Structure-Preserving Exponential Integrators

Brian E. Moore

Department of Mathematics

Applied Mathematics and Computation Seminar Oregon State University, 20 April 2018

Acknowledgements

Joint work with

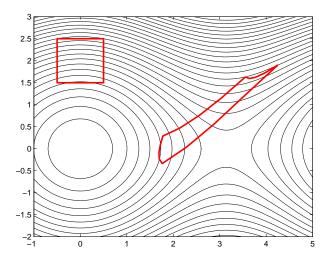
- Constance Schober, Professor UCF
- Laura Norena, UCF student, currently with Valencia College
- Dwayne Floyd, UCF student, currently with DOD
- Ashish Bhatt, UCF student, currently post-doc at the University of Stuttgart

Thanks to

- NSF for partial funding support
- NTNU Department of Mathematical Sciences for office space, facilities, and a stimulating research environment

Background: Phase space area

Example: Phase portrait for the pendulum problem, $\ddot{q} + \sin(q) = 0$



Background: Simple conservative systems

Models from Newtons 2nd law: $\ddot{q} + \nabla_q V(q) = 0$

• The energy $H = \frac{1}{2}\dot{q}^2 + V(q)$ is an invariant.

$$\frac{d}{dt}H = \frac{d}{dt}\left(\frac{1}{2}\dot{q}^2 + V(q)\right) = \dot{q}\left(\ddot{q} + \nabla_q V(q)\right) = 0$$

• The symplectic form $\omega=dq\wedge d\dot{q}$ is invariant. The variational equation $d\ddot{q}+V_{qq}(q)dq=0$ implies

$$0 = dq \wedge d\ddot{q} + dq \wedge V_{qq}(q)dq = \frac{d}{dt}(dq \wedge d\dot{q})$$

because V_{qq} symmetric implies $dq \wedge V_{qq}(q)dq = 0$. $\frac{d}{dt}\omega = 0$ corresponds to conservation of phase space area.

Background: Simple conservative systems

Models from Newtons 2nd law: $\ddot{q} + \nabla_q V(q) = 0$

• The energy $H = \frac{1}{2}\dot{q}^2 + V(q)$ is an invariant.

$$\frac{d}{dt}H = \frac{d}{dt}\left(\frac{1}{2}\dot{q}^2 + V(q)\right) = \dot{q}\left(\ddot{q} + \nabla_q V(q)\right) = 0$$

• The symplectic form $\omega=dq\wedge d\dot{q}$ is invariant. The variational equation $d\ddot{q}+V_{qq}(q)dq=0$ implies

$$0 = dq \wedge d\ddot{q} + dq \wedge V_{qq}(q)dq = \frac{d}{dt}(dq \wedge d\dot{q})$$

because V_{qq} symmetric implies $dq \wedge V_{qq}(q)dq = 0$. $\frac{d}{dt}\omega = 0$ corresponds to conservation of phase space area.

- If your simulations do not preserve physical properties of the system, then you are modeling the wrong physics.
- Unfortunately, it is not possible, in general, to preserve both energy and the symplectic form at the same time.
- Symplecticity is not a physical property, so many practitioners prefer energy-preserving methods.
- One benefit of preserving symplecticity is that energy is nearly preserved.

- If your simulations do not preserve physical properties of the system, then you are modeling the wrong physics.
- Unfortunately, it is not possible, in general, to preserve both energy and the symplectic form at the same time.
- Symplecticity is not a physical property, so many practitioners prefer energy-preserving methods.
- One benefit of preserving symplecticity is that energy is nearly preserved.

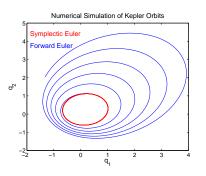
- If your simulations do not preserve physical properties of the system, then you are modeling the wrong physics.
- Unfortunately, it is not possible, in general, to preserve both energy and the symplectic form at the same time.
- Symplecticity is not a physical property, so many practitioners prefer energy-preserving methods.
- One benefit of preserving symplecticity is that energy is nearly preserved.

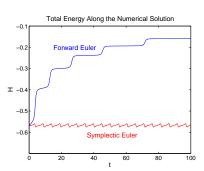
- If your simulations do not preserve physical properties of the system, then you are modeling the wrong physics.
- Unfortunately, it is not possible, in general, to preserve both energy and the symplectic form at the same time.
- Symplecticity is not a physical property, so many practitioners prefer energy-preserving methods.
- One benefit of preserving symplecticity is that energy is nearly preserved.

Background: Numerical solutions of conservative systems

Numerical solutions:

One method is conservative the other is non-conservative



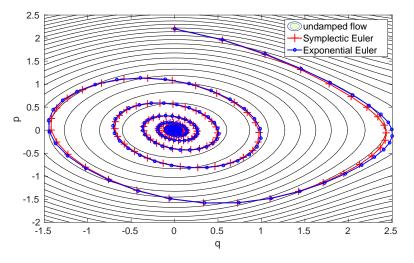


Background: Books on structure-preserving algorithms

- R.E. Mickens, Nonstandard Finite Difference Models of Differential Equations, 1993
- J.M. Sanz-Serna and M.P. Calvo, Numerical Hamiltonian Problems, 1994
- A. Stuart and A.R. Humphries, Dynamical Systems and Numerical Analysis, 1998
- E. Hairer, G. Wanner, and C. Lubich, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2002
- B. Leimkuhler and S. Reich, Simulating Hamiltonian Dynamics, 2005
- D. Furihata and T. Matsuo, Discrete Variational Derivative Method: A Structure-Preserving Numerical Method for Partial Differential Equations, 2010
- X. Wu, X. You, and B. Wang, Structure-Preserving Algorithms for Oscillatory Differential Equations, 2013

Background: Linearly damped (conservative) systems

Trajectories for a damped pendulum problem, $\ddot{q} + \gamma \dot{q} + \sin(q) = 0$



Background: Conformal Symplectic Models and Methods

 McLachlan and Perlmutter (2001): conformal Hamiltonian systems; contraction of the symplectic form

$$\partial_t \omega = -2\gamma \omega \qquad \Longleftrightarrow \qquad \omega(t) = e^{-2\gamma t} \omega(0)$$

 McLachlan and Quispel (2001) and (2002): splitting methods that preserve conformal symplecticity; they satisfy

$$\omega^{n+1} = e^{-2\gamma h} \omega^n$$

where $h = t_{n+1} - t_n$ is the step size.

Splitting Methods for solving $\dot{y} = N(y) - \gamma y$

- ① Solve $\dot{y} = N(y)$ with a conservative (symplectic) method
- 2 Solve $\dot{y} = -\gamma y$ exactly: $y(t) = y_0 e^{-\gamma t}$
- Compose the flow maps to get a conformal symplectic scheme

Background: Conformal Symplectic Models and Methods

 McLachlan and Perlmutter (2001): conformal Hamiltonian systems; contraction of the symplectic form

$$\partial_t \omega = -2\gamma \omega \qquad \Longleftrightarrow \qquad \omega(t) = e^{-2\gamma t} \omega(0)$$

 McLachlan and Quispel (2001) and (2002): splitting methods that preserve conformal symplecticity; they satisfy

$$\omega^{n+1} = e^{-2\gamma h} \omega^n$$

where $h = t_{n+1} - t_n$ is the step size.

Splitting Methods for solving $\dot{y} = N(y) - \gamma y$

- **3** Solve $\dot{y} = N(y)$ with a conservative (symplectic) method
- Solve $\dot{y} = -\gamma y$ exactly: $y(t) = y_0 e^{-\gamma t}$
- Ompose the flow maps to get a conformal symplectic scheme

Generalizations

Consider the IVP

$$\dot{y}(t) = N(y(t)) - \gamma(t)y(t), \quad y(0) = y_0$$

where $y \in \mathbb{R}^d$ with $d \in \mathbb{N}$, $\gamma : \mathbb{R} \to \mathbb{R}$, and $N : \mathbb{R}^d \to \mathbb{R}^d$

Definition of conformal invariant

 $\mathcal{I}: \mathbb{R}^d \to \mathbb{R}$ is a conformal invariant for the IVP if $\frac{d}{dt}\mathcal{I} = -\gamma(t)\mathcal{I}$.

Note: $\mathcal{I}(y(t)) = e^{-\int_0^t \gamma(s)ds} \mathcal{I}(y_0) \implies \frac{d}{dt} \mathcal{I} = -\gamma(t)\mathcal{I}$

Definition of numerical preservation

A numerical method preserves a conformal invariant if it satisfies

$$\mathcal{I}_{n+1} = e^{-\int_{t_n}^{t_{n+1}} \gamma(s) ds} \mathcal{I}_n$$

Generalizations

Consider the IVP

$$\dot{y}(t) = N(y(t)) - \gamma(t)y(t), \quad y(0) = y_0$$

where $y \in \mathbb{R}^d$ with $d \in \mathbb{N}$, $\gamma : \mathbb{R} \to \mathbb{R}$, and $N : \mathbb{R}^d \to \mathbb{R}^d$

Definition of conformal invariant

 $\mathcal{I}: \mathbb{R}^d \to \mathbb{R}$ is a conformal invariant for the IVP if $\frac{d}{dt}\mathcal{I} = -\gamma(t)\mathcal{I}$.

Note:
$$\mathcal{I}(y(t)) = e^{-\int_0^t \gamma(s)ds} \mathcal{I}(y_0) \implies \frac{d}{dt} \mathcal{I} = -\gamma(t)\mathcal{I}.$$

Definition of numerical preservation

A numerical method preserves a conformal invariant if it satisfies

$$\mathcal{I}_{n+1} = e^{-\int_{t_n}^{t_{n+1}} \gamma(s) ds} \mathcal{I}_r$$

Generalizations

Consider the IVP

$$\dot{y}(t) = N(y(t)) - \gamma(t)y(t), \quad y(0) = y_0$$

where $y \in \mathbb{R}^d$ with $d \in \mathbb{N}$, $\gamma : \mathbb{R} \to \mathbb{R}$, and $N : \mathbb{R}^d \to \mathbb{R}^d$

Definition of conformal invariant

 $\mathcal{I}: \mathbb{R}^d \to \mathbb{R}$ is a conformal invariant for the IVP if $\frac{d}{dt}\mathcal{I} = -\gamma(t)\mathcal{I}$.

Note:
$$\mathcal{I}(y(t)) = e^{-\int_0^t \gamma(s)ds} \mathcal{I}(y_0) \implies \frac{d}{dt} \mathcal{I} = -\gamma(t) \mathcal{I}.$$

Definition of numerical preservation

A numerical method preserves a conformal invariant if it satisfies

$$\mathcal{I}_{n+1} = e^{-\int_{t_n}^{t_{n+1}} \gamma(s) ds} \mathcal{I}_n$$

Examples of conformal invariants

- Pendulum: $\ddot{q} + 2\gamma \dot{q} + \sin q = 0$ $\mathcal{I} = dq \wedge d\dot{q}$
- Oscillator: $\ddot{q} + 2\gamma \dot{q} + \kappa^2 q = 0$ $\mathcal{I} = (\kappa^2 q^2 + \dot{q}^2)/2 + \gamma q \dot{q}$
- Rigid Body: $\dot{y} = B(y)\nabla H(y) \gamma y$ with $y = [y_1, y_2, y_3]^T$ $\mathcal{I} = y_1^2 + y_2^2 + y_3^2$ and $H(y) = \frac{1}{2} \left(\frac{y_1^2}{l_1} + \frac{y_2^2}{l_2} + \frac{y_3^2}{l_3} \right)$
- Klein-Gordon: $u_{tt} u_{xx} + cu + 2\gamma u_t = 0$ $\mathcal{I} = \int u_t u_x \ dx$
- Schrödinger: $i\psi_t + \psi_{xx} + V'(|\psi|^2)\psi + i\gamma\psi = 0$ $\mathcal{I} = \int |\psi|^2 dx$
- Camassa Holm: $u_t u_{xxt} + 3uu_x + \gamma(u u_{xx}) = 2u_x u_{xx} + uu_{xxx}$ $\mathcal{I} = \int (u^2 + u_x^2) dx$
- KdV: $u_t + uu_x + u_{xxx} + 2\gamma u = 0$ $\mathcal{I} = \int u \ dx$

Exponential Runge-Kutta Methods

Runge-Kutta type methods for solving $\dot{y} = N(y) - \gamma y$

$$Y_i = \phi_i(h; \gamma_n) y_n + h \sum_{j=1}^s a_{ij}(h; \gamma_n) N(Y_j), \quad i = 1, \dots, s,$$

$$y_{n+1} = \phi_0(h; \gamma_n) y_n + h \sum_{i=1}^s b_i(h; \gamma_n) N(Y_i).$$

The coefficient functions, ϕ_i, ϕ_0, a_{ij} , and b_i satisfy

$$\phi_i(h;0) = \phi_0(h;0) = 1, \qquad a_{ij}(h;0) = \alpha_{ij}, \qquad b_i(h;0) = \beta_i$$

for all i, j = 1, 2, ..., s.

Similar results hold for partitioned exponential RK methods.

Numerical structure preservation

Theorem (Bhatt & M, SIAM J. Sci. Comp. 2017)

An ERK method is conformal symplectic and preserves conformal quadratic invariants if it has scalar coefficient functions which satisfy $\phi_0 = e^{-\int_{t_n}^{t_{n+1}} \gamma(s) ds}$ and

$$a_{ji}b_i\frac{\phi_0}{\phi_i}+a_{ij}b_j\frac{\phi_0}{\phi_i}-b_ib_j=0 \qquad \forall i,j=1,2,\ldots,s.$$

Example

Numerical structure preservation

Theorem (Bhatt & M, SIAM J. Sci. Comp. 2017)

An ERK method is conformal symplectic and preserves conformal quadratic invariants if it has scalar coefficient functions which satisfy $\phi_0 = e^{-\int_{t_n}^{t_{n+1}} \gamma(s) ds}$ and

$$a_{ji}b_i\frac{\phi_0}{\phi_i}+a_{ij}b_j\frac{\phi_0}{\phi_j}-b_ib_j=0 \qquad \forall i,j=1,2,\ldots,s.$$

Example

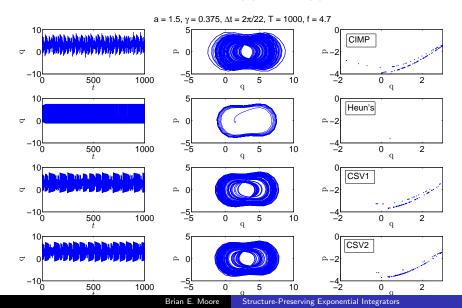
Setting s=1, $a_{11}=1/2$, $b_1=e^{-\int_{t_n+1/2}^{t_n+1}\gamma(s)ds}$, $\phi_1=e^{-\int_{t_n}^{t_n+1/2}\gamma(s)ds}$, gives an implicit midpoint type method

$$w_1y_{n+1}-w_0y_n=hN\left(\frac{1}{2}(w_1y_{n+1}+w_0y_n)\right),$$

with $w_0 = \phi_1$ and $w_1 = 1/b_1$.

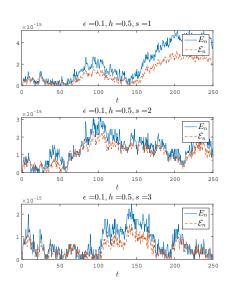
Forced-Damped Chaotic Pendulum

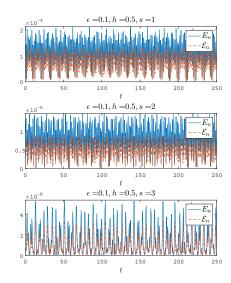
$$\dot{q} = p,$$
 $\dot{p} = -a^2 \sin(q) + f_d \sin(t) - 2\gamma p$



Periodically perturbed rigid body, $\gamma(t) = \epsilon \cos(2t)$

Conformal invariant error. Left: ERK; Right: Gauss-Legendre





Damped-Driven NLS

DDNLS1:
$$i\psi_t + \psi_{xx} + i\gamma\psi + (\alpha + i\beta)\psi + V'(|\psi|)\psi = 0$$

Case $\alpha=c\cos(\omega t)$ and $\beta=c\sin(\omega t)$ studied by X. Chen and R. Wei (1994), Jie-Hua et al. (2002), W. Hu et al. (2017)

Norm Conservation with $\psi=p+iq$ and $heta(t)=\int_0^t (\gamma+eta(s))ds$

$$\partial_t(e^{2\theta(t)}(p^2+q^2))+\partial_x(2e^{2\theta(t)}(pq_x-qp_x))=0,$$

DDNLS2:
$$i\psi_t + \psi_{xx} + i\gamma\psi + (\alpha + i\beta)\psi^* + V'(|\psi|)\psi = 0$$

Case $\alpha = c \cos(\omega t)$ and $\beta = c \sin(\omega t)$ studied extensively by I.V. Barashenkov and co-authors

Momentum Conservation with $\psi = p + iq$

$$0 = \partial_t \left(e^{2\gamma t} (pq_x - qp_x) \right) + \partial_x \left(e^{2\gamma t} \left(p_x^2 + q_x^2 - pq_t + qp_t - \alpha (q^2 - p^2) + 2\beta qp + V(p^2 + q^2) \right) \right)$$

Damped-Driven NLS

DDNLS1:
$$i\psi_t + \psi_{xx} + i\gamma\psi + (\alpha + i\beta)\psi + V'(|\psi|)\psi = 0$$

Case $\alpha=c\cos(\omega t)$ and $\beta=c\sin(\omega t)$ studied by X. Chen and R. Wei (1994), Jie-Hua et al. (2002), W. Hu et al. (2017)

Norm Conservation with $\psi = p + iq$ and $\theta(t) = \int_0^t (\gamma + \beta(s)) ds$

$$\partial_t(e^{2\theta(t)}(p^2+q^2))+\partial_x(2e^{2\theta(t)}(pq_x-qp_x))=0,$$

DDNLS2:
$$i\psi_t + \psi_{xx} + i\gamma\psi + (\alpha + i\beta)\psi^* + V'(|\psi|)\psi = 0$$

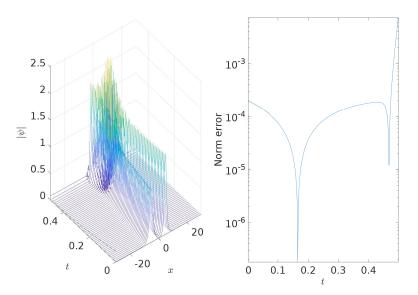
Case $\alpha = c\cos(\omega t)$ and $\beta = c\sin(\omega t)$ studied extensively by I.V. Barashenkov and co-authors

Momentum Conservation with $\psi = p + iq$

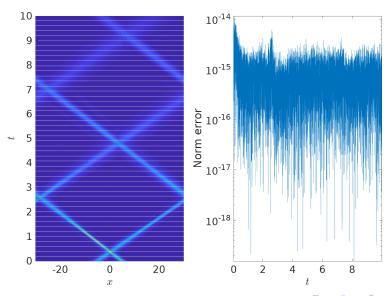
$$0 = \partial_t \left(e^{2\gamma t} (pq_x - qp_x) \right)$$

$$+ \partial_x \left(e^{2\gamma t} \left(p_x^2 + q_x^2 - pq_t + qp_t - \alpha (q^2 - p^2) + 2\beta qp + V(p^2 + q^2) \right) \right)$$

Soliton collision: GL method with c=0.2, $\gamma=0.1$, $\omega=\pi$



Soliton collision: Exp method w/ c=0.2, $\gamma=0.1$, $\omega=\pi$



Discrete Gradient Methods

Consider $\dot{y} = B(y)\nabla H(y) - \gamma(t)y$. If C(y) is a quadratic Casimir in the case $\gamma = 0$, then the system satisfies

$$\frac{d}{dt}C(y(t)) = -2\gamma(t)C(y(t)) \quad \Longleftrightarrow \quad C(y(t)) = e^{-2\int_0^t \gamma(s)ds}C(y(0)).$$

The exponential discrete gradient method

$$\frac{e^{x_1}y_1 - e^{x_0}y_0}{h} = B\left(\frac{e^{x_1}y_1 + e^{x_0}y_0}{2}\right) \overline{\nabla} H\left(e^{x_0}y_0, e^{x_1}y_1\right)$$

with $x_{lpha}:=\int_{t_{n+1/2}}^{t_{n+lpha}}\gamma(s)ds$ and

$$H(y_1)-H(y_0) = \overline{\nabla} H(y_0, y_1)(y_1-y_0), \qquad \lim_{y_1 \to y_0} \overline{\nabla} H(y_0, y_1) = \nabla H(y_0)$$

satisfies
$$C(y_1) = e^{-2(x_1-x_0)}C(y_0)$$

Discrete Gradient Methods

Consider $\dot{y} = B(y)\nabla H(y) - \gamma(t)y$. If C(y) is a quadratic Casimir in the case $\gamma = 0$, then the system satisfies

$$\frac{d}{dt}C(y(t)) = -2\gamma(t)C(y(t)) \quad \Longleftrightarrow \quad C(y(t)) = e^{-2\int_0^t \gamma(s)ds}C(y(0)).$$

The exponential discrete gradient method

$$\frac{e^{x_1}y_1 - e^{x_0}y_0}{h} = B\left(\frac{e^{x_1}y_1 + e^{x_0}y_0}{2}\right) \overline{\nabla} H\left(e^{x_0}y_0, e^{x_1}y_1\right)$$

with $x_{lpha}:=\int_{t_{n+1/2}}^{t_{n+lpha}}\gamma(s)ds$ and

$$H(y_1) - H(y_0) = \overline{\nabla} H(y_0, y_1)(y_1 - y_0), \qquad \lim_{y_1 \to y_0} \overline{\nabla} H(y_0, y_1) = \nabla H(y_0)$$

satisfies
$$C(y_1) = e^{-2(x_1 - x_0)}C(y_0)$$

Energy Dissipation

For $\dot{y} = B(y)\nabla H(y) - \gamma(t)y$, energy is drained out according to

$$\frac{d}{dt}H = \nabla H(y)^T B(y) \nabla H(y) - \gamma \nabla H(y)^T y = -\gamma \nabla H(y)^T y,$$

Standard discrete gradient method satisfies

$$\frac{H(y_1) - H(y_0)}{h} = -\gamma_{1/2} \nabla H(y_{1/2})^T y_{1/2} + \mathcal{O}(h^2).$$

Exponential discrete gradient method satisfies

$$\frac{H(y_1) - H(y_0)}{h} = -\gamma_{1/2} \frac{1}{2} \left(\nabla H(y_1)^T y_1 + \nabla H(y_0)^T y_0 \right) + \mathcal{O}(\gamma_{1/2}^2 h^2),$$

Extensions to PDEs

We have seen ODEs that satisfy properties of the form

$$\frac{d}{dt}\mathcal{I} = -\gamma \mathcal{I}.$$

There are PDEs that satisfy properties of the form

$$P_t + Q_x = -aP - bQ.$$

which is a direct result of

$$\partial_t \left(e^{(at+bx)}P \right) + \partial_x \left(e^{(at+bx)}Q \right) = 0.$$

Thus, we say a numerical method preserves this property if it satisfies a discrete version of the property.

Examples

Generalized Diffusionless Burgers-Fisher Equation

$$u_t + \beta u^{\alpha} u_{x} = \gamma u (1 - u^{\alpha})$$

Damped Linear KdV-Burgers Equation

$$u_t + u_{xxx} + \alpha u_{xx} + \beta u_x + \gamma u = 0$$

Non-linear Schrödinger Type Equation

$$i\psi_t + \psi_{xx} + (\alpha + i\beta)\psi_x + (\delta + i\gamma)\psi + V'(|\psi|)\psi = 0$$

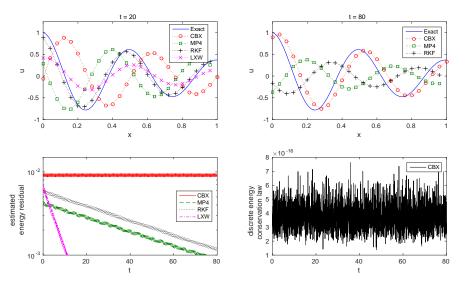
Non-linear Wave Equation

$$u_{tt} + 2au_t - (\partial_x + 2b)\sigma'(u_x) + f'(u) = 0$$

etc.

$u = e^{-x} \cos(4\pi(x-t))$ as solution of $u_t + u_x + u = 0$

$$\Delta t = 0.025, \ \Delta x = 0.04$$



Conclusion and Future Work

Summary

- General approach for constructing high order (Runge-Kutta-like) structure-preserving algorithms.
- The methods are designed for conservative equations that are perturbed by linear non-conservative terms.
- Various properties (relating to energy, momentum, mass, symplecticity, etc.) may be preserved.
- Dissipation rates are exactly preserved for linear problems.

Future Work

- Backward error analysis.
- Usefulness for spatial discretizations of PDEs.
- ullet Extensions to problems where γ is a matrix.
- Construction of exponential time-differencing methods.

Literature

B.E. Moore,

Conformal Multi-Symplectic Integration Methods for Forced-Damped Semi-Linear Wave Equations, *Mathematics and Computers in Simulation*, 80:20–28, 2009.

B.E. Moore, L. Noreña, and C. Schober,

Conformal Conservation Laws and Geometric Integration for Damped Hamiltonian PDEs, Journal of Computational Physics, 232(1):214–233, 2013.

A. Bhatt, D. Floyd, and B.E. Moore,

Second Order Conformal Symplectic Schemes for Damped Hamiltonian Systems, $Journal\ of\ Scientific\ Computing,\ 66(3):1234-1259,\ 2016.$

A. Bhatt and B.E. Moore,

Structure Preserving Exponential Runge-Kutta Methods, SIAM Journal of Scientific Computing, 39(2):A593-A612, 2017.

B.E. Moore,

Multi-Conformal-Symplectic PDEs and Discretizations, Journal of Computational and Applied Mathematics, 323:1-15, 2017.

A. Bhatt and B.E. Moore,

Exponential Integrators Preserving Local Conservation Laws of PDEs with Time-Dependent Forces, under review, 2018.