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Flow Segmentation

Lyapunov Exponents for Flow Segmentation

Track movement of pixels as particle trajectories.

Compute the distance between neighboring particles at the
end of a trajectory.

Particles that stay close together are part of the same
coherent flow pattern.

Particles that diverge belong to separate coherent flow
patterns.

Tool: Finite Time Lyapunov Exponent (FTLE)

April 2012 – p.4/24



Flow Segmentation

Example Video Sequence
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Flow Segmentation

Particle Advection

Every pixel has a position (x, y).

Optical flow provides the velocities (u, v) at each pixel.

dx

dt
= u(x, y, t),

dy

dt
= v(x, y, t)

Initial Condition: Overlay scene with a grid of particles

Particles transported to new coordinates by time-stepping.

x(t+ 1) = x(t) + u(x(t), y(t), t), y(t+ 1) = y(t) + v(x(t), y(t), t)

Performing computations over a time interval (≈ 60 frames)
gives particle trajectories describing the motion in the scene.

April 2012 – p.6/24



Flow Segmentation

Computed Particle Trajectories for Video Sequence
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Flow Segmentation

Computing the FTLE
The jth pair of nearest neighbors diverge at a rate L.

dj(ti) ≈ kje
Lti ⇐⇒ ln dj(ti) ≈ ln kj + Lti

ti = i, sampling time and frame number are synonymous

kj is the initial separation

dj(ti) denotes the distance between the jth pair of nearest
neighbors after i discrete time steps.

This is a set of approximately parallel lines with slope L. The
largest FTLE is approximated by fitting the average line

a(ti) = 〈ln dj(ti)〉,

〈·〉 denotes the average over j, crucial for small/noisy data sets.
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Flow Segmentation

Computed FTLE for a Video Sequence
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Flow Segmentation

Flow Segmentation for Video Sequences
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Flow Segmentation

Flow Representations

Streamlines are tangent to the velocity vectors at every point in
the flow.

Pathlines are trajectories that individual particles in a fluid flow
will follow.

Streaklines represent the locations of all particles at a given time
that passed through a particular point.

For steady flows the representations are the same.
For unsteady flows each provides a different point of view.

YouTube Videos:

L-1011 Airliner Wing Vortice Tests at NASA Langley Research Streaklines 00000

R. Mehran, B.E. Moore, and M. Shah, A Streakline Representation of Flow in Crowded

Scenes, European Conference on Computer Vision, 2010.
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Flow Segmentation

Streaklines vs Pathlines
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Let (xpi (t), y
p
i (t)) be particle position at time t, initialized at point

p and frame i for i, t = 0, 1, 2, . . . , T . Repeated initialization at p
implies (xpi (i), y

p
i (i)) = (xp

0
(0), yp

0
(0)). Positions are updated by

x
p
i (t+ 1) = x

p
i (t) + u(xpi (t), y

p
i (t), t)

y
p
i (t+ 1) = y

p
i (t) + v(xpi (t), y

p
i (t), t)
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Flow Segmentation

Streakline Comparison
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Flow Segmentation

Results
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Abnormal Behavior Detection

Social Force Model (Helbing)

Newton’s 2nd Law F = ma, with m = 1.

Change in velocity of pedestrian i is a = dvi
dt

= Fp + Fint,

Fp =
1

τ
(vpi − vi) is personal desire force

Fint =
dvi
dt

− Fp is interaction force

Actual velocity vi of a particle at coordinate (xi, yi) is obtained
from the spatial-temporal average of optical flow.

Desired velocity v
p
i is a weighted sum of vi and the optical flow

for that particle.

Fighting the Flow
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Abnormal Behavior Detection

Problem and Solution
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Abnormal Behavior Detection

Algortihm
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Abnormal Behavior Detection

Results
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Tracking

Floor Fields
3 assumptions about the movement of an individual imply

3 Floor Fields

boundary the person avoids permanent fixtures, such as trash
cans or walls

static the person has a goal (place to get to and clear direction
on how to get there) and in the absence of obstacles, the
person will go directly there

dynamic the person can only move toward the goal as the flow of
the crowd around him/her allows it
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Tracking

Boundary Floor Field

Flow segmentation, using the largest finite time Lyapunov
exponent, produces the Boundary Floor Field.
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Tracking

Static Floor Field

xi(t+ 1) = xi(t) + u(xi(t), yi(t), t)

yi(t+ 1) = yi(t) + v(xi(t), yi(t), t)

Particle advection gives the goals of the crowd.
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//L
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Tracking

Dynamic Floor Field

Use particle advection to determine if particles around the
tracked individual are moving.

This tells how the surrounding crowd influences the individual’s
motion.
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Tracking

Results
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Further Exploration

Crowd Behavior Recognition
B. Solmaz, B.E. Moore, and M. Shah, Identifying Behaviors
in Crowded Scenes through Stability Analysis for Dynamical
Systems, IEEE Transactions on Pattern Analysis and Machine
Intelligence, minor revision in review, 2012.

Potential Functions to Characterize Abnormal Behavior
R. Mehran, B.E. Moore, and M. Shah, A Streakline
Representation of Flow in Crowded Scenes, European
Conference on Computer Vision, 2010.

Construction of Chaotic Models of Crowd Behavior
S. Wu, B.E. Moore, and M. Shah, Chaotic Invariants of
Lagrangian Particle Trajectories for Anomaly Detection in
Crowded Scenes, IEEE Conference on Computer Vision and Pattern
Recognition, 2010.
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