7)

then ry has the form:

ry ¼ Sy

�rp
(8)

For C# = 4.5, φ = 0.55 (which is consistent with
cubic packed regolith grains) and Ah = 3.6 9

10�2 N m�1 (from lunar regolith measured values), we
find the total strength to be

ry ¼ 0:011

�rp
(9)

expressed in units of Pascals when �rp is given in meters.
Under this idealized packing relation, we find that a

matrix of micron radius grains in a cubic crystal
packing would provide over 11 kPa of strength, with a
matrix of 100 lm grains providing over 100 Pa. Later,
we will see that when the grains are randomly packed,
we get a significant decrease in strength from this
packing, and thus that these current computations are
idealized and must be corrected for geophysical
applications.

Properties of Lunar Regolith

It is relevant to review the measured properties of
lunar regolith, which are perhaps the most similar
materials to asteroid regolith studied in the past, having
similar mineralogical properties for some asteroid types
and being generated by impact processes. We do note,
however, that there may be substantial differences
between lunar and asteroidal regoliths in terms of
history and processing. Despite this, the upper
uncompacted surface of lunar regolith (sometimes called
a “fairy-castle” structure) could mimic the porosity and

mechanical properties of asteroid regolith settled on and
within the microgravity environment of an asteroid. A
detailed description of lunar regolith properties
determined from Apollo and terrestrial experiments is
reported in Mitchell et al. (1974) and summarized in
Colwell et al. (2007) and Perko et al. (2001).

The upper <15 cm of the lunar regolith was
observed to have a porosity similar to the implied bulk
porosity of Itokawa, and similar to the simulated
porosities in our experiment. Thus, we take the
properties of this well-studied granular material to be a
possible analog to the distributions we discuss here.
Specific measurements from the Apollo Soil Mechanics
Experiment S-200 (Mitchell et al. 1974) have the
following measured or inferred mechanical properties
for the upper layer of lunar regolith: porosity of <50%,
internal friction angle of approximately 40° with
variations on the order of 10°, and cohesion ranging
from <0.1 kPa up to a few kPa. Deeper in the lunar
regolith, where particles are more strongly compacted,
porosity shrinks to 42% (packing fraction of 0.58), the
friction angle trends larger to over 50°, and the
cohesion increases to <3 kPa.

The size distribution of grains in the lunar regolith
is not explicitly presented, although in Mitchell et al.
(1974) a plot of weight less than a given grain size as a
function of grain size is presented. The grain sizes are
tracked from a few centimeters down to a size of a few
tens of microns (see Fig. 2). Overlaid on the figure are a
few ideal weight fraction curves for size distributions of
1/d3, 1/d2, 1/d2.7, and 1/d3.3 ranging from 1 mm to
0.01 mm. From a direct comparison, we can conclude a
size distribution similar to but slightly steeper than an
ideal 1/d3 with a minimum grain size less than
approximately 10 lm. From these comparisons, we infer

Fig. 2. Restatement of fig. 1 from Mitchell et al. (1974) with
overlays of the ideal weight fraction for size distributions of
1/d3, 1/d2, 1/d2.7, and 1/d3.3 with smallest grain size of 0.01 mm.
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that using a 1/d3 grain size distribution is a reasonable
approximation.

SIMULATING THE STRENGTH OF AN ASTEROID

The above computations are ideal, assuming a
consistent structure for grain distribution throughout
the body. The assumption is also being made that larger
boulders will be “held in place” by a surrounding
matrix of finer material. Both of these assumptions can
be tested with simulation, allowing for the more realistic
mechanics of randomly packed and settled polydisperse
grains in a relevant gravitational environment. In this
section, we explore these assumptions by directly
simulating the hypothesized situation with a direct soft-
sphere discrete element model (Cundall 1971; S�anchez
and Scheeres 2011). Specifically, we settle smaller
cohesive grains between two large gravitationally
attracting boulders and pull on the boulders to find the
yield strength of the assemblage. We note that these
computations present yield strength computations for
regolith that has had no forced packing and has been
allowed to settle under self-gravitational attraction
alone, which will conservatively model accretion in a
microgravity regime.

Simulation Description

Our simulations model a self-gravitating system that
consists of two spherical “boulders,” 1 m in size that,
although not in contact, are connected to one another
through thousands of smaller, cohesive, spherical
particles of sizes ranging from 1 to 5 cm (see Fig. 3).
This is what we have termed a “granular bridge,” as the
granular counterpart of a liquid bridge. In the latter,
the specifics of the molecules of the liquid are
overlooked in the benefit of the calculation of a net
cohesive force among other properties. Given that real
size simulations cannot take into account the billions of
individual particles, this is exactly what we will do. We
will develop a general model that can be compared to
the theory and applied to the simulation of real size
asteroids with a number of particles that is
computationally feasible.

The entire system is contained in a rectangular box
of 1.5 9 1.5 9 2.5 m with periodic boundary conditions
that only affect the contact forces. Our numerical code
uses a Soft-Sphere DEM (Cundall 1971; S�anchez and
Scheeres 2011) that implements the cohesive forces
between spheres as a contact force following
Equation 1. Normal contact forces are modeled through
a linear spring-dashpot (Allen and Tildesley 1989;
Herrmann and Luding 1998), and tangential forces
(static and dynamic friction) are modeled as a stick-slip

interaction through a linear spring that exerts a
maximum force that respects the Coulomb yield
criterion (Leonardo et al. 2001). The difference between
the spring-dashpot (repulsive) contact force and the
cohesive van der Waals (attractive) force produces a net
interaction that will determine whether a contact is in
tension or in compression. Self-gravitating forces among
the particles forming the bridges are calculated
following S�anchez and Scheeres (2011, 2012). For
boulder–boulder, regolith–regolith, and boulder–regolith
gravitational attraction, these forces are calculated
exactly, considering all bodies as point masses. These
particles and the boulders have a grain density of
3200 kg m�3.

Initially, the particles forming the regolith are
placed in horizontal layers and in a hexagonal closed-
packed (HCP) lattice; the distance from center to center
is 1.1 times the size of the largest particle. One boulder
is placed above the layers and the other below them;
this geometry helps us to produce very symmetrical
systems. The two boulders never touch one another.
The number of particles used in the simulations
depends on the size of the particles, so it is easier to
refer to the systems by the number of layers that were
formed (L1x, L2x, L3x, and L4x); the letter x will be
substituted by the size (monodisperse) or range of sizes
(polydisperse) of the particles in centimeters. When the
particles were not monodisperse, they followed a 1/d
size distribution with individual grains selected
randomly from the stated limits. More realistic size
distributions are computationally challenging, with the
number of additional smaller grains growing too large
for conventional computational approaches. For
example, for a 1/d3 size distribution ranging from 1 to
10 mm, for every 10 mm-sized grain we must introduce
1000 additional grains of smaller size, down to
millimeter-sized. Computation of such steep size
distributions is what we are trying to avoid by
developing a model for how small regolith grains can
stabilize larger boulders.

Systems L12, L13, L14, and L15 consisted of 5265,
2340, 1307, and 822 small grains of size 2, 3, 4, and
5 cm, respectively. Systems L12-3 and L13-4 were formed
by 2340 and 1307 small grains of sizes between 2 and
3 cm and 3 and 4 cm, respectively. More layers only
used multiples of these number. We can compare these
layering numbers in terms of our earlier computations
on the number grains required to cover a boulder with
multiple layers. In the Synthesized Size Distribution and
Packing section, we found that a boulder of radius R
covered in grains of radius DR would in general have
R/DR layers for a 1/d3 size distribution. For our system,
we find that our 1 m boulders could be covered by 50
layers of 2 cm grains and 20 layers of 5 cm grains. As
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we only consider up to four layers of interstitial grains
in our simulations, we see that our simulations are quite
consistent with our modeling assumptions.

To form the granular bridges, the particles in the
regolith are given small random initial velocities and the
boulders are allowed to move only in 1-D and cannot
rotate. Applying the settling method detailed in S�anchez
et al. (2004) and S�anchez and Scheeres (2011), we
produce reproducible granular systems with extremely
low kinetic energies (ratio of gravitational potential to
kinetic energy Er < 10�6). Using these preparations, we
then carry out our strength simulations. The procedure
we use is followed for each case. No pull is applied
during the first 5 s of simulation after the settling
process finished. At t = 5 s, we pull the boulders apart
with a force whose magnitude is equal to their
gravitational attraction. After this, we increase the
magnitude of the pull by 10% every 5 s. The
experiment continues this pull dynamics irrespective of
whether breaking has occurred or not. Thus, once the
bonds have broken, the spheres will accelerate away
from each other.

Yield Strength of the Grain Matrix

For a control experiment, we simulated a L12-3
noncohesive system and followed the pulling
procedure as outlined above. Snapshots of this
simulation are presented in Fig. 3 (top). Figure 3
(bottom) shows snapshots of the same L12-3 system,
but with cohesive particles at t = 0, 1000, and 2000 s.
Even though they initially have the same geometry,
their dynamics are very different as the snapshots
reflect. The systems with more particles conserve a
similar geometry to that shown in Fig. 3, but with a
larger bridge when more than one layer of particles is
used. The bridges that we formed have their
maximum packing fraction near their center, with
values that range from 0.55 to 0.6. The radii of the
bridges increase with the number of particles, as
expected, and are approximately 0.3, 0.35, 0.4, and
0.43 m for the four different layers. All cohesive
bridges remain virtually unchanged and deform only
slightly from their initial shape during the simulations
until they fracture. This is not the case for the

Fig. 3. L12-3 system with noncohesive particles (top) and with cohesive particles (bottom). From left to right, t = 0, 1000, and
2000 s.
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noncohesive bridge, which, in the absence of other
forces, conforms to the gravitational pull.

To determine the force needed to separate the two
boulders in our systems, we plot Df, the difference
between the pulling force (fp) and the gravitational pull
(fg) due to the rest of the particles. In Fig. 4, the orange
line represents the dynamics of the noncohesive L12-3
system, whereas the other lines represent cohesive
systems. From these data, it is evident that if cohesion
is not present, the boulders begin to move apart as soon
as a force greater than the gravitational attraction is
exerted over them. It is interesting to note that all the
other systems start to strain when Df is about
4.5 9 10�4 N, which is where the initial contacts
between the regolith grains break. After that, they all
maintain a consistent slope of about 2.3 N m�1 until
the bridges are finally broken. The total magnitude of
force required to ultimately break the regolith depends
on the number of grains in the system. The observed
linear part of the dynamics in Fig. 4 supports the
overall goal of replacing the regolith with a soft
potential that exhibits classical elastic and yield strength
behavior.

To obtain greater insight into the dynamics of the
process, it is necessary to understand why the boulders
do not separate until the pull reaches a certain strength.
To do this, we need to realize that ultimately, it is the
contacts between individual particles that control the
macroscopic behavior of the systems. As the separation
process starts, there is a slight increase in the number of
contacts; however, the number of contacts that are in
compression and in tension changes drastically. Figure 5
shows the evolution of the number of contacts in
tension (green) and in compression (red) for an L12-3

system, as they evolve, during the duration of the
simulation. From this figure, it is observable that there
is a significant change once the regolith breaks its initial
contacts and engages the matrix of contacts more
completely. After this point, the body begins to strain
and we observe the elastic behavior in Fig. 4. At this
point, the majority of contacts in the regolith switch to
tension, essentially forming a series of chains through
the regolith that become engaged and pulled into
elongation under the increasing pull.

To explain the behavior of the bridges due to the
dynamics of the contacts between the particles, we look
at the force chains that are being formed and how they
behave. Figure 6 shows two views of the force chains in
an L12-3 system during the pulling and breaking
process. The force chains in compression are marked in
red, whereas those in tension are in green. There is a
clear difference between t = 110 s and t = 120 s, exactly
at the point where the boulders begin to strain. This
and the results shown in Fig. 5 point to the appearance
of the first fracture in the system, which allows for a
rearrangement of the particles and force chains. From
Fig. 6, we see that it is those particles near the center
that break as they cannot re-accomodate to stretch the
chains they form. Once these central chains are broken,
the longer and more numerous chains away from the
center become engaged and become tense. This is why a
stronger pull is needed to break a bridge with more
particles. Simply put, there are more chains that have to
be broken before the bridge is completely fractured.

We note that the tension of 0.012 Pa required to
break the bridges has the same value regardless of the
number of particles used for a given grain size. This is
easily explained if we notice that an increase in the
volume of the bridge, given by an increased number of
particles, also increases the number of contacts linearly.
This leaves the tensile force per unit area needed to
break the bridge unchanged. Following the same train
of thought, this stress should change with the strength
of the cohesive forces involved. To test this, we have
carried out simulations where we have scaled all the
cohesive forces by factors (Cs) of 0.25, 0.5, 0.75, and
10.0; our scaled results are presented in Fig. 7. The
scaling factor used for the normal stress is 1/Cs. From
these results, it follows that the tension needed to break
a bridge for centimeter-sized grains is � 0.012 9 Cs Pa.
This marks the yield limit, defined as the end of the
proportionality region in the stress–strain plot. The
strain of the bridge, on the other hand, seems to follow
a more complicated scaling law, but in general, it was
never more than a few millimeters for our simulated
systems. The same behavior was observed in all our
simulations and they all produced the same maximum
normal stress before breaking. Taking this approach, an
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Fig. 4. Net pulling force over the top boulder versus the
variation in the distance between them for cohesive (L12-3,
L22-3, L32-3, and L42-3 are colored in red, green, blue, and
gray, respectively) and noncohesive system (L12-3, orange).
The purple-dashed line is a guide to the eye; it has a slope of
2.3 N m�1. (see online version for color figure.)
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increase in the cross sectional area of the bridge
increases the force needed to break it, yet keeps the
yield stress the same.

Empirical Determination of Regolith Strength

We note that the theory indicates that strength
varies inversely with particle size, and thus we also test
this relationship. However, we must first develop an
empirical correction to the ideal strength law derived
earlier. While Equation 2 gives us the total number of
contacts across the cross sectional surface, from Fig. 5,
we can see that only about 60% of the contacts are in
tension and the same statistics should hold across this
surface. In addition, given that the particles are, in
general, not aligned with the vertical, only a component
of the tensile force contributes to the yield limit. To
correct for this, we multiply the cohesive force by
3
p sinðp=3Þ, the average value of the function cos(x) in
the interval [�p/3, p/3], the limits chosen to select those
forces that are primarily in the given direction.
Moreover, our simulations reveal that the magnitudes
of the forces between particles that are in tension are
not centered around the value of the cohesive force of
two average-sized particles. In fact, the average of the
this net tension is �11.25 smaller than that. The total
tensile stress across the surface area for yield (ry)
would then be the result of multiplying our ideal

strength by these additional correction factors, which
results in

ry ¼ 1:56� 10�4

�rp
(10)

In the simulations shown in Fig. 3, the grains had
an average radius of �rp ¼ 1:25� 10�2 m, predicting a
limiting ryy = 0.0125 Pa. Simulations found a value of
0.012 Pa, showing excellent agreement with this
calculation. We note that this result is well over an
order of magnitude weaker than the theoretical result
we computed, assuming a packed, crystalline structure.
This shows the effect of randomization in the regolith
grain packing at the finest level.

The last equation shows the same 1/�rp dependency
of ry as seen in the ideal calculations, except now the
appropriate grain size is the mean grain size. This was
explicitly tested and all the simulations with
monodisperse L1x systems and polydisperse L12-3 and
L13-4 systems show the same numerical agreement,
validating this equation. Figure 8 shows the calculated
stress–strain curves for different particle sizes compared
to the theoretical yield limit. The black line instead
plots the predicted stress limit as a function of grain
size. It must be noticed that in this analysis, the size of
the large boulders has no influence over the final
outcome. Therefore, in principle, it should be applicable
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to any two boulders between which there are cohesive
particles regardless of their size and even their shape.
Everything else being equal, the net cohesive force
between two boulders depends on the narrowest cross
sectional area of the bridge perpendicular to the
direction of the pulling force.

A Model for Cohesion in a Rubble Pile

An important application of this research is to
simulations, as it provides a model for cohesion that is
simple and scalable. A first principles simulation that
would attempt to capture the effect of fines on a

Fig. 6. Side and top views of the force chains in an L12-3 system during the pulling process. Red signifies a compressive chain
and green signifies a tensile chain. (see online version for color figure.)
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macroscopic system containing boulders of order tens of
meters would be intractable for a realistic 1/d3 size
distribution. Our current findings of how interstitial-

cohesive regolith behaves under tension shows that this
simulation gap could be bridged by developing a soft
cohesive potential that captures the strength we are
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specifying. Specifically, the proportionality region in the
stress–strain plots could be modeled with a linear spring
with a strength limit, or in its simplest form, by a
constant cohesive force at work only when boulders are
in contact or within a given close proximity to each
other. This would allow researchers to implement the
effect of cohesive regolith without the need to simulate
each individual particle, saving significant time and
resources.

Testing the Model
To evaluate the effect on a boulder immersed in a

pool of regolith, we simulated a 1 m boulder half-
immersed in a hemispherical container filled with a
polydisperse system with particles between 2 and 3 cm in
size. Figure 9 shows the simulation as the boulder is
pulled out of the regolith. Gravitational forces are
calculated by means of an imposed gravitational field of
1 mg. Figure 10 shows that the magnitude of the force
needed to detach the boulder from the regolith is about
0.04 N, a factor of 6 greater than the largest force
needed to break an L42-3 system (0.007 N) with the same
regolith size particles. Thus, an increase in the contact
area results in an increase in the net cohesive force.

On the basis of this observation, we develop a
simple model that estimates the force needed to separate
two boulders with interstitial regolith based on the
projected area that links the two spheres. If the spheres
are of equal size, we assume that the appropriate area
over which the regolith chains will act equals the
projected area of the spheres, or pr2. As one sphere
becomes larger, and in the limit approaches a flat plane,

we assume that, the effective area between the objects
will become larger than the smaller sphere, representing
the fact that regolith chains can form between the flat
plane and the sphere beyond the projected area of the
smaller sphere. A simple way to combine these areas
into an effective area is to take their harmonic mean, or

Aeff ¼ 2 n
1
R2

1

þ 1
R2

2

(11)

Then as R2 >> R1 the effective area will be 2pR2
1, or

twice the projected area of the single grain. This
accounts for the ability of the regolith force chains to
pull on the boulder from a slightly larger region than
just the directly projected area. Then, the cohesive force
between two boulders in contact (or near contact) can
be represented as the effective area multiplied by the
yield strength of the regolith:

Fc ¼ 2pR2
1R

2
2

R2
1 þ R2

2

Syy

�rp
(12)

where Fc is the net cohesive force. For our earlier
simulations, we note that the interstitial area between
the meter-sized grains is on the order of one-quarter less
than their projected areas. Conversely, the simulation in
this section mimics the more extreme extent, where the
area from which regolith exerts a pull on the boulder is
2pR2

1. Combined together, we note a predicted increase
in strength on the order of 8, consistent with the
observed increase in the strength of the bonds.

Fig. 9. A 1 m boulder being vertically pulled out of a granular pond; milli-g environment.
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Simulation of a Rubble Pile with Cohesive-based
Strength

We now apply this model to a simulation to
ascertain the effect of a regolith “matrix” on an NEO
consisting of boulders. The motivation for these specific
simulations is to show that the introduction of cohesion
into a rubble pile can alter the failure behavior of that
body for sufficiently strong cohesion. We note that our
simulations begin to show the effect of cohesion for
Bond numbers greater than 10, which is consistent with
granular mechanics theories on when cohesive forces
become important (Scheeres et al. 2010). We form a
self-gravitating granular aggregate of 2000 boulders, 8–
9 m in size following the procedure in S�anchez and
Scheeres (2012), forming an asteroid of size <100 m.
Taking the Syy from Equation 9 the resulting cohesive
forces between boulders as a function of regolith grain
size are shown in Table 1, where the Bond number B is
estimated by comparing the weight of the boulder that
is farthest away from the center of mass and on the
surface of the asteroid to its cohesive force with its
neighbor. Thus, we see that we model the cohesive
effect of regolith grains ranging from near meter size
down to tens of microns.

Figure 11 shows the spin evolution of aggregates
formed by 2000 spherical boulders subjected to a spin
rate that increases in steps (similar to the simulations
described in S�anchez and Scheeres 2012). These
boulders have interparticle friction and a cohesive force

that acts as a constant between particles in contact. The
cohesive force is measured in terms of an effective Bond
number for this asteroid, as discussed above. The colors
correspond to aggregates with bond numbers of 20
(blue), 15 (red), 10 (green), 1 (black), 0.1 (orange), 0.01
(magenta), 0.001 (brown), and 0 (cyan) for control. The
only systems that show a major difference with the
others are the ones with B ≥ 10; the others reshape and
disrupt at a similar spin rate. For the bond numbers
greater than 10, the rubble pile fails in tension and does
not undergo reshaping. Stronger regolith, due to smaller
average grain sizes, will fail at progressively larger
rotation rates. Failure for these more cohesive systems
occurs through fracture of the matrix material, as seen
in our force chain computations. These numerical runs
motivate the simpler analytical expressions we derive in
the following for the limiting spin rate of a rubble pile.

MODELS FOR THE FAILURE OF A RUBBLE PILE

We wish to apply the empirically computed yield
strength of our regolith model to a simple model for the
failure of a rubble pile asteroid strengthened by
cohesive forces. To carry this out, we will use the
analytically simple Drucker–Prager failure criterion in
combination with an analytical model for the interior
stresses within a body due to the forces and loads
applied to it. This model is intended to expose the basic
relationships between a body’s size, spin rate, strength,
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and density and where it might be expected to
conservatively fail.

In the following, we review the known closed form
stress fields for a rotating, self-gravitating ellipsoid and
evaluate it following the Drucker–Prager failure
criterion, inserting our determined cohesive strength.

Internal Stress Field

For a simple model of a constant density ellipsoidal
asteroid with no residual stress, the internal stress state
due to gravitation and rotation can be computed. The
principal stresses within an ellipsoidal, gravitating body
are stated in Holsapple (2001) as

rx ¼ �q=2ðx2
a � x2Þa2e (13)

ry ¼ �q=2ðx2
b � x2Þb2e (14)

rz ¼ �q=2ðx2
cÞc2e (15)

where a ≥ b ≥ c are the ellipsoid semi-major axes, ρ is
the constant density,

x2
a ¼ 2pGqabc

Z 1

0

dv

ða2 þ vÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ vÞðb2 þ vÞðc2 þ vÞ

q
(16)

represents the gravitational contribution from the
ellipsoidal mass distribution (with appropriate
permutations for x2

b and x2
c), x is the constant spin rate

about the c axis, and ɛ = 1 � (x/a)2 � (y/b)2 � (z/c)2

defines how the stresses vary across the interior and is
identically zero at the surface of the body. This is for an
elastic model and neglects the possibly important
residual stresses that can be built up as a body goes
through plastic deformation. Such a detailed model is
beyond the current work, as we are just looking for a
clear representation of the important gravitational,
inertial, and cohesive forces at play within a rubble pile.

We note that the quantity xa is the spin rate at
which the gravitational attraction equals the centripetal
acceleration throughout that body’s axis. For an
elongate body, we note that xa < xb < xc, leading to
rx > ry > rz for a nonzero spin rate x. Conversely, for
an oblate body, we find that xa = xb < xc, leading to
rx = ry > rz again for nonzero x.

Failure Criterion

The Drucker–Prager failure criterion has been used
to describe when a rubble pile will undergo deformation
and failure (Holsapple 2001; Sharma et al. 2009;
S�anchez and Scheeres 2012). This criterion incorporates
the von Mises stress, the internal pressure, and the
angle of friction between materials. We will use this
failure criterion to derive a conservative limit on spin
rate for failure, given a yield strength for the constituent
material within the rubble pile.

The von Mises stress is computed from the stress
field as

ffiffiffiffiffi
J2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrx � ryÞ2 þ ðry � rzÞ2 þ ðrz � rxÞ2

q
=

ffiffiffi
6

p

(17)

Given this, the Drucker–Prager stability criterion
(for the tensile upper limit) is stated as

ffiffiffiffiffi
J2

p
� k� 2 sin/ffiffiffi

3
p ð3� sin/Þ ðrx þ ry þ rzÞ (18)

where φ is the internal friction angle of the material
and k is a material constant related to cohesion. We use
a simple relationship between uniaxial yield strength
and this parameter (Desai and Hema 1984), k ¼ ry=

ffiffiffi
3

p
,

Table 1. Bond number, net cohesive force, and
average radius of the regolith particles.

B Fc (N) �rp (mm)

0.001 0.0248 356.43
0.01 0.248 35.64

0.1 2.48 3.56
1 24.83 0.36
10 248.3 0.036
15 372.5 0.024

20 496.7 0.018
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Fig. 11. Spin rate evolution of self-gravitating aggregates with
different bond number for the particles on their surfaces. The
colors correspond to aggregates with bond numbers of
20 (blue), 15 (red), 10 (green), 1 (black), 0.1 (orange), 0.01
(magenta), 0.001 (brown), and 0 (cyan) for control. (see online
version for color figure.)
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where ry is the previously discussed yield strength. For
a given yield strength, density, and asteroid shape, this
stability criterion identifies the failure envelope beyond
which the asteroid undergoes plastic deformation.

The Drucker–Prager criterion contains information
on the body size, density, spin rate, and body shape. It
has been studied in detail in Holsapple (2007) and
Sharma et al. (2009) for a range of shapes, spin rates,
and internal friction angles. S�anchez and Scheeres
(2012) were able to show that deformation of a
simulated rubble pile asteroid occurs when this criterion
is violated. For the current application, we just consider
a few simplified cases of this law, enabling us to apply it
generically to the asteroid population.

To motivate this, we consider two separate cases
where we have our spin rate x > xa, meaning that the
body has tension along the longest axis, or along the
equator for an oblate body.

Elongate Body
For an elongate body with a >> b > c, we assume

that rx >> ry, rz, giving
ffiffiffiffiffi
J2

p �rx=
ffiffiffi
3

p
and yielding the

stability criterion

rxffiffiffi
3

p � rYffiffiffi
3

p � 2 sin/ffiffiffi
3

p ð3� sin/Þrx (19)

Substituting rx ¼ � q
2 ðx2

a � x2Þa2e and solving for the
spin rate yields

x2 �x2
a þ

2

qa2e
3� sin/
3þ sin/

� �
rY (20)

We note that the weakest point of the body occurs
at its midpoint, under our idealizations, and thus take
e = 1.

Oblate Body
For an oblate body, we assume that rx = ry >> rz,

giving
ffiffiffiffiffi
J2

p �rx=
ffiffiffi
3

p
again, but now yielding the

stability criterion

rxffiffiffi
3

p � rYffiffiffi
3

p � 4 sin/ffiffiffi
3

p ð3� sin/Þrx (21)

Substituting rx ¼ � q
2 ðx2

a � x2Þa2e and solving for the
spin rate yields

x2 �x2
a þ

2

3qa2
3� sin/
1þ sin/

� �
rY (22)

where again we take e = 1. We note that the
gravitational spin rates xa will be different between these

two cases; however, we are more focused on the strength
of these models when x2 � x2

a [ 0, independent of the
precise spin rate at which the body goes into tension.

A Simple Model for Asteroid Failure

We now consider both of these extreme models
above. Comparing the cohesive terms only, we see that
the ratio of the elongate over the oblate component is 3
(1+sin φ)/(3+sin φ). Across all possible friction angles,
this ratio goes from 1 ? 1.5 as φ goes from 0 ? 90°.
Thus, as a body spins beyond its gravitational limit, the
cohesive strength term is not a strong function of the
assumed shape.

Thus, due to its slightly simpler form, we use the
elongate case as our simple model.

x2 �x2
a þ

2

qa2
3� sin/
3þ sin/

� �
rY (23)

Furthermore, as we wish to develop a conservative
limit, we note that the strength will be greatest for
φ ? 90°, although only by a factor of 2 over the other
extreme at φ = 0°. Inserting this, we get a conservative
limiting case for the spin rate as

x2 �x2
a þ

rY

qa2
(24)

We note that this relationship has the proper
characteristics as explored in more detail by Holsapple
(2007). Namely, for a given cohesive strength, the spin
rate to disrupt them increases for smaller or less dense
bodies.

This limit will be used to constrain possible strength
values for small asteroids spinning beyond their
gravitational rate. In Fig. 12, we show the asteroid
spin–size data overlaid with lines of theoretical spin
limits for different levels of cohesive strength. This
figure serves as motivation for our following discussion.

OBSERVATIONAL EVIDENCE FOR COHESION

There are a few aspects of the asteroid spin–size
data that can be used to extract constraints on the level
of cohesion, which may be present in rubble pile
asteroids. While none of these are definitive, we can
show consistency with different aspects of this data set
and an inferred level of cohesive strength. Perhaps, the
most compelling piece of evidence for cohesion among
rubble pile bodies can be inferred from asteroid 2008
TC3 (which became the Almahata Sitta meteorite fall)
and the size distribution of binary asteroids.
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We note that the absolute values of cohesive
strength quoted in the following are derived for a
number of assumptions in our failure model. The
assumption of an elongate body is conservative by at
most a factor of 0.67 compared to an oblate body. The
other is the assumption that the friction angle is taken
as 90° to provide a bound on the strength. If the
friction angle is reduced to 45° or 30°, the quoted
strengths would decrease by a factor of 0.8 and 0.7,
respectively. Combined, there is a conservative factor
applied to the failure model that decreases the strength
for failure by a factor of 0.47, meaning that the
strengths quoted in Fig. 12 could be a factor of <2
larger.

Finally, we also note that our empirically derived
model presented in Equation 9 for the relationship
between cohesion and mean grain size can be used to
provide predictions and interpretations. Using this
model, a grain size of 1 lm ð�rp ¼ 0:5 lmÞ predicts
a strength of <300 Pa, a grain size of 10 lm predicts a
strength of 30 Pa, and a grain size of 100 lm a
strength of 3 Pa. We will see in the following that the
observed strength is consistent with a <25 Pa level of
strength, which then fits with the observations from
Jewitt et al., the Itokawa sample return, and the lunar
regolith data.

Binary Asteroid Size Cutoff

Binary asteroids have a statistically significant
cutoff at small sizes less than a few hundred meters
(Margot et al. 2002), commensurate with the initial
increase in the asteroid maximum spin period. Failure
of cohesive rubble pile asteroids through fission is
consistent with a lower limit on the creation of binaries.
If the failure spin limit is faster than local escape speed,
then when fission occurs, the bodies will immediately
enter a hyperbolic orbit and escape from each other,
providing no chance to dynamically interact and
become stabilized. Such a period of orbital interaction is
at the core of all competing, hypothesized binary
formation mechanisms, such as are described in
Jacobson and Scheeres (2011) and Walsh et al. (2008).

In Fig. 13, we plot the limits for this maximum spin
rate for a bulk density of 2.1 g cm�3, delineating where
fission leads to immediate escape. We note that the
strong regolith predicts a binary cutoff at a much larger
size, on the order of 4 km and the weak lunar regolith
limit predicts a cutoff at 800 m. A cohesion of 25 Pa is
consistent with the end of observed binaries at a size of
400 m, with only one binary (from the highest quality
rotation set) at a smaller size. At an even lower level of
strength of 1 Pa, we note that the cutoff should be at

Fig. 12. Size/spin rate distribution. Lines show the theoretical spin limit for different assumed values of cohesion, computed
using a conservative 90° friction angle, yielding a larger spin rate for a give quoted strength value.
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100 m, well below the observed cutoff. Thus, the
presence of small, but nonvanishing, cohesion is
consistent with the observed statistically significant
lower size of binary asteroids. This also constitutes a
prediction that smaller binary asteroids formed by
rotational fission are not expected to be found less than
this, or a similar, strength cutoff.

Fast-Spinning Tumblers

There is another observable aspect of asteroid
rotation for those bodies that fission at spin rates
beyond the escape limit. In Scheeres et al. (2010), it was
noted that a rubble pile body that fissions across a
surface of weakness when spinning faster than the
escape limit will immediately enter a tumbling mode.
This occurs as both portions of the body conserve their
spin rate vector across the split, but their mass
distribution properties, i.e., principal moments of
inertia, change abruptly as does their total angular
momentum (although the sum is still conserved across
both of the bodies). Assuming that the body was
initially spinning about its maximum moment of inertia,
the new bodies will instead commence to tumble due to the
mismatch between principal moments of inertia and
the spin vector. Unfortunately, the statistics on small,

tumbling fast rotators is not very complete due to
difficulties associated with reliably identifying this state
(Pravec et al. 2005). Hence, there are only six such
bodies in the current population with size below 100 m.
These, along with all other tumblers <10 km, are
plotted in Fig. 14. We note that the rapid tumblers are
all in close proximity to the weak regolith strength
limit, consistent with the cited theory of failure.
Conversely, this limit also provides a relevant prediction
for where tumblers could be found, potentially serving
as a test of the theory if the observed population of
tumblers increases. Where such tumblers lie relative to
the strength, models also could provide insight into the
strength of rubble pile asteroids at small sizes.

Other explanations for rapid tumblers have not
been clearly given in the literature, where the focus has
been more on the dynamics of slow tumblers (Pravec
et al. 2005; Vokrouhlick

̀
y et al. 2007). Applying the

classical model for asteroid spin state relaxation to the
small, fast tumblers (Harris 1994) yields relaxation times
on the order of 1 Myr (see Fig. 1), which is shorter
than the lifetime of an NEO and is not inconsistent
with observing small bodies in this state. We note,
however, that the physics of dissipation within small
bodies is a topic that has not been explored. A
dynamical explanation of the onset of tumbling with a

Fig. 13. Size/spin rate distribution of binary asteroids. Lines show theoretical strongest and weakest strengths considered. Only
confirmed primaries with a data quality of 3 are plotted. Also shown is the limiting spin rate at which fissioned bodies would
immediately escape from each other.
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body undergoing a net increase in spin rate has not
been explicitly developed in the literature to date.
Alternate possibilities include that the body was initially
in a complex rotation state and subsequently spun up,
or that something in the spin-up process excited
nonuniform rotation. Neither of these would
preferentially predict that the body would reside close
to the strength limits we have defined herein, however.

Failure Spin Rates

Now, we consider what the predicted spin–size
distribution is as a function of cohesion. In Holsapple
(2007), it was shown that a cohesive strength of 10 kPa
was needed to blanket all observed rapidly rotating
bodies. However, as is seen for our 3 kPa limit in
Fig. 12, this would predict that rubble pile bodies would
be able to fill up the area beneath the strength curve,
which is definitely not seen at the midsized asteroids
between 100 m and 10 km. At 1 kPa, this gap exists up
to 1 km sized asteroids, and for 25 or 1 Pa, it seems to
disappear. This is not a strong constraint, but does
indicate that the cohesive strength within rubble piles, if
it exists, is small.

The prediction from this model is that those
asteroids spinning faster than the cohesive strength limit
are “competent” or “monolithic” bodies, as a collection

of grains and boulders would not have sufficient
strength to hold together even with our “van der
Waals” cement. The surfaces of these bodies can still
have a regolith, however, comprised of grains ranging
up to millimeter sizes or larger (Scheeres et al. 2010).
The existence of such rapidly rotating boulders is
entirely consistent with the supposition that asteroid
rubble piles consist of a size distribution of grains.

There are a few of these rapidly spinning monoliths
of size greater than or equal to 200 m, but the
remaining members range from 100 m down to the
smallest sizes observed in the asteroid population. We
note that the largest blocks observed on the asteroid
Eros are of the order 100–150 m (Robinson et al. 2002),
potentially indicating this as the limiting size of
competent boulders. The existence of such a maximum
limit for a broken body is consistent with theories of
material strength of bodies (Holsapple 2007). In this
sense, the asteroids spinning faster than the weak
regolith limit would represent the fractionation of
rubble pile asteroids into their constituent pieces of
bedrock, although many of these may still not have
shed all particles from their surface.

In contrast to those bodies spinning beyond our
derived strength curves, asteroids below our strength
limit could potentially represent rubble pile bodies. Of
course, we might also expect some of these bodies to be

Fig. 14. Size/spin rate distribution of tumbling asteroids. Lines show theoretical strongest and weakest strength. The asteroid
2008 TC3 is the furthest body on the left.
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monoliths as well, although discriminating between these
types would require additional information on any
particular body. Thus, the strength limits do not provide
any strong constraints on which bodies spinning below
our strength curves might actually be rubble piles.

Asteroid 2008 TC3

As a specific case in point, we can consider Asteroid
2008 TC3, which became the Almahata Sitta meteorite.
This asteroid’s unique observation history and size
make it a compelling piece of evidence that is fully
consistent with the model developed herein. This
asteroid was observed prior to entering the Earth’s
atmosphere during the brief period after its discovery.
Light curve observations of this body showed that it
was spinning with a period of 100 s and also was in a
tumbling rotation state (Scheirich et al. 2010). Its
location is marked on Fig. 14, where it is seen to be the
smallest known tumbler and only requires 25 Pa of
cohesive strength to withstand disruption. Based on
analysis of the meteorite fall, this body consisted of
several different mineralogical types that constituted
separate components in the parent asteroid. The
implication is that the asteroid was a heterogenous
mixture of rocks that had different mineralogies, i.e.,
that it could be described as a rubble pile (Jenniskens
et al. 2009). Analysis of the pre-entry observations and
the meteorite falls also indicate that the body had
significant macro porosity (Kohout et al. 2011). The
meteor was observed to break up high in the
atmosphere, indicating a weak body and consistent with
a weakly bound rubble pile (Borovi�cka and Charvat
2009; Popova et al. 2011). Furthermore, in Borovi�cka
and Charvat (2009), they note the presence of an
abundance of micron-sized dust associated with the
meteor, consistent with this dust comprising a
“substantial part” of the total mass of the object.

Thus, in this one asteroid, we find several different
elements of our theory. First, we note that the body is
clearly a macroscopic composite of several different
mineralogical types, consistent with the parent body
being a collection of smaller, distinct components
resting on each other. From the entry observations, it is
also apparent that there was a substantial presence of
finer dust grains associated with the asteroid. This
speaks directly to our model of a rubble pile asteroid as
being a consistent size distribution from larger to
smaller grains. To date, there does not appear to be any
analysis of the possible size distribution that could be
associated with this body, however. We also note that
this rubble pile was spinning rapidly, but would have
only required <25 Pa of cohesive strength to bind the
body together. This is consistent with the limits on

strength that we have estimated based on direct
modeling and through observations. In addition, the
body was seen to be tumbling, which is also consistent
with our model of what the spin state of a rubble pile
asteroid should be following a fission event. Finally, the
body was observed to fail very high in the atmosphere,
indicative of an overall very low strength for the body.
Thus, we note that this body exhibits several different
characteristics and elements that are consistent with our
theory. While not a proof in any sense, it does show a
consistency between our proposed model and an
identifiable body that was thoroughly analyzed from
several different aspects.

DISCUSSION

This study lays out a theoretical model for how
rubble pile asteroids may have some level of strength,
simulates this process to better understand the
predictions that it provides, develops a simple analytical
model for spin limits on failure as a function of
cohesion and size, and then analyzes the asteroid spin–
size database for evidence of cohesion among rubble
piles. In this section, we explore some of the predictions
and implications of this study.

The model we propose is that the finest regolith
that exists in sufficient quantities to coat and connect
the largest boulders within a rubble pile can supply
cohesive strength to the body. This cohesive strength
will allow the rubble pile to spin up to and beyond the
point where centripetal accelerations exceed
gravitational accelerations. From the simulations
explored herein, we find that the overall strength of the
body will equal the strength of the matrix
corresponding to the average grain size in the
distribution. This links the size distribution of grains
within a rubble pile body to the strength of that body,
potentially providing insight into the structure and
distribution of grains within rubble pile bodies through
more precise measurement or determination of the
strength of rubble pile bodies and regolith in general.
Alternately, experimental determination of size
distributions that result from catastrophic impacts can
also then be used to predict the strength of regolith and
rubble pile bodies. The size distribution limit at which
there will not be sufficient fines to serve as a matrix is
an open question, but should be studied. We note that
our simulation-derived strength model for regolith is
consistent with our inferred cohesive strength and
assumed size distribution of grains. It is also consistent
with the published lunar data, if we restrict ourselves to
the highest porosity upper layer.

Specifically, we find that a reasonable value of
observed cohesive strength of rubble pile asteroids is
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<25 Pa. Using our currently derived model given in
Equation 9, we see that this corresponds to a mean
particle size of 12.5 lm. Assuming that the binding
regolith matrix arises from a 1/d3 size distribution, this
indicates a minimum grain size of approximately 8 lm.
This is surprisingly consistent with the Itokawa sample
return (Tsuchiyama et al. 2011), observations of
disrupted body P/2013 P5 (Jewitt et al. 2013), and our
inferred size distribution from lunar regolith (Mitchell
et al. 1974). These convergent numbers provide another
aspect of small bodies to be specifically tested with
future sample returns and in-situ observations.

While the current study primarily relies on
measurements of the S-type asteroid Itokawa and
properties of lunar regolith, different asteroid types and
mineralogical properties are expected to result in
different cohesive constants, different size distribution of
shattered bodies, and potentially other characteristics
that can influence the properties and strength of the
matrix that serves as the van der Waals cement. As the
population of asteroids with specific spectral asteroid
type determinations increases, it may be possible to
extract information about these parameters based on the
observed spin–size distributions that these bodies have.
Furthermore, future sample return missions to primitive
asteroids such as the Hayabusa-2 and OSIRIS-REx
missions will supply additional insight into the inferred
strength and size distribution of material in these types
of asteroids. In addition, sorting asteroids for which we
have spectral types into their own size/spin rate
distributions could expose mineralogical and
morphological differences between different classes of
asteroids. This includes observations of binary sizes,
tumbling asteroids, and spin rates as a function of size.
Should systematic differences be observed in any of
these distributions, it could be indicative of the different
compositions and evolutionary paths that different
asteroid types are subject to.

The theory also makes several predictions on the
observable consequences of cohesion in small asteroids.
Primary is that asteroid fission rates should be a function
of the overall size of the body, with smaller asteroids
disrupting due to spin fission at faster rotation rates.
With the recent observations of spin-disrupted asteroids
(Jewitt et al. 2010, 2013), it seems that this could be
further constrained by observations, and motivates
photometric observations of those asteroids that have
undergone such disruption to determine their current spin
rate. Furthermore, if the primaries of these disrupted
bodies are seen to be in a complex rotation state, this
would also be consistent with the theory. In relation to
these disrupted asteroids, it would be interesting to
determine whether a larger secondary component may
have been shed, leading to the current significant mass

loss from the surface of the body. Whether or not such a
secondary was formed would provide clear insight into
the mechanics of asteroid fracture when spun to high
rates. We note that this mode of fission is distinct from
that observed in Pravec et al. (2010), as the fission
mechanism consistent with those observations is linked to
larger bodies that should behave more like a cohesionless
system. Furthermore, in those systems, the signature of
the primary spin rates as a function of secondary size is
also consistent with a dissolution of the binary system
after a significant, if relatively short (on the order of a
year at most) period of mutual orbital evolution
(Jacobson and Scheeres 2011).

Beyond constraints on asteroid observations, this
study also provides an important and computationally
efficient model for capturing the effect of a steep size
distribution on the mechanics of a rubble pile body. By
developing a specific model that captures the cohesive
effect of fine grains interspersed between larger
components, we enable modelers to bypass directly
modeling steep size distributions down to small grain
sizes. This can expand the number and range of
simulations that are accessible to computational codes.

CONCLUSIONS

This study hypothesizes and evaluates the
implications of a theory for the strength of rubble pile
asteroids. The hypothesis is that the finest grains within
an asteroid can serve as a “cement,” a cohesive matrix
that binds larger boulders together into a body,
allowing it to spin more rapidly than the surface
disruption limit. The strength of such a matrix is shown
to depend inversely on the mean grain size within the
cohesive matrix. Implications of this strength limit are
developed using stress theory and compared with the
population of asteroids. We show consistency of our
strength model with a cohesive strength in rubble pile
asteroids on the order of 25 Pa. As input data for this
model, we consider observed limits in the asteroid spin–
size data, including the binary cutoff, the strength
envelope, and the presence of tumblers in the rapidly
rotating population. This level of strength is also shown
to be consistent with rubble piles having sufficient
grains at the <10 lm size to connect larger boulders
with each other.

Acknowledgments—P. S�anchez acknowledges support
from NASA’s Planetary Geology and Geophysics
program from grant NNX1OAJ66G. D.J. Scheeres
acknowledges support from NASA’s Planetary Geology
and Geophysics program from grant NNX11AP24G.
Both authors acknowledge support from NASA’s Near
Earth Object Observation program from grant

808 P. S�anchez and D. J. Scheeres



NNXlOAG53G. The authors acknowledge discussions
with Prof. M. Swift from the University of Nottingham
which helped develop the original idea behind the
granular mechanics simulations. They also acknowledge
useful reviews from the anonymous referees that helped
improve this study.

Editorial Handling—Dr. Michael Zolensky

REFERENCES

Abe S., Mukai T., Hirata N., Barnouin-Jha O. S., Cheng A.
F., Demura H., Gaskell R. W., Hashimoto T., Hiraoka
K., Honda T., Kubota T., Matsuoka M., Mizuno T.,
Nakamura R., Scheeres D. J., and Yoshikawa M. 2006.
Mass and local topography measurements of Itokawa by
Hayabusa. Science 312:1344–1347.

Allen M. P. and Tildesley D. J. 1989. Computer simulation of
liquids. New York: Oxford Science Publications. Oxford
University Press.

Asphaug E., King P. J., Swift M. R., and Merrifield M. R.
2001. Brazil nuts on eros: Size-sorting of asteroid regolith
(abstract). 32nd Lunar and Planetary Science Conference.
p. 1708.

Borovi�cka J. and Charvat Z. 2009. Meteosat observation of
the atmospheric entry of 2008 TC3 over Sudan and the
associated dust cloud. Astronomy & Astrophysics 507:1015.

Britt D. T., Yeomans D. K., Housen K., and Consolmagno
G. 2002. Asteroid density, porosity, and structure. In
Asteroids III, edited by Bottke W. M. Jr., Cellino A.,
Paolicchi P., and Binzel R. P. Tucson, Arizona: The
University of Arizona Press, pp. 485–500.

Castellanos A. 2005. The relationship between attractive
interparticle forces and bulk behaviour in dry and
uncharged fine powders. Advances in Physics 54:263–376.

Colwell J. E., Batiste S., Hor�anyi M., Robertson S., and Sture
S. 2007. Lunar surface: Dust dynamics and regolith
mechanics. Reviews of Geophysics 45:2005RG000184.

Cundall P. A. 1971. A computer model for simulating
progressive large scale movements in blocy rock systems.
Proceedings of the International Symposium on Rock
Mechanics 1:129–136.

Desai C. S. and Hema J. S. 1984. Constitutive laws for
engineering materials, with emphasis on geologic materials.
Englewood Cliffs, New Jersey: Prentice-Hall.

Fujiwara A., Kawaguchi J., Yeomans D. K., Abe M., Mukai
T., Okada T., Saito J., Yano H., Yoshikawa M., Scheeres
D. J., Barnouin-Jha O., Cheng A. F., Demura H., Gaskell
R. W., Hirata N., Ikeda1 H., Kominato T., Miyamoto H.,
Nakamura A. M., Nakamura R., Sasaki S., and Uesugi K.
2006. The rubble-pile asteroid Itokawa as observed by
Hayabusa. Science 312:1330–1334.

Gaskell R., Saito J., Ishiguro M., Kubota T., Hashimoto T.,
Hirata N., Abe S., Barnouin-Jha O., and Scheeres D.
2008. Gaskell Itokawa shape model v1. 0. NASA
Planetary Data System, 92

Harris A. W. 1994. Tumbling asteroids. Icarus 107:209–211.
Herrmann H. J. and Luding S. 1998. Modeling granular

media on the computer. Continuum Mechanics and
Thermodynamics 10:189–231. doi:10.1007/s001610050089.

Holsapple K. A. 2001. Equilibrium configurations of solid
cohesionless bodies. Icarus 154:432–448.

Holsapple K. A. 2004. Equilibrium figures of spinning bodies
with self-gravity. Icarus 172:272–303.

Holsapple K. A. 2007. Spin limits of solar system bodies:
From the small fast-rotators to 2003 EL61. Icarus
187:500–509.

Holsapple K. A. 2010. On YORP-induced spin deformations
of asteroids. Icarus 205:430–442.

Jacobson S. A. and Scheeres D. J. 2011. Dynamics of
rotationally fissioned asteroids: Source of observed small
asteroid systems. Icarus 214:161–178.

Jenniskens P., Shaddad M. H., Numan D., Elsir S., Kudoda
A. M., Zolensky M. E., Le L., Robinson G. A., Friedrich
J. M., Rumble D., Steele A., Chesley S. R., Fitzsimmons
A., Duddy S., Hsieh H. H., Ramsay G., Brown P. G.,
Edwards W. N., Tagliaferri E., Boslough M. B., Spalding
R. E., Dantowitz R., Kozubal M., Pravec P., Borovička
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APPENDIX

CUBIC SIZE DISTRIBUTION

The cumulative boulder size distribution for
Itokawa has been measured to be of the form NðrÞ ¼ A

r3
.

Using this form for the cumulative distribution we can
establish a number of useful results. Associated with
this distribution is a maximum and minimum grain
radius, r1 and r0, respectively. We interpret N(r) to be
the cumulative number of particles with radius between
r and the maximum size r1. The term A is initially
chosen to agree with the observed number of largest
boulders, N1, such that N(r1) = N1. With this
interpretation, we get the nominal form for the
function:

NðrÞ ¼ N1
r1
r

� �3

(25)

Size Frequency Density Function

We interpret the cumulative distribution as the
integral of a cumulative density function n(r), defined as:

NðrÞ ¼
Z r1

r

nðrÞdr (26)

With this definition, we can immediately note that
nðrÞ ¼ � dN

dr
, leading to the cumulative density function

nðrÞ ¼ 3N1r
3
1

r4
(27)
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We can also define a density distribution function
that integrates to unity, denoted as �n(r). We define this as

�nðrÞ ¼ nðrÞR r1
ro
nðrÞdr (28)

Carrying out this computation we find

�nðrÞ ¼ 3r31r
3
0

ðr31 � r30Þr4
(29)

Mean Grain Radius

The mean grain radius is defined as

�n ¼
Z r1

r0

r�nðrÞdr (30)

¼ 3

2
r1r0

r1 þ r0

r21 þ r1r0 þ r20
(31)

Thus, if r0 << r1, we find �r� 3
2 r0.

Surface Area of Grains

The total surface area in the rubble pile is
computed as

SAT ¼
Z r1

r0

4 pr2nðrÞdr (32)

¼ 12pN1r
2
1

r1
r0

� 1

� �
(33)

Thus, we see that if r0 << r1, we have an arbitrarily
large total surface area.

A descriptive metric of surface area distribution is
to find the particle radius rH at which the total surface
area larger than this size equals the total surface area
less than this size. This is found fromZ rH

r0

4pr2nðrÞdr ¼
Z r1

rH

4pr2nðrÞdr (34)

It is easy to show that the value of rH that satisfies
this equals

rH ¼ 2r0r1
r0 þ r1

(35)

which is the harmonic mean of the smallest and largest
grains. Thus, if r0 << r1, we see that this equality occurs
at rH ~ 2r0. Thus, we note that there is “ample” surface

area for smaller grains to cover and come into contact
with larger grains.

More generally, the ratio of surface area from r0 to
a value rC over the surface area from rC to r1 equals

rC
r0
� 1

� �

1� rC
r1

� � (36)

For a system with r1 = 10 m, r0 = 1 lm, and
rC = 1 mm, we see that there is approximately 1000
times more surface area from microns to millimeters
than from millimeters to decameters.

Volume of Grains

The total volume of grains can be found by

VT ¼
Z r1

r0

4p
3
r3nðrÞdr (37)

¼ 4pN1r
3
1 ln

r1
r0

� �
(38)

and we note that it is dominated by the volume of the
largest grains, as is expected.

Again, it is interesting to find the radius rhalf, such that
the volume of grains lower than rhalf equals the volume
larger than this radius. Solving for the total volume from
r0 to a size r, we find VTðrÞ ¼ 4pN1r

3
1 lnðr=r0Þ. Equating

this to VT(r1)/2 and solving for r gives us rhalf. Setting the
equation up and simplifying yields

lnðrhalf=r0Þ ¼ 1

2
lnðr1=r0Þ (39)

Solving yields rhalf ¼ ffiffiffiffiffiffiffiffi
r0r1

p
, the geometric mean of

the minimum and maximum grains.

Largest Grain

Assume that we have an asteroid with a mean radius
R and total volume 4p/3R3. Equating this with the total
volume of a distribution, we can find a relationship
between the maximum and minimum boulder sizes and
the total volume. Equating these volumes, we find

1

3N1

R

r1

� �3

¼ ln
r1
r0

� �
(40)

Incorporating the packing fraction gives the result
found in the study.
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