







#### **Operations in Microgravity**

- What are microgravity environments?
- How does microgravity shape natural surface processes?
- How will it affect operations?
- How can we simulate microgravity, or develop realistic models to drive down risk for future operations?





#### What is "microgravity"?

- Gravity levels on a planetary surface are defined by the body's physical properties, including size (radius/diameter), mass, and density
- "Microgravity" is often used to refer to the regime of near-weightlessness
  - Can technically refer to the gravity levels on small asteroids
  - Other low-gravity regimes are sometimes lumped in









# Ranges of gravity regimes



Ranges of low-gravity regimes

| <u> </u>        |                    | , ,               |                                           |              |
|-----------------|--------------------|-------------------|-------------------------------------------|--------------|
|                 | Mean diameter (km) | Gravity Level (g) | Surface gravitational acceleration (m/s²) | Escape speed |
| Earth           | 13,000 km          | 1 g               | 9.8 m/s <sup>2</sup>                      | 11.2 km/s    |
| Mars            | 6,800 km           | 1/3 g             | $3.7 \text{ m/s}^2$                       | 5.0 km/s     |
| Moon            | 3500 km            | 1/6 g             | 1.6 m/s <sup>2</sup>                      | 2.4 km/s     |
| (433) Eros      | 17 km              | 1/1700            | 0.0059 m/s <sup>2</sup>                   | ~10 m/s      |
| (162173) Ryugu  | .87 km             | 1/80,000 g        | 1.2x10 <sup>-4</sup> m/s <sup>2</sup>     | ~.4 m/s      |
| (101955) Bennu  | 0.5 m              | 1/100,000 g       | ~9.8x10 <sup>-5</sup> m/s <sup>2</sup>    | ~.2 m/s      |
| (25143) Itokawa | 0.32 km            | 1/114,000 g       | 8.6x10 <sup>-5</sup> m/s <sup>2</sup>     | ~.2 m/s      |





Lorda et al., 2017

#### What is "microgravity"?

- Gravity levels on a planetary surface are defined by the body's physical properties, including *size* (*radius*/*diameter*), *mass*, *and density*
- "Microgravity" is often used to refer to the regime of near-weightlessness
  - Can technically refer to the gravity levels on small asteroids
  - Other low-gravity regimes are sometimes lumped in



 Gravity regimes define the behavior of objects on the surface – determines the relative importance of different forces

# Granular mechanics and microgravity

- Low-gravity operations and granular mechanics complications are interlaced
- Develop novel anchoring/ off-loading techniques to enable surface operations
- Granular materials present and additional challenge – can also try to use these to our advantage



#### Granular mechanics in variable-g

- Consider both bulk motion and individual particle behavior
- Granular flow can transition through classical solid-liquid-gas regimes
- Scaling laws are difficult to establish
  - However, there are discrepancies between theoretical predictions, numerical simulations, and experiments
  - i.e. the dependence of avalanche behavior (timing, slopes, failure mechanisms) on gravity level





Hofmeister et al., 2009





From Murdoch et al., 2015

#### Granular material behavior in variable-g

Consider both bulk motion and individual particle behavior

Different relative effects of forces in the extreme environments of other planetary

surfaces







# Lunar Regolith Distributions

 Discrete layers ID-ed in all drive-tube cores, with some variation from site-to-**Apollo 15 drive-tube core** site Tubes have been analyzed to determine 10 Mean for Entiremean\* grain size with depth Core

Lunar Sourcebook, Ch 7

20

40

50

150 µm

100 µm

MEAN GRAIN SIZE (Mz)

DEPTH (cm)

(b)

10<sup>8</sup>

0 os

000

00

ê

#### DEPTH BELOW LUNAR SURFACE, cm Apollo 17 **Apollo Drill Core Samples** 1.0 1.5 2.0 BULK DENSITY OF LUNAR SOIL, ρ (g/cm<sup>3</sup>) Hyperbolic: $\rho =$ $1.92 \frac{z+12.2}{z+18}$ DEPTH BELOW LUNAR SURFACE, z (cm) Recommended typical values for intercrater areas (Table 9.4) Linear: $\rho = 1.68$ -Power: $\rho =$ 1.0 1.5 2.0 BULK DENSITY OF LUNAR SOIL, $\rho$ (g/cm<sup>3</sup>)

# Lunar Regolith Distributions

- Discrete layers ID-ed in all drive-tube cores, showing variation from site-to-site
- Tubes have been analyzed to determine mean\* grain size with depth
- Can try to predict the general behavior of the bulk density of lunar soil w/ depth
  - But appears to be more striated, so simple smooth model not perfect
- Even understanding this distribution doesn't guarantee performance of drill, penetration device





# Lunar Regolith Distributions

• New results from the Chang'e-4 rover on the lunar farside, in an ejecta deposit



- Radar data shows subsurface structure, although challenging on the Moon!
- Provides general structure, large structures, but not much information about particle sizes, distributions







#### Asteroid Regolith Distributions

• We have observations of regolith distribution on the Moon, asteroidal, and small moon surfaces

• Optical, radar, spectral, thermal measurements are used to determine

particle sizes on remote surfaces

 Size distribution typically has a power-law slope

 For Eros, Itokawa, and others slope seems to be close to ~3

Eros, for instance, has particles sizes ranging from fines (< cm-sized dust) to larger boulders (>10 m)
 (Thomas et al., 2002)



A shallower slope may indicate that boulders have experienced less processing, including breaking, sorting, and transporting (*Thomas et al.* 2002).

# Lunar Surface Drilling Challenges









- Apollo 15 used a drive core tube sampler that had been extensively tested on the ground. However, it got stuck much sooner than expected.
- Soil was more compacted than expected! Had to really compact it down in Earth-based tests to reproduce the results
- Subsequently refined drill/sampling mechanism design for Apollo 16/17, and did different/better astronaut training

#### Asteroid Surface Sampling

- NEAR Shoemaker
- Hayabusa-1 and -2 missions
  - Landers, sampling mechanisms
- OSIRIS-REX TAGSAM
  - Sampling mechanisms

Cometary: Rosetta mission w/ Philae lander





# Ground-based experiments - 1g

- Challenges to most experiments they occur on Earth
  - $-g = 9.8 \text{ m/s}^2$
  - Gravitational forces dominate over most forces of interest in particle and surface interactions, but this is NOT true on all other planetary bodies
  - Vacuum, even high vacuum, does not approach that in space
- Surface electrostatic effects are thought to play a significant role in particle-particle interactions
  - on small-body surfaces
  - in small-body interiors
  - in early planet formation processes



# Ground-based experiments – vacuum and μg

- Few seconds of freefall time
- In the CMR:
  - ~0.8 sec freefall time
  - Drag shield can be equipped for cleaner μg
  - Experiment volume typically ~10"x10"x12"
  - Experiment volume evacuated to ~.1-1 Torr
  - Automated trigger at drop
    - Battery powered, Arduino, high-speed camera w/ buffer
- Experiments include low-velocity impacts, and more recently plume interactions







#### Parabolic flights – vacuum and (~30 sec) µg

- Science/tech that can be achieved in <30 sec
  - Typical experiments include human factors, combustion, liquid behavior, gas behavior
- Testbed for rapidly testing prototype experiments
- Low-gravity environment
  - simulate lunar, martian gravity with modified parabolas
  - simulate large asteroid environments with mg gravity
  - simulate small asteroid environments by free-floating







# Suborbital Flights - vacuum and (~few min) µg

- Suborbital offers the chance for more data
  - Several experiments per flight, and
  - repeatability/modification opportunities.
- Longer µg environment
  - can use lower velocity regime
  - can observe evolution of ejecta post-impact
- Can test technologies for planetary surface exploration (sampling, landing, etc.)
- Explore effects of launch/landing conditions



#### Orbital – International Space Station

- National Lab
- **Long-term, stable** µg environment
  - use even lower velocity regime
  - explore long-term evolution of regolith and particle size distributions
  - relative importance of surface forces on particles over time
  - operations in low-gravity environments -
  - internal and external payloads
- A new planetary analog environment?
- Additional challenges and opportunities with crew interactions



#### Operating in Microgravity

- What do we need to test/measure/refine to reduce risk for off-Earth operations?
  - What remote measurements can we take that will improve our understanding of surfaces?
  - How can we improve models to more accurate reflect the complex dynamics?
- What testing can be done in 1-*g*? Short duration low-*g*?
  - How appropriate is it to scale up/down? (size, gravity level, etc.)

#### **SLOPE Experiment**

- SLOPE = Simulating LOw-gravity Planetary Environments
- Study the effects of angle of repose and gravity level on mass movement of granular material
- Provide students an opportunity to participate in the full life cycle of a planetary science space experiment.







**SLOPE Experiment** 

• Use variable g-levels to look at regolith motion due to change in slope, vibration (seismic) effects, and jetting effects.





• Describe phenomenology

- bulk motion • ImageJ (current) – manual edge detection
- Python: edge detection after thresholding into B&W images

#### Tech Demo – RAZZOR wheel testing

• Testing a the "bucket drum" mechanism in variable gravity

with realistic simulant







#### Strata Family of Experiments

- Studies the mixing and segregation dynamics of surface regolith
  - Granular motion, potential Brazil Nut effect
- Goal: provide a better understanding of regolith dynamics and properties of asteroid surface layers
- Characterized by camera observations of granular motion
  - over time, additional acceleration measurements
- 4 tubes loaded with 4 simulants:
  - spherical glass beads
  - glass shards
  - meteorite simulant
  - carbonaceous chondrite



#### Strata-1

- Passive experiment used the ISS gravity and vibration environment to simulate asteroid conditions
- ISS provided accelerometer data from the SAMS instrument
- Gravity vector can be derived from the MAMS instrument









Vibrations and seismic sorting







#### Strata – S1

- Similar hardware, added sensors for force/compression measurements
- Monitor behavior during launch and landing
- Blue Origin Flight 2 May 2019
  West Texas Launch Site
- ~3 minutes of microgravity conditions
- Supported through the NASA REDDI program





#### Hermes – Cassette 1

- Hermes is now an ISS facility instrument
  - Main "locker" hardware, electronics remain with facility
  - "Cassettes" of experiments can be exchanged
  - Capabilities include power, data down, and vacuum
- Facility w/ Cassette 1 launched on Space-X CRS-17 on 4 May 2019
- Installed on ISS 17 July 2019
- Nominal 6-8 month mission
  - Vacuum activation within the first week
  - Experiments are sequentially being activated, tested
- Additional sensors:
  - Force, compression measurements
  - Vibration motor for some active control





#### Hermes – Cassette 1





#### Strata-1...Hermes

- The µg environment on ISS is very dynamic!
  - Relatively low background accelerations ( $\sim 10^{-6}$  g), but a large number of disturbances, higher amplitude signals across frequencies, and periodic signals
  - Sometimes disturbed by activity with other experiments
- Looking into effects of accelerations at different frequencies to determine relationship to observed motion
- Hermes platform will allow for future experiments that can be science and/or exploration driven:



- regolith composition, size differences, etc.
- active vibration control
- testing penetrometers, anchoring, jets, other disturbances



#### Granular-gas interactions

- Plume-surface interactions of increased interest to NASA and commercial partners
  - Landing on planetary surfaces typically requires engines,
    and engine exhaust/plumes will interact with the surface
  - Regolith surfaces have complex interactions with these plumes – blowing, entrainment, etc.
  - Charged particles in the plumes adds complexity









# Gas-granular interactions



1g mg

Exolith Lab CI Simulant cm-size particles with fines

#### Gas-granular interactions



1g mg

Exolith Lab CI Simulant cm-size particles with fines

#### Discussion



adove@ucf.edu