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Metaphor

“There are many other things I have found myself saying about
poetry, but the chiefest of these is that it is metaphor. . . saying one
thing in terms of another. . . . Poetry is simply made of metaphor.
So also is philosophy–and science, too, for that matter, if it will
take the soft impeachment from a friend.”

- Robert Frost
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Set-up and Solution

Our Nervous System
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The nervous cells live inside the myelin sheath.

Ionized sodium causes electric impulse to jump from node to node.

Multiple Sclerosis destroys myelin, which inhibits conduction.

Questions

When/Where does conduction stop due to demyelination?

How much demeylination is required to make it stop?
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Bistable Equation with Inhomogeneous Diffusion

d

dt
uj = αj(uj+1 − uj)− αj−1(uj − uj−1)− f (uj)

with
αj = α for j < −m or j > n

αj 6= α for −m ≤ j ≤ n, for m, n ∈ {0} ∪ N

Boundary Conditions
for Fronts limj→−∞ uj = 0, limj→∞ uj = 1
for Pulses limj→±∞ uj = 0

The nonlinearity is the derivative of a double-well potential,

typically f (u) = u(u − a)(u − 1) with a ∈ (0, 1).
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Nonlinearities

Cubic: f (u) = u(u − a)(u − 1), with a ∈ (0, 1)

McKean: f (u) = u − h(u − a) h(x) =

 1 x > 0
[0,1] x = 0
0 x < 0

Sawtooth: f (u) =

 u, u ≤ a/2
a− u, a/2 < u < (a + 1)/2
u − 1, u ≥ (a + 1)/2

u
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Computer Simulations

Case: McKean and a single defect αj =

{
0.6 j = 30
1 j 6= 30
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A slightly faster impulse is able to pass through the defect.
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Change in wave speed passing through the defect
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Set-up

We seek solutions that satisfy
for Fronts

uj < a for j < j∗ uj > a for j > j∗,

which implies
h(uj∗ − a) = h(j − j∗) =: gj

for Pulses

uj > a for j∗ < j < j∗∗ and uj < a otherwise.

which implies

h(uj∗ − a) = h(j − j∗)− h(j − j∗∗) =: gj

In both cases, the steady-state equation becomes

αjuj+1 − (1 + γ + αj + αj−1)uj + αj−1uj−1 = gj
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Solutions Using the Method of Undetermined Coefficients

General Solution = Homogeneous Solution + Particular Solution

uj =uj∗ρj + uj∗+1σj +


−
∑j

k=j∗+1
gk
αk
σj−k j > j∗

0 j = j∗
gj∗
αj∗
σj−j∗ j < j∗

Fundamental solutions satisfy
(ρj∗ , ρj∗+1) = (1, 0), and (σj∗ , σj∗+1) = (0, 1).

The particular solution can be found in Teschl (2000).

The coefficients are determined by the boundary conditions.
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Interval of Propagation Failure

Theorem

If a yields a traveling front for α0 = α, then

Either a ∈ (0, 1/(λ+ 2)) or a ∈ ((λ+ 1)/(λ+ 2), 1) with
λ = (1 +

√
1 + 4α)/2α

There are no corresponding standing fronts for α0 < α and
j∗ 6= 0, nor for α0 > α and j∗ = 0.

There exist standing fronts for α0 < α and j∗ = 0, and for
α0 > α and j∗ 6= 0, provided

a ∈
[

α0/α

λ+ 2(α0/α)
,
λ+ α0/α

λ+ 2(α0/α)

]
.
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Interval of Propagation Failure, α = 1
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Interval of Propagation Failure
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Propagation Failure for Pulses of Various Widths

α = 2, and αj = 1/2 for j ∈ [−2, 2]
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Multiple Defect with α = 2
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Sawtooth Steady-State Equation

−αkuk+1 + (vk + αk + αk−1)uk − αk−1uk−1 = wk , ∀k ∈ Z

vk =


1, k < k∗ + 1
−1, k∗ + 1 ≤ k ≤ k∗ + n
1, k > k∗ + n

wk =


0, k < k∗ + 1
−a, k∗ + 1 ≤ k ≤ k∗ + n
1, k > k∗ + n
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infinite tridiagonal system of equations

(M + yzT )u = w, where y = −2ek∗+1, z = ek∗+1,

u = [...uk−1 uk uk+1...]
T , w = [...wk−1 wk wk+1...]

T ,

Mij =


−αi−1 i = j + 1
(1 + αi + αi−1) i = j
−αi i = j − 1
0 otherwise

Using the Sherman-Morrison formula

u = (M0 + y0z
T
0 )−1w = M−1w − M−1y0zT0 M

−1w

1 + zT0 M
−1y0

.

M−1x is the solution provided by Teschl (2000).
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Stationary Fronts for α0 6= α

k*
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Algorithm for solving (M + y0zT0 + . . .+ yn−1zTn−1)un = w
1. Input: αk , a, n, k∗

2. Construct w, M, yi , zi for i = 0, 1, . . . , n − 1
3. Solve Mu0 = w
4. For i = 0 to n − 1
5. Solve Mxi ,0 = yi
6. For j = 1 to i

7. Compute xi ,j = xi ,j−1 −
xj−1,j−1z

T
j−1xi,j−1

1+zTj−1xj−1,j−1

8. End For

9. Compute ui+1 = ui −
xi,iz

T
i ui

1+zTi xi,i

10. End For
11. Output: un
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Problem on a 2-dimensional lattice

Semi-linear wave equation: utt = uxx − V ′(u)

5-point central difference scheme:

1

(∆t)2
(
un+1
i − 2un

i + un−1
i

)
− 1

(∆x)2
(
un
i+1 − 2un

i + un
i−1
)

= −V ′(un
i )

Traveling wave ansatz:

un
i = ϕ(xi − ctn) = ϕ(i∆x − cn∆t) = ϕ(iσ − nκ) = ϕ(ξ)

where σ = ∆x , κ = c∆t, and ξ = iσ − nκ

Resulting functional equation:

c2

κ2
(ϕ(ξ + κ)− 2ϕ(ξ) + ϕ(ξ − κ)) (1)

− 1

σ2
(ϕ(ξ + σ)− 2ϕ(ξ) + ϕ(ξ − σ)) = −V ′(ϕ(ξ))
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Problem on a 2-dimensional lattice
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McKean: heteroclinic solutions by Fourier transform

For rational values of σ
κ solutions may be

piecewise constant, monotonic, without wiggles

piecewise constant, nonmonotonic, with O(κ2) wiggles
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Sawtooth: solutions by Fourier transform

Periodic TWs persist for both rational and irrational σκ .
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Case Study: Sine-Gordon, V ′(ϕ) = sin(ϕ)

We solve F−1DFϕ+ sin(ϕ) = 0 using Newtons Method, where F
is the discrete Fourier transform, and D = diag(dn).

We obtain 2 types of periodic solutions, non-resonant and resonant.

T = 2(π + 6.7) T = 2(π + 9.9)
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Backward Error Analysis (BEA)

Problem: Finding discrete traveling waves means solving an infinite
dimensional functional equation.

Idea: Find a differential equation that is satisfied (to higher order)
by the discrete traveling wave.

Technique:
1 Write the discrete traveling wave equation as Lκ,σϕ = f (ϕ).
2 Invert Lκ,σ and differentiate to get ϕ̇ = DL−1κ,σf (ϕ).
3 Expand L−1κ,σ in a Taylor series to get a modified equation

ϕ̇ = f (ϕ) + µ1(κ, σ)f1(ϕ) + µ2(κ, σ)f2(ϕ) + . . .

Benefit: This approach is applicable to many Multi-symplectic
methods for many PDEs and provides considerable insight.

Result for equation (1): Modified equation is a planar Hamiltonian
system; its solutions represent the discrete traveling waves.
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BEA: Solution error for modified equations of Sine-Gordon

Plots of ϕ− ϕ̂, where ϕ is the DTW computed using Fourier series
and ϕ̂ is the solution of the modified equation.

Plots show results for 0, 1, and 2 modifications, with σ = κ = 1/2.
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BEA: Solution error for modified equations of Sine-Gordon

Plot of log10 ‖ϕ− ϕ̂‖ where ϕ is DTW and ϕ̂ is solution of
modified equation truncated after one term.

Small anomalies signify resonances.
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BEA: Preissmann box scheme for iψt + ψxx + |ψ|2 ψ = 0

Define ψ = p + iq, ψx = v + iw , and

Dκ
ξ ϕ(ξ) = −c(ϕ(ξ)− ϕ(ξ − κ))

κ
, Dσ

ξ ϕ(ξ) =
ϕ(ξ + σ)− ϕ(ξ)

σ
,

Aκξϕ(ξ) =
ϕ(ξ) + ϕ(ξ − κ)

2
, Aσξϕ(ξ) =

ϕ(ξ) + ϕ(ξ + σ)

2

The modified equation is


ṗ
q̇
v̇
ẇ

 = D


0 0 1

Dσξ A
κ
ξ

0

0 0 1
Dσξ A

κ
ξ

−1
Dσξ A

κ
ξ

0 0
Dκξ A

σ
ξ

(Dκξ A
σ
ξ )

2

0 −1
Dσξ A

κ
ξ

−Dκξ A
σ
ξ

(Dκξ A
σ
ξ )

2 0



|AκξAσξψ|2AκξAσξ p

|AκξAσξψ|2AκξAσξ q

AκξAσξ v

AκξAσξw


which is a noncannonical Hamiltonian system with rotational
invariance and TWs are preserved.
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Comparison of discretizations for steady state solutions

Multi-symplectic:
Modified equations: periodic, hetero/homoclinic orbits persist
Leapfrog: orbits approximate continuous solutions

Non-Symplectic
Non-symmetric: destroy periodic and hetero/homoclinic orbits
Symmetric: do not preserve non-symmetric waves
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Conclusion

“Unless you are at home in the metaphor, unless you have had your
proper poetical education in the metaphor, you are not safe
anywhere. Because you are not at ease with figurative values: you
don’t know the metaphor in its strength and its weakness. You
don’t know how far you may expect to ride it and when it may
break down with you. You are not safe with science; you are not
safe in history.”

- Robert Frost
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