Structure-Preserving Exponential Integrators

Brian E. Moore

Department of Mathematics

Applied Mathematics and Computation Seminar Oregon State University, 20 April 2018

Acknowledgements

Structure-preserving algorithms for conservative systems perturbed by linear damping

Joint work with

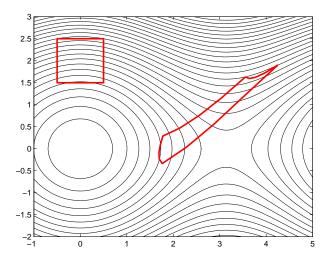
- Constance Schober, Professor UCF
- Laura Norena, UCF student, currently with Valencia College
- Dwayne Floyd, UCF student, currently with DOD
- Ashish Bhatt, UCF Ph.D. student

Thanks to

- NSF for partial funding support
- NTNU Department of Mathematical Sciences for office space, facilities, and a stimulating research environment

Background: Phase space area

Example: Phase portrait for the pendulum problem, $\ddot{q} + \sin(q) = 0$



Background: Simple conservative systems

Models from Newtons 2nd law: $\ddot{q} + \nabla_q V(q) = 0$

• The energy $H = \frac{1}{2}\dot{q}^2 + V(q)$ is an invariant.

$$\frac{d}{dt}H = \frac{d}{dt}\left(\frac{1}{2}\dot{q}^2 + V(q)\right) = \dot{q}\left(\ddot{q} + \nabla_q V(q)\right) = 0$$

• The symplectic form $\omega=dq\wedge d\dot{q}$ is invariant. The variational equation $d\ddot{q}+V_{qq}(q)dq=0$ implies

$$0 = dq \wedge d\ddot{q} + dq \wedge V_{qq}(q)dq = \frac{d}{dt}(dq \wedge d\dot{q})$$

because V_{qq} symmetric implies $dq \wedge V_{qq}(q)dq = 0$. $\frac{d}{dt}\omega = 0$ corresponds to conservation of phase space area.

Background: Simple conservative systems

Models from Newtons 2nd law: $\ddot{q} + \nabla_q V(q) = 0$

• The energy $H = \frac{1}{2}\dot{q}^2 + V(q)$ is an invariant.

$$\frac{d}{dt}H = \frac{d}{dt}\left(\frac{1}{2}\dot{q}^2 + V(q)\right) = \dot{q}\left(\ddot{q} + \nabla_q V(q)\right) = 0$$

• The symplectic form $\omega=dq\wedge d\dot{q}$ is invariant. The variational equation $d\ddot{q}+V_{qq}(q)dq=0$ implies

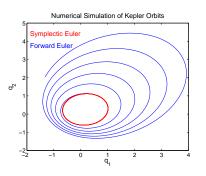
$$0 = dq \wedge d\ddot{q} + dq \wedge V_{qq}(q)dq = \frac{d}{dt}(dq \wedge d\dot{q})$$

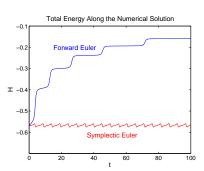
because V_{qq} symmetric implies $dq \wedge V_{qq}(q)dq = 0$. $\frac{d}{dt}\omega = 0$ corresponds to conservation of phase space area.

Background: Numerical solutions of conservative systems

Numerical solutions:

One method is conservative the other is non-conservative



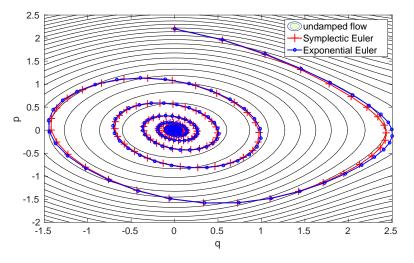


Background: Books on structure-preserving algorithms

- R.E. Mickens, Nonstandard Finite Difference Models of Differential Equations, 1993
- J.M. Sanz-Serna and M.P. Calvo, Numerical Hamiltonian Problems, 1994
- A. Stuart and A.R. Humphries, Dynamical Systems and Numerical Analysis, 1998
- E. Hairer, G. Wanner, and C. Lubich, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2002
- B. Leimkuhler and S. Reich, Simulating Hamiltonian Dynamics, 2005
- D. Furihata and T. Matsuo, Discrete Variational Derivative Method: A Structure-Preserving Numerical Method for Partial Differential Equations, 2010
- X. Wu, X. You, and B. Wang, Structure-Preserving Algorithms for Oscillatory Differential Equations, 2013

Background: Linearly damped (conservative) systems

Trajectories for a damped pendulum problem, $\ddot{q} + \gamma \dot{q} + \sin(q) = 0$



Background: Conformal Symplectic Models and Methods

 McLachlan and Perlmutter (2001): conformal Hamiltonian systems; contraction of the symplectic form

$$\partial_t \omega = -2\gamma \omega \qquad \Longleftrightarrow \qquad \omega(t) = e^{-2\gamma t} \omega(0)$$

 McLachlan and Quispel (2001) and (2002): splitting methods that preserve conformal symplecticity; they satisfy

$$\omega^{n+1} = e^{-2\gamma h} \omega^n$$

where $h = t_{n+1} - t_n$ is the step size.

Splitting Methods for solving $\dot{y} = N(y) - \gamma y$

- ① Solve $\dot{y} = N(y)$ with a conservative (symplectic) method
- ② Solve $\dot{y} = -\gamma y$ exactly: $y(t) = y_0 e^{-\gamma t}$
- Compose the flow maps to get a conformal symplectic scheme

Background: Conformal Symplectic Models and Methods

 McLachlan and Perlmutter (2001): conformal Hamiltonian systems; contraction of the symplectic form

$$\partial_t \omega = -2\gamma \omega \qquad \Longleftrightarrow \qquad \omega(t) = e^{-2\gamma t} \omega(0)$$

 McLachlan and Quispel (2001) and (2002): splitting methods that preserve conformal symplecticity; they satisfy

$$\omega^{n+1} = e^{-2\gamma h} \omega^n$$

where $h = t_{n+1} - t_n$ is the step size.

Splitting Methods for solving $\dot{y} = N(y) - \gamma y$

- **3** Solve $\dot{y} = N(y)$ with a conservative (symplectic) method
- Solve $\dot{y} = -\gamma y$ exactly: $y(t) = y_0 e^{-\gamma t}$
- Ompose the flow maps to get a conformal symplectic scheme

Example: Conformal Implicit Midpoint (CIMP)

Given

$$\dot{y} = N(y) - \gamma y$$

an implicit midpoint type discretization that preserves the conformal symplectic structure is

$$\frac{e^{\gamma_1 h} y^{n+1} - e^{-\gamma_2 h} y^n}{h} = N \left(\frac{e^{\gamma_1 h} y^{n+1} + e^{-\gamma_2 h} y^n}{2} \right)$$

with $\gamma_1 + \gamma_2 = \gamma$.

- $\gamma_1 = \gamma$ and $\gamma_2 = 0$ (first order) is discussed for Birkhoffian systems by Sun & Shang, *Phys. Lett. A* (2005), and Kong, Wu, & Mei, *J. Geom. Phys.* (2012)
- $\gamma_1 = \gamma_2 = \gamma/2$ (second order) was presented by Bhatt, Floyd, & M. *J. Sci. Comp.* (2015)

Example: Conformal Störmer-Verlet (CSV1)

Given the Hamiltonian system perturbed by Rayleigh damping

$$\dot{q} = \nabla_p T(p), \qquad \dot{p} = -\nabla_q V(q) - \gamma p$$

a Störmer-Verlet-like discretization that preserves the conformal symplectic structure is

$$p^{n+1/2} = e^{-\gamma h} p^n - \frac{h}{2} \nabla_q V(q^n),$$

$$q^{n+1} = q^n + h \nabla_p T(p^{n+1/2}),$$

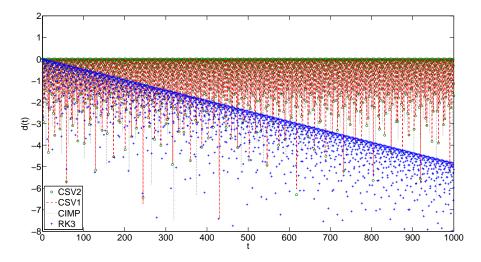
$$p^{n+1} = e^{-\gamma h} \left[p^{n+1/2} - \frac{h}{2} \nabla_q V(q^{n+1}) \right]$$

- Modin & Söderlind, BIT Numer. Math. (2011)
- Bhatt, Floyd, & M. J. Sci. Comp. (2015)

Numerical Dissipation Rates for a Damped Oscillator

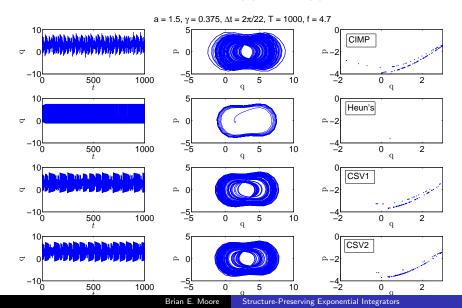
$$\dot{q} = p, \quad \dot{p} = -\omega^2 q - 2\gamma p,$$

$$d(t_n) = \ln(q_n) + \gamma t_n$$



Forced-Damped Chaotic Pendulum

$$\dot{q} = p,$$
 $\dot{p} = -a^2 \sin(q) + f_d \sin(t) - 2\gamma p$



Generalizations

Consider the IVP

$$\dot{y}(t) = N(y(t)) - \gamma(t)y(t), \quad y(0) = y_0$$

where $y \in \mathbb{R}^d$ with $d \in \mathbb{N}$, $\gamma : \mathbb{R} \to \mathbb{R}$, and $N : \mathbb{R}^d \to \mathbb{R}^d$

Definition of conformal invariant

 $\mathcal{I}: \mathbb{R}^d \to \mathbb{R}$ is a conformal invariant for the IVP if $\frac{d}{dt}\mathcal{I} = -\gamma(t)\mathcal{I}$.

Note: $\mathcal{I}(y(t)) = e^{-\int_0^t \gamma(s)ds} \mathcal{I}(y_0) \implies \frac{d}{dt} \mathcal{I} = -\gamma(t)\mathcal{I}$

Definition of numerical preservation

A numerical method preserves a conformal invariant if it satisfies

$$\mathcal{I}_{n+1} = e^{-\int_{t_n}^{t_{n+1}} \gamma(s) ds} \mathcal{I}_r$$

Generalizations

Consider the IVP

$$\dot{y}(t) = N(y(t)) - \gamma(t)y(t), \quad y(0) = y_0$$

where $y \in \mathbb{R}^d$ with $d \in \mathbb{N}$, $\gamma : \mathbb{R} \to \mathbb{R}$, and $N : \mathbb{R}^d \to \mathbb{R}^d$

Definition of conformal invariant

 $\mathcal{I}: \mathbb{R}^d \to \mathbb{R}$ is a conformal invariant for the IVP if $\frac{d}{dt}\mathcal{I} = -\gamma(t)\mathcal{I}$.

Note:
$$\mathcal{I}(y(t)) = e^{-\int_0^t \gamma(s)ds} \mathcal{I}(y_0) \implies \frac{d}{dt} \mathcal{I} = -\gamma(t)\mathcal{I}.$$

Definition of numerical preservation

A numerical method preserves a conformal invariant if it satisfies

$$\mathcal{I}_{n+1} = e^{-\int_{t_n}^{t_{n+1}} \gamma(s) ds} \mathcal{I}_r$$

Generalizations

Consider the IVP

$$\dot{y}(t) = N(y(t)) - \gamma(t)y(t), \quad y(0) = y_0$$

where $y \in \mathbb{R}^d$ with $d \in \mathbb{N}$, $\gamma : \mathbb{R} \to \mathbb{R}$, and $N : \mathbb{R}^d \to \mathbb{R}^d$

Definition of conformal invariant

 $\mathcal{I}: \mathbb{R}^d \to \mathbb{R}$ is a conformal invariant for the IVP if $\frac{d}{dt}\mathcal{I} = -\gamma(t)\mathcal{I}$.

Note:
$$\mathcal{I}(y(t)) = e^{-\int_0^t \gamma(s)ds} \mathcal{I}(y_0) \implies \frac{d}{dt} \mathcal{I} = -\gamma(t) \mathcal{I}.$$

Definition of numerical preservation

A numerical method preserves a conformal invariant if it satisfies

$$\mathcal{I}_{n+1} = e^{-\int_{t_n}^{t_{n+1}} \gamma(s) ds} \mathcal{I}_n$$

Examples of conformal invariants

- Pendulum: $\ddot{q} + 2\gamma \dot{q} + \sin q = 0$ $\mathcal{I} = dq \wedge d\dot{q}$
- Oscillator: $\ddot{q} + 2\gamma \dot{q} + \kappa^2 q = 0$ $\mathcal{I} = (\kappa^2 q^2 + \dot{q}^2)/2 + \gamma q \dot{q}$
- Rigid Body: $\dot{y} = B(y)\nabla H(y) \gamma y$ with $y = [y_1, y_2, y_3]^T$ $\mathcal{I} = y_1^2 + y_2^2 + y_3^2$ and $H(y) = \frac{1}{2} \left(\frac{y_1^2}{l_1} + \frac{y_2^2}{l_2} + \frac{y_3^2}{l_3} \right)$
- Klein-Gordon: $u_{tt} u_{xx} + cu + 2\gamma u_t = 0$ $\mathcal{I} = \int u_t u_x \ dx$
- Schrödinger: $i\psi_t + \psi_{xx} + V'(|\psi|^2)\psi + i\gamma\psi = 0$ $\mathcal{I} = \int |\psi|^2 dx$
- Camassa Holm: $u_t u_{xxt} + 3uu_x + \gamma(u u_{xx}) = 2u_x u_{xx} + uu_{xxx}$ $\mathcal{I} = \int (u^2 + u_x^2) dx$
- KdV: $u_t + uu_x + u_{xxx} + 2\gamma u = 0$ $\mathcal{I} = \int u \ dx$

Exponential Runge-Kutta Methods

Runge-Kutta type methods for solving $\dot{y} = N(y) - \gamma y$

$$Y_i = \phi_i(h; \gamma_n) y_n + h \sum_{j=1}^s a_{ij}(h; \gamma_n) N(Y_j), \quad i = 1, \dots, s,$$

$$y_{n+1} = \phi_0(h; \gamma_n) y_n + h \sum_{i=1}^s b_i(h; \gamma_n) N(Y_i).$$

The coefficient functions, ϕ_i, ϕ_0, a_{ij} , and b_i satisfy

$$\phi_i(h;0) = \phi_0(h;0) = 1, \qquad a_{ij}(h;0) = \alpha_{ij}, \qquad b_i(h;0) = \beta_i$$

for all i, j = 1, 2, ..., s.

Similar results hold for partitioned exponential RK methods.

Numerical structure preservation

Theorem

An ERK method is conformal symplectic and preserves conformal quadratic invariants if it has scalar coefficient functions which satisfy $\phi_0 = e^{-\int_{t_n}^{t_{n+1}} \gamma(s) ds}$ and

$$a_{ji}b_i\frac{\phi_0}{\phi_i}+a_{ij}b_j\frac{\phi_0}{\phi_i}-b_ib_j=0 \qquad \forall i,j=1,2,\ldots,s.$$

Example

Numerical structure preservation

Theorem

An ERK method is conformal symplectic and preserves conformal quadratic invariants if it has scalar coefficient functions which satisfy $\phi_0=e^{-\int_{t_n}^{t_{n+1}}\gamma(s)ds}$ and

$$a_{ji}b_i\frac{\phi_0}{\phi_i}+a_{ij}b_j\frac{\phi_0}{\phi_j}-b_ib_j=0 \qquad \forall i,j=1,2,\ldots,s.$$

Example

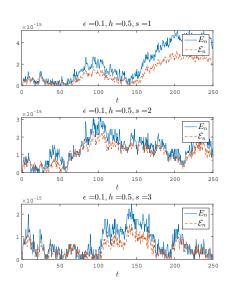
Setting s=1, $a_{11}=1/2$, $b_1=e^{-\int_{t_n+1/2}^{t_{n+1/2}}\gamma(s)ds}$, $\phi_1=e^{-\int_{t_n}^{t_{n+1/2}}\gamma(s)ds}$, gives an implicit midpoint type method

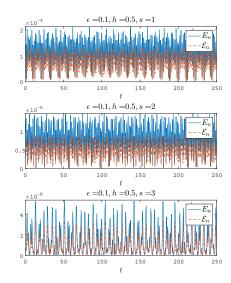
$$w_1y_{n+1} - w_0y_n = hN\left(\frac{1}{2}(w_1y_{n+1} + w_0y_n)\right),$$

with $w_0 = \phi_1$ and $w_1 = 1/b_1$.

Periodically perturbed rigid body, $\gamma(t) = \epsilon \cos(2t)$

Conformal invariant error. Left: ERK; Right: Gauss-Legendre



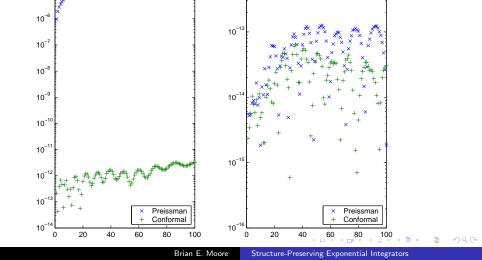


Preservation of Dissipation in Norm and Momentum for $\mathrm{i}\psi_t + \psi_{xx} + 2|\psi|^2\psi + \mathrm{i}0.005\psi = 0$

10^{-1:}

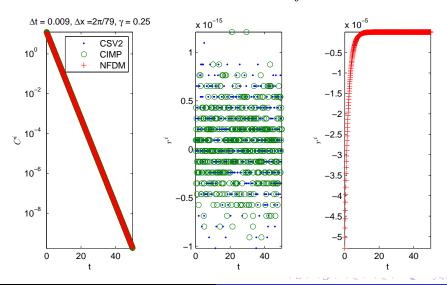
 10^{-4}

10⁻⁵



Preservation of Mass Dissipation for $u_t + uu_x = -2\gamma u$

$$\partial_t C = -2\gamma C$$
 with $C = \int u dx$



Extensions to PDEs

We have seen ODEs that satisfy properties of the form

$$\frac{d}{dt}\mathcal{I} = -\gamma \mathcal{I}.$$

There are PDEs that satisfy properties of the form

$$P_t + Q_X = -aP - bQ$$
.

which is a direct result of

$$\partial_t \left(e^{(at+bx)}P \right) + \partial_x \left(e^{(at+bx)}Q \right) = 0.$$

Thus, we say a numerical method preserves this property if it satisfies a discrete version of the property.

Examples

Generalized Diffusionless Burgers-Fisher Equation

$$u_t + \beta u^{\alpha} u_{\mathsf{X}} = \gamma u (1 - u^{\alpha})$$

Damped Linear KdV-Burgers Equation

$$u_t + u_{xxx} + \alpha u_{xx} + \beta u_x + \gamma u = 0$$

Non-linear Schrödinger Type Equation

$$i\psi_t + \psi_{xx} + (\alpha + i\beta)\psi_x + (\delta + i\gamma)\psi + V'(|\psi|)\psi = 0$$

Non-linear Wave Equation

$$u_{tt} + 2au_t - (\partial_x + 2b)\sigma'(u_x) + f'(u) = 0$$

etc.

General PDEs and Conservation Laws

The PDEs can, in general, be stated

$$\mathbf{K}z_t + \mathbf{L}z_x = \nabla_z S(z) - \frac{a}{2}\mathbf{K}z - \frac{b}{2}\mathbf{L}z$$

where **K** and **L** are skew-symmetric.

- Multi-Symplectic: $\partial_t \left(e^{(at+bx)} \omega \right) + \partial_x \left(e^{(at+bx)} \kappa \right) = 0$
- Linear Symmetries: inner product of equation with Bz

$$\partial_t \left(e^{(at+bx)} z^T \mathbf{K} \mathbf{B} z \right) + \partial_x \left(e^{(at+bx)} z^T \mathbf{L} \mathbf{B} z \right) = 0$$

• Energy: iff a = 0

$$\partial_t \left(e^{bx} \left(S(z) + \frac{1}{2} (z_x^T \mathbf{L} z) \right) \right) + \partial_x \frac{1}{2} (e^{bx} z^T \mathbf{L} z_t) = 0$$

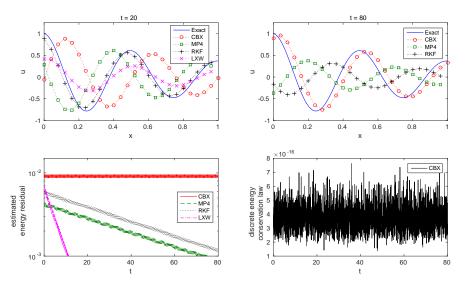
• Momentum: iff b = 0

$$\partial_x \left(e^{at} \left(S(z) + \frac{1}{2} (z_t^T \mathbf{K} z) \right) \right) + \partial_t \frac{1}{2} (e^{at} z^T \mathbf{K} z_x) = 0$$

To preserve, apply conformal methods in space and time.

$u = e^{-x} \cos(4\pi(x-t))$ as solution of $u_t + u_x + u = 0$

$$\Delta t = 0.025, \ \Delta x = 0.04$$



Conclusion and Future Work

Summary

- General approach for constructing high order (Runge-Kutta-like) structure-preserving algorithms.
- The methods are designed for conservative equations that are perturbed by linear non-conservative terms.
- Various properties (relating to energy, momentum, mass, symplecticity, etc.) may be preserved.
- Dissipation rates are exactly preserved for linear problems.

Future Work

- Backward error analysis.
- Usefulness for spatial discretizations of PDEs.
- ullet Extensions to problems where γ is a matrix.
- Construction of exponential time-differencing methods.

