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Background: Phase space area

Example: Phase portrait for the pendulum problem, g + sin(q) =0
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Background: Simple conservative systems

Models from Newtons 2nd law: g+ V4V(q) =0
@ The energy H = %c’;2 + V(q) is an invariant.

%H jt<1q —I—V(q)) 4(4+ VoV(q)) =0
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Background: Simple conservative systems

Models from Newtons 2nd law: g+ V4V(q) =0
@ The energy H = %c’;2 + V(q) is an invariant.

%H jt (1" +V(q)) = 4(§+V4V(q) =0

@ The symplectic form w = dg A dg is invariant.
The variational equation dg + Vyq(q)dg = 0 implies

3 d .
0=4dqgAdg+dgA Vy(q)dg = p (dg A dg)

because Vqq symmetric implies dg A Vyq(q)dg = 0.
%w = 0 corresponds to conservation of phase space area.
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Background: Numerical solutions of conservative systems

Numerical solutions:
One method is conservative the other is non-conservative

Numerical Simulation of Kepler Orbits Total Energy Along the Numerical Solution
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Background: Books on structure-preserving algorithms

@ R.E. Mickens, Nonstandard Finite Difference Models of
Differential Equations, 1993

@ J.M. Sanz-Serna and M.P. Calvo, Numerical Hamiltonian
Problems, 1994

@ A. Stuart and A.R. Humphries, Dynamical Systems and
Numerical Analysis, 1998

o E. Hairer, G. Wanner, and C. Lubich, Geometric Numerical
Integration: Structure-Preserving Algorithms for Ordinary
Differential Equations, 2002

@ B. Leimkuhler and S. Reich, Simulating Hamiltonian
Dynamics, 2005

@ D. Furihata and T. Matsuo, Discrete Variational Derivative
Method: A Structure-Preserving Numerical Method for Partial
Differential Equations, 2010

@ X. Wu, X. You, and B. Wang, Structure-Preserving
Algorithms for Oscillatory Differential Equations, 2013
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Background: Linearly damped (conservative) systems

Trajectories for a damped pendulum problem, g + g + sin(q) = 0
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Background: Conformal Symplectic Models and Methods

@ McLachlan and Perlmutter (2001): conformal Hamiltonian
systems; contraction of the symplectic form

Orw = —2yw = w(t) = e 27tw(0)

@ McLachlan and Quispel (2001) and (2002): splitting methods
that preserve conformal symplecticity; they satisfy
wn—l—l — e—27hwn

where h = t,11 — t, is the step size.
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Background: Conformal Symplectic Models and Methods

@ McLachlan and Perlmutter (2001): conformal Hamiltonian
systems; contraction of the symplectic form

Orw = —2yw = w(t) = e 27tw(0)

@ McLachlan and Quispel (2001) and (2002): splitting methods
that preserve conformal symplecticity; they satisfy

wn—l—l — e—27hwn

where h = t,11 — t, is the step size.

Splitting Methods for solving y = N(y) — vy

© Solve y = N(y) with a conservative (symplectic) method
@ Solve y = —vy exactly: y(t) = ype !
© Compose the flow maps to get a conformal symplectic scheme
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Example: Conformal Implicit Midpoint (CIMP)

Given
y=N(y) -y

an implicit midpoint type discretization that preserves the
conformal symplectic structure is

e’Ylhy'H‘l o e—'yghyn Y e’ylhyn—i-l + e—’yzhyn
h B 2
with 1 + 72 = 7.

@ 1 = and 72 = 0 (first order) is discussed for Birkhoffian
systems by Sun & Shang, Phys. Lett. A (2005), and Kong,
Wu, & Mei, J. Geom. Phys. (2012)

® 1 = 2 = 77/2 (second order) was presented by Bhatt, Floyd,
& M. J. Sci. Comp. (2015)
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Example: Conformal Stormer-Verlet (CSV1)
Given the Hamiltonian system perturbed by Rayleigh damping
g=V,T(p), pP=-V¢V(q)—p

a Stormer-Verlet-like discretization that preserves the conformal

symplectic structure is

h
P = ep" — SV V(q"),
qn+1 — qn + thT(pn+1/2),
h
pn+1 _ e—wh pn+1/2 o §qu(qn+1)

@ Modin & Saéderlind, BIT Numer. Math. (2011)
@ Bhatt, Floyd, & M. J. Sci. Comp. (2015)
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Forced-Damped Chaotic Pendulum

qg=np, p=—a° sin(q) + fgsin(t) — 2vp

a=1.5,y=0.375, At = 21722, T = 1000, f = 4.7
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Generalizations

Consider the IVP

y(t) = N(y(t)) —v(t)y(t), y(0)=yo

where y € RY with d € N, v: R = R, and N : RY — R?
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Generalizations

Consider the IVP

y(t) = N(y(t)) —v(t)y(t), y(0)=yo

where y € RY with d € N, v: R = R, and N : RY — R?

Definition of conformal invariant

T :R? = R is a conformal invariant for the IVP if %I = —(t)Z.

Note: Z(y(t)) = e b 1B T(y) — 4T = _~(1)T.
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Generalizations

Consider the IVP

y(t) = N(y(t)) —v(t)y(t), y(0)=yo

where y € RY with d € N, v: R = R, and N : RY — R?

Definition of conformal invariant

T :R? = R is a conformal invariant for the IVP if %I = —(t)Z.

Note:  Z(y(t)) = e b 1O)T(yy) — 4T = _4(1)T.

Definition of numerical preservation

A numerical method preserves a conformal invariant if it satisfies

th1
In-i—l =e ft" W(S)dsIn
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Examples of conformal invariants

@ Pendulum: g +2vg+sing=20
Z=dgNdg
Oscillator: § + 2vg + k%2 =0
I=(k*9"+§%)/2+99
Rigid Body: y = B(y)VH(y) — vy with y = [y1,y2,y3] "
T=y24+2+y2and H(y)=L1 (2 +% 15
=yi +¥5 +y;5 and H(y) = 3 Ay i »

(]

@ Klein-Gordon: uy — uyx + cu+2yu =0
T = [ upuy dx

@ Schrodinger: ith; + W + V/(|¢0[?)) + iy = 0
Z=[|y]* dx

@ Camassa Holm: wu; — usr + 3utiy + 7(U — Uxx) = 2Uxlxx + Ullxxx

T = [(u®+ u?) dx
KdV: uy + vty 4 Ussx +2yu =10
Z=[udx
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Exponential Runge-Kutta Methods

Runge-Kutta type methods for solving y = N(y) — vy

S
Yi = ¢i(hivn)yn+ h Y ag(hiva)N(Y)), i=1,...,s,
j=1

Y1 = do(hivn)yn+h Y bi(h;ya)N(Y7).
i=1

The coefficient functions, ¢;, ¢o, ajj, and b; satisfy
¢i(h;0) = ¢o(h;0) =1,  a;(h;0) =y,  bi(h;0) =B

foralli,j=1,2,...,s.

Similar results hold for partitioned exponential RK methods.
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Numerical structure preservation

Theorem

An ERK method is conformal symplectic and preserves conformal
quadratic invariants if it has scalar coefficient functions which

satisfy ¢g = e~ Jer* As)ds and

aji (b +aub¢

11 bb—O Vi,j:1,2,...,s
i 7
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Numerical structure preservation

An ERK method is conformal symplectic and preserves conformal
quadratic invariants if it has scalar coefficient functions which

satisfy ¢g = e~ Jea*t 2(s)ds and

aji b (Z, ajjb; ZJ

thtl
fth/z 'y(s)ds,

b,‘ijO Vi,j:1,2,...,s

Setting s = 1, a11 = 1/2, b =
th 1/2
o1 =¢e" Je* , gives an implicit midpoint type method

2(W1Yn+1 + WOYn)) )

1
W1Ynt+1 — Woyn = AN (—

with wp = ¢1 and wy = ]./bl
ot
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Periodically perturbed rigid body, v(t) = € cos(2t)
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Preservation of Dissipation in Norm and Momentum for

i1 + Y + 2|12 +10.005

107 10
10—5 ’fglwl' i
%
_6 X
10 K E
_ % X P
10 g oxx <% B KK
-7 XX X ) X Xy
10 " ¢ E ® XP*% < X
x
S RaU,
) x Xty X RO fﬁ# <t jﬁ} L
10 | 1 e R S #
+ + + + +
o T +X:+ x
107+ E 107 b o * +x + ot
oW + o+ +
-10 B < x ++ :
10 L 4 o+ x
+
i * +
11 X
10 ¢ E| + +
it 107t E
072y P S E + *
o H F H L
:t»#w
s+
1070 k!
BTt X Preissman X Preissman
+ Conformal + Conformal
10_14 L L n n 10_16 L L n n
0 20 40 60 80 100 0 20 40 60 80 100

Brian E. Moore Structure-Preserving Exponential Integrators



Preservation of Mass Dissipation for u; + uu, = —2vu

0:C =-27C with C= /udx

At =0.009, Ax =21779, y = 0.25
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Extensions to PDEs

We have seen ODEs that satisfy properties of the form

d

R —
dt v

There are PDEs that satisfy properties of the form
P: + Qx = —aP — bQ.
which is a direct result of

0, (e(at+bx)P) + 8, (e(at+bx) Q) —o.

Thus, we say a numerical method preserves this property if it
satisfies a discrete version of the property.
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@ Generalized Diffusionless Burgers-Fisher Equation
ur + puu, = yu(l — u®)
@ Damped Linear KdV-Burgers Equation
U + Usxx + iy + Bux +yu =0
@ Non-linear Schrédinger Type Equation
it + o + (@ + iB)h + (6 + i)y + V([¢]) = 0
@ Non-linear Wave Equation
U + 2auy — (Ox + 2b)o’ (ux) + f'(u) =0
@ etc.
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General PDEs and Conservation Laws

The PDEs can, in general, be stated

Kz + Lz, = V,5(z) — ng — ng

where K and L are skew-symmetric.
o Multi-Symplectic: 9; (e@+P)w) + 0, (e(2t+¥)k) =0
@ Linear Symmetries: inner product of equation with Bz
O (eCt+PI2TKBz) + 0y (el?+92TLBz) = 0
@ Energy: iffa=0
O (e? (S(2) + (2] Lz))) + 0,k (eP2TLz) = 0
@ Momentum: iff b=10
O« (et (S(2) + 2(z2/ K2))) + 93 (e™2TKz) =0
To preserve, apply conformal methods in space and time.
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u = e *cos(4m(x — t)) as solution of u; + uy +u =0

At =0.025, Ax = 0.04
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Conclusion and Future Work

Summary

@ General approach for constructing high order
(Runge-Kutta-like) structure-preserving algorithms.

@ The methods are designed for conservative equations that are
perturbed by linear non-conservative terms.

@ Various properties (relating to energy, momentum, mass,
symplecticity, etc.) may be preserved.

@ Dissipation rates are exactly preserved for linear problems.

Future Work
@ Backward error analysis.
@ Usefulness for spatial discretizations of PDEs.
@ Extensions to problems where ~ is a matrix.

@ Construction of exponential time-differencing methods.
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