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Background: Phase space area

Example: Phase portrait for the pendulum problem, g + sin(q) =0
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Background: Simple conservative systems

Models from Newtons 2nd law: g+ V4V(q) =0
@ The energy H = %c’;2 + V(q) is an invariant.

%H jt<1q —I—V(q)) 4(4+ VoV(q)) =0
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Background: Simple conservative systems

Models from Newtons 2nd law: g+ V4V(q) =0
@ The energy H = %c’;2 + V(q) is an invariant.

%H jt (1" +V(q)) = 4(§+V4V(q) =0

@ The symplectic form w = dg A dg is invariant.
The variational equation dg + Vyq(q)dg = 0 implies

3 d .
0=4dqgAdg+dgA Vy(q)dg = p (dg A dg)

because Vqq symmetric implies dg A Vyq(q)dg = 0.
%w = 0 corresponds to conservation of phase space area.

Brian E. Moore Structure-Preserving Exponential Integrators



Motivation and Construction of Numerical Schemes

o If your simulations do not preserve physical properties of the
system, then you are modeling the wrong physics.
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Motivation and Construction of Numerical Schemes

o If your simulations do not preserve physical properties of the
system, then you are modeling the wrong physics.

@ Unfortunately, it is not possible, in general, to preserve both
energy and the symplectic form at the same time.

@ Symplecticity is not a physical property, so many practitioners
prefer energy-preserving methods.

@ One benefit of preserving symplecticity is that energy is nearly
preserved.
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Background: Numerical solutions of conservative systems

Numerical solutions:
One method is conservative the other is non-conservative

Numerical Simulation of Kepler Orbits Total Energy Along the Numerical Solution
5 -0.1
Symplectic Euler
4l Forward Euler -0.2 Forward Euler
3
-0.3
2
= T -04
1
-0.5
0
-1 0.6 Symplectic Euler
-2,
-2 -1 0 1 2 3 4 0 20 40 60 80 100

q, t

Brian E. Moore Structure-Preserving Exponential Integrators



Background: Books on structure-preserving algorithms

@ R.E. Mickens, Nonstandard Finite Difference Models of
Differential Equations, 1993

@ J.M. Sanz-Serna and M.P. Calvo, Numerical Hamiltonian
Problems, 1994

@ A. Stuart and A.R. Humphries, Dynamical Systems and
Numerical Analysis, 1998

o E. Hairer, G. Wanner, and C. Lubich, Geometric Numerical
Integration: Structure-Preserving Algorithms for Ordinary
Differential Equations, 2002

@ B. Leimkuhler and S. Reich, Simulating Hamiltonian
Dynamics, 2005

@ D. Furihata and T. Matsuo, Discrete Variational Derivative
Method: A Structure-Preserving Numerical Method for Partial
Differential Equations, 2010

@ X. Wu, X. You, and B. Wang, Structure-Preserving
Algorithms for Oscillatory Differential Equations, 2013
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Background: Linearly damped (conservative) systems

Trajectories for a damped pendulum problem, g + g + sin(q) = 0
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Background: Conformal Symplectic Models and Methods

@ McLachlan and Perlmutter (2001): conformal Hamiltonian
systems; contraction of the symplectic form

Orw = —2yw = w(t) = e 27tw(0)

@ McLachlan and Quispel (2001) and (2002): splitting methods
that preserve conformal symplecticity; they satisfy
wn—l—l — e—27hwn

where h = t,11 — t, is the step size.
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Background: Conformal Symplectic Models and Methods

@ McLachlan and Perlmutter (2001): conformal Hamiltonian
systems; contraction of the symplectic form

Orw = —2yw = w(t) = e 27tw(0)

@ McLachlan and Quispel (2001) and (2002): splitting methods
that preserve conformal symplecticity; they satisfy

wn—l—l — e—27hwn

where h = t,11 — t, is the step size.

Splitting Methods for solving y = N(y) — vy

© Solve y = N(y) with a conservative (symplectic) method
@ Solve y = —vy exactly: y(t) = ype !
© Compose the flow maps to get a conformal symplectic scheme
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Generalizations

Consider the IVP

y(t) = N(y(t)) —v(t)y(t), y(0)=yo

where y € RY with d € N, v: R = R, and N : RY — R?
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Generalizations

Consider the IVP

y(t) = N(y(t)) —v(t)y(t), y(0)=yo

where y € RY with d € N, v: R = R, and N : RY — R?

Definition of conformal invariant

T :R? = R is a conformal invariant for the IVP if %I = —(t)Z.

Note: Z(y(t)) = e b 1B T(y) — 4T = _~(1)T.
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Generalizations

Consider the IVP

y(t) = N(y(t)) —v(t)y(t), y(0)=yo

where y € RY with d € N, v: R = R, and N : RY — R?

Definition of conformal invariant

T :R? = R is a conformal invariant for the IVP if %I = —(t)Z.

Note:  Z(y(t)) = e b 1O)T(yy) — 4T = _4(1)T.

Definition of numerical preservation

A numerical method preserves a conformal invariant if it satisfies

th1
In-i—l =e ft" W(S)dsIn
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Examples of conformal invariants

@ Pendulum: g +2vg+sing=20
Z=dgNdg
Oscillator: § + 2vg + k%2 =0
I=(k*9"+§%)/2+99
Rigid Body: y = B(y)VH(y) — vy with y = [y1,y2,y3] "
T=y24+2+y2and H(y)=L1 (2 +% 15
=yi +¥5 +y;5 and H(y) = 3 Ay i »

(]

@ Klein-Gordon: uy — uyx + cu+2yu =0
T = [ upuy dx

@ Schrodinger: ith; + W + V/(|¢0[?)) + iy = 0
Z=[|y]* dx

@ Camassa Holm: wu; — usr + 3utiy + 7(U — Uxx) = 2Uxlxx + Ullxxx

T = [(u®+ u?) dx
KdV: uy + vty 4 Ussx +2yu =10
Z=[udx
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Exponential Runge-Kutta Methods

Runge-Kutta type methods for solving y = N(y) — vy

S
Yi = ¢i(hivn)yn+ h Y ag(hiva)N(Y)), i=1,...,s,
j=1

Y1 = do(hivn)yn+h Y bi(h;ya)N(Y7).
i=1

The coefficient functions, ¢;, ¢o, ajj, and b; satisfy
¢i(h;0) = ¢o(h;0) =1,  a;(h;0) =y,  bi(h;0) =B

foralli,j=1,2,...,s.

Similar results hold for partitioned exponential RK methods.
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Numerical structure preservation

Theorem (Bhatt & M, SIAM J. Sci. Comp. 2017)

An ERK method is conformal symplectic and preserves conformal
quadratic invariants if it has scalar coefficient functions which

satisfy ¢g = e~ Jer " A(s)ds and
aj,-b,z Ubjz b,‘bj:O Vi,j:1,2,...,s.
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Numerical structure preservation
Theorem (Bhatt & M, SIAM J. Sci. Comp. 2017)

An ERK method is conformal symplectic and preserves conformal
quadratic invariants if it has scalar coefficient functions which

satisfy ¢g = e~ Jeg T ()ds apg

aj,-b,-@Jra,-jb-@—b,-bj:O Vi, j=1,2,...,s.

]
; o

- -

Example

_ [ttt d
Setting s =1, a;3 = 1/2, by = e Jerty ) 7(9) 4
. —f:n+1/2 G ) . o . .
¢1 =€ Jm , gives an implicit midpoint type method

1
W1Ynt1 — Woyn = hN <§(W1Yn+1 + Woyn)) ;

with wp = ¢1 and wy = ]./bl
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Forced-Damped Chaotic Pendulum

qg=np, p=—a° sin(q) + fgsin(t) — 2vp

a=1.5,y=0.375, At = 21722, T = 1000, f = 4.7
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Periodically perturbed rigid body, v(t) = € cos(2t)
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Conformal invariant error. Left:

€=0.1,h

=0.5,5 =1

L1075 e=0.1,h

=0.5,5 =3

-
2

JWW WMM '

4
‘ Il
"y W‘Wm

100

t

150

200

250

ERK; Right: Gauss-Legendre

€=0.1,h =0.5,5 =1

e =0.1,h =0.5,5 =2

——

M

100 150
t

e=0.1,h 055 =3

L

wl

\' e

50 100

Brian E. Moore Structure-Preserving Exponential Integrators



Damped-Driven NLS

DDNLS1:  ithy 4 thx + iy 4 (a +iB) + V'(|9])¢ = 0

Case a = ccos(wt) and 8 = csin(wt) studied by X. Chen and
R. Wei (1994), Jie-Hua et al. (2002), W. Hu et al. (2017)

Norm Conservation with 1) = p + ig and 6(t) = f0t(7 + 5(s))ds

(XD (p? + ) + 0,(2e¥ D (pay — qpy)) = 0,
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Damped-Driven NLS

DDNLS1:  ithy 4 thx + iy 4 (a +iB) + V'(|9])¢ = 0

Case a = ccos(wt) and 8 = csin(wt) studied by X. Chen and
R. Wei (1994), Jie-Hua et al. (2002), W. Hu et al. (2017)

Norm Conservation with ¢ = p + ig and 8(t) = [, (v + B(s))ds
3:(e2® (p? + q%)) + 9.(2¢D (pgy — qpy)) = 0,
DDNLS2: ity + thue + ivth + (a + iB)* + V/(J9o ) = 0

Case a = ccos(wt) and § = csin(wt) studied extensively by
I.V. Barashenkov and co-authors

Momentum Conservation with ¥ = p + iq

0=0 (e2'yt(pqx - qpx))
+ 0k (€7 (P2 + a% — pag: + gpe — a(q” — p°) + 2Bgp + V(p* + ¢°)))
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Soliton collision: GL method with c =02, v =0.1, w=m
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Soliton collision: Exp method w/ ¢ =0.2, v =01, w=m7

Norm error
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Discrete Gradient Methods

Consider y = B(y)VH(y) —7(t)y. If C(y) is a quadratic
Casimir in the case v = 0, then the system satisfies

S C(0) = -21CH() = C(e) =e? O C(y(0).
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Discrete Gradient Methods

Consider y = B(y)VH(y) —7(t)y. If C(y) is a quadratic
Casimir in the case v = 0, then the system satisfies

S C(0) = -21CH() = C(e) =e? O C(y(0).

The exponential discrete gradient method

- g <.exlyl + ey
h 2

)
with x, 1= tfn++1a/2 v(s)ds and
H(y1)—H(y0) = VH(y0, y1)(y1—Y0), yJ@yOVH(yo,yl) = VH(y)

satisfies C(y1) = e~2017%) C(yp)
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Energy Dissipation

For y = B(y)VH(y) —~(t)y, energy is drained out according to

%H = VH(y)"B(y)VH(y) —vVH(y) "y = —vVH(y) Ty,

Standard discrete gradient method satisfies

H —H
M = -m,2VH (Y1/2)TY1/2 +O(h).

Exponential discrete gradient method satisfies

H —H 1
M =~M/25 (VH(y1) 'y + VH(YO)TYO)+O(’Yf/2h2),
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Extensions to PDEs

We have seen ODEs that satisfy properties of the form

d

R —
dt v

There are PDEs that satisfy properties of the form
P: + Qx = —aP — bQ.
which is a direct result of

0, (e(at+bx)P) + 8, (e(at+bx) Q) —o.

Thus, we say a numerical method preserves this property if it
satisfies a discrete version of the property.
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@ Generalized Diffusionless Burgers-Fisher Equation
ur + puu, = yu(l — u®)
@ Damped Linear KdV-Burgers Equation
U + Usxx + iy + Bux +yu =0
@ Non-linear Schrédinger Type Equation
it + o + (@ + iB)h + (6 + i)y + V([¢]) = 0
@ Non-linear Wave Equation
U + 2auy — (Ox + 2b)o’ (ux) + f'(u) =0
@ etc.
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u = e *cos(4m(x — t)) as solution of u; + uy +u =0

At =0.025, Ax = 0.04
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Conclusion and Future Work

Summary

@ General approach for constructing high order
(Runge-Kutta-like) structure-preserving algorithms.

@ The methods are designed for conservative equations that are
perturbed by linear non-conservative terms.

@ Various properties (relating to energy, momentum, mass,
symplecticity, etc.) may be preserved.

@ Dissipation rates are exactly preserved for linear problems.

Future Work
@ Backward error analysis.
@ Usefulness for spatial discretizations of PDEs.
@ Extensions to problems where ~ is a matrix.

@ Construction of exponential time-differencing methods.
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