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A problem about the problems with the Basic Reproduction
Number

Patrick De Leenheer∗

The basic reproduction number R0 is a concept used frequently in ecology and epidemi-
ology. Although popularized in the past few decades with the maturation of mathematical
biology as an independent mathematical discipline, it is perhaps not as well-known as it
should be that R0 was introduced much earlier (at least by the early 60ies) by Richard
Varga [2] who was working on numerical analysis, see also [1]. Its success derives largely
from the fact that it is usually easier to calculate R0 in terms of model parameters than is
the spectral radius of the operator it is associated to, and, because of an important result
already known to Varga [2] that says that R0 and the associated spectral radius are “on the
same side of 1”. In epidemiological models for instance, this has led to the development of
control strategies aimed at lowering R0. The main idea seems to be that lowering R0 may
push its value below 1 which often corresponds to stabilizing the disease-free equilibrium.
But does lowering R0 always lower the associated spectral radius?

The main objective of this project is to examine this question more carefully. I will
share simple examples showing that R0 could decrease whereas the spectral radius of
the operator it is associated to actually increases. This suggests that one needs to be
cautious when dealing with control strategies aimed at decreasing R0, because they could
potentially have the opposite e↵ect of what they intend to achieve.

To be a bit more specific, suppose we have a linear operator A on Rn which preserves
a proper cone1 C, i.e. A(C) ⇢ C. In most applications the cone C is the non-negative
orthant cone Rn

+, but there are examples including the Lorenz cone or the cone of positive-
semidefinite symmetric matrices with more interesting geometrical properties. We shall
denote the spectral radius of the operator A by r(A). Suppose we split A as follows:

A = T + F,

where T and F also preserve the cone, T 6= 0, and r(T ) < 1. It is noteworthy that this
splitting of A is not unique. But corresponding to a specific splitting T + F of A, we
associate a basic reproduction number R0, defined as

R0 = r(F (I � T )�1),

i.e. R0 is the spectral radius of the operator F (I � T )�1, yet another operator that
preserves C. The folklore Theorem is the following Trichotomy which expresses that r(A)
and R0 are “on the same side of 1”, and a bit more, namely that R0 is never closer to 1
than is r(A).

Theorem 1. Exactly one of the following 3 cases occurs:

R0  r(A) < 1, or R0 = r(A) = 1, or 1 < r(A)  R0.
∗
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A set C in Rn

is a proper cone if it is a cone (i.e. a convex set such that ↵C ⇢ C for all ↵ � 0) with

non-empty interior, which is also pointed (i.e. C \ (�C) = {0}).
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Now assume we have a collection of linear operators A(t) on Rn, where t belongs to
some interval say, such that A(t) preserves a proper cone C for all t. Assume we split A(t)
as follows:

A(t) = T (t) + F (t),

where T (t) and F (t) also preserve the cone C, T (t) 6= 0, and r(T (t)) < 1 for all t. As
before we define R0(t) as r(F (t)(I � T (t))�1).

The question we wish to address in this project is whether or not mono-
tonicity of R0(t) with respect to t, implies monotonicity of the same kind (in-
creasing or decreasing) for r(A(t)). As mentioned earlier the answer is no, and I will
provide some simple examples to illustrate this phenomenon. On the other hand, there ex-
ist also scenarios where the answer is yes. Perhaps a more refined problem would therefore
be to identify conditions on A(t), F (t) and T (t) for which the above implication holds.

• Students with an a�nity for specific biological applications could pick their favorite
ecological or epidemiological model and try to examine the above question for their
model.

• Students with an a�nity for linear algebra could consider cones C that are used
less frequently than the non-negative orthant cone and specific collections of linear
operators A(t) that preserve this cone.

• The above question is motivated by an underlying discrete model

xk+1 = Axk,

where k is a non-negative integer, xk belongs to C, and A preserves C. In epidemiol-
ogy in particular, one typically considers di↵erential equation models instead. These
are obtained by linearization at the disease-free steady states of the epidemiological
models and they take the form

ẋ = Ax,

where x belongs to C, and A is the generator of a semigroup etA which preserves
the cone C for all t � 0. A di↵erent splitting of A then leads to a somewhat
di↵erent-looking definition of R0: One writes A = F � V where F and V satisfy
certain conditions, and defines R0 as r(FV �1). Students could “translate” the above
question and examine it in this context of di↵erential equation models.
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Impact of Human Movement on Disease
Persistence

Daozhou Gao
1

1
Department of Mathematics, Shanghai Normal University, Shanghai 200234, China

Infectious diseases can be easily spread from one region to another through population
dispersal. Due to globalization, urbanization and transportation development, more people
traveled more frequently and farther over the past few decades. Travel restrictions, lockdowns
and stay at home orders during the COVID-19 pandemic significantly reduce human mobility.
It is important to understand how changes in travel behavior affect the disease persistence
which can be measured by the basic reproduction number R0. Usually, a disease dies out if
R0 < 1 and spreads out otherwise. Thus, it is feasible to determine the outcome of disease
spread through analyzing the dependence of R0 on travel-related parameters.

1 SIS Patch Model

We consider a discrete space consisting of n ≥ 2 patches. Let Si and Ii be the number of
susceptible and infectious individuals in patch i ∈ Ω = {1, . . . , n}. In 2007, Allen et al. [1]
proposed an SIS patch model

dSi

dt
=− βi

Ii
Si + Ii

Si + γiIi + δ
∑

j∈Ω

LijSj, i ∈ Ω,

dIi
dt

=βi
Ii

Si + Ii
Si − γiIi + ε

∑

j∈Ω

LijIj, i ∈ Ω,
(1.1)

where δ and ε are the dispersal rates of the susceptible and infectious populations, respec-
tively. In patch i, the parameters βi and γi are the transmission coefficient and recovery
rate, respectively; Lij is the degree of incoming movement from patch j to patch i and Lji

is the degree of outgoing movement from patch i to patch j for i ̸= j. It is assumed that
the connectivity matrix L = (Lij)n×n is essentially nonnegative and irreducible with zero
column sums.

The basic reproduction number of model (1.1) is

R0 = ρ(FV −1),

where
F = diag(β1, . . . , βn) and V = diag(γ1, . . . , γn)− εL.
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Allen et al. [1] conjectured that R0 is a monotone decreasing function of ε. This was recently

proved by Gao [3], Gao and Dong [4], and Chen et al. [2]. Namely, ifR(i)
0 is constant in i ∈ Ω,

then R0 is constant in ε; otherwise, R0 is strictly decreasing in ε. Biologically speaking, fast
dispersal reduces disease persistence.

In reality, there are different levels of unilateral, bilateral, and multilateral connection
among different countries or regions. It is necessary to consider how disease persistence
varies with partial changes in connection, e.g., R0 versus s where Lij = sKij for

(i) a fixed pair of i and j with i ̸= j;

(ii) a given i and all j ̸= i, or a given j and all i ̸= j;

(iii) all i, j ∈ Ω1 ⊂ Ω and i ̸= j.

So far very limited studies have been carried out (see Gao and Ruan [6, 7]). Moreover, the
role of network topology and connectivity on disease spread also deserves investigation [9].

2 SEIRS Patch Model

Recently, based on an SEIRS reaction-diffusion model, Song et al. [10] studied the mono-
tonicity of the reproduction number with respect to the diffusion rates of the exposed and
infectious individuals. We consider the associated but generalized SEIRS patch model

dSi

dt
= dS

∑

j∈Ω

LS
ijSj − βi

SiIi
Si + Ei + Ii +Ri

+ αiRi, i ∈ Ω,

dEi

dt
= dE

∑

j∈Ω

LE
ijEj + βi

SiIi
Si + Ei + Ii +Ri

− σiEi, i ∈ Ω,

dIi
dt

= dI
∑

j∈Ω

LI
ijIj + σiEi − γiIi, i ∈ Ω,

dRi

dt
= dR

∑

j∈Ω

LR
ijRj + γiIi − αiRi i ∈ Ω,

(2.1)

where σi is the rate that exposed individuals become infectious and αi is the rate of loss of
immunity. The dispersal rate and connectivity matrix of the susceptible, exposed, infectious
and recovered people are d♮ and L♮ = (L♮

ij) with ♮ denoting S,E, I and R, respectively. For
simplicity, L♮ is assumed to be essentially nonnegative and irreducible with zero column sums
for ♮ ∈ {S,E, I, R}.

The incidence and transition matrices are respectively

F =

(
0 F12

0 0

)
and V =

(
V11 0
V21 V22

)
,

where F12 = diag{β1, . . . , βn}, V11 = diag{σ1, . . . , σn} − dELE, V21 = − diag{σ1, . . . , σn}
and V22 = diag{γ1, . . . , γn} − dILI . Using the next generation matrix method, the basic
reproduction number of model (2.1) is defined as

R0 = ρ(FV −1) = ρ(−F12V
−1
22 V21V

−1
11 ).
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By a simple comparison principle, we can show that the disease-free equilibrium is globally
asymptotically stable if R0 ≤ 1; by the persistent theory, the disease is uniformly persistent
and there exists at least one endemic equilibrium if R0 > 1. So, the disease dynamics are
completely governed by the reproduction number and we wonder how population migration
impacts R0. Some research questions:

(i) The basic reproduction number of model (2.1) satisfies

min
1≤i≤n

R(i)
0 ≤ R0 ≤ max

1≤i≤n
R(i)

0 ,

where R(i)
0 = βi/γi is the reproduction number of patch i in isolation.

(ii) Give some sufficient conditions under which R0 is strictly decreasing in dE and/or dI .

(iii) Completely determine the monotonicity of R0 in dE and dI for the two-patch case.

(iv) Find the necessary and sufficient conditions under which R0 is independent of dispersal
rates or dispersal.

(iv) Analytically and numerically explore the effects of population movement on disease
prevalence (including the asymptotic profiles of the endemic equilibrium).

We plan to establish some deeper and better results than these obtained by Song et al.
[10]. Some idea and approach from our recent work on an SIAR patch model [5] can be
adopted.

3 Connectivity Matrix

Given any strictly positive vector x = (x1, . . . , xn)T, find all connectivity matrices M (es-
sentially nonnegative, irreducible with zero column sums) or bases having x as their right
eigenvector corresponding to zero eigenvalue, i.e., Mx = 0. For example,

−
n∑

i=1

xiIn +

⎛

⎜⎜⎜⎝

x1 x1 · · · x1

x2 x2 · · · x2
...

...
. . .

...
xn xn · · · xn

⎞

⎟⎟⎟⎠

and ⎛

⎜⎜⎜⎝

−x−1
1 x−1

2 0 · · · 0
0 −x−1

2 x−1
3 · · · 0

...
...

...
. . .

...
x−1
1 0 0 · · · −x−1

n

⎞

⎟⎟⎟⎠
.

Obviously, the positive linear combination of connectivity matrices is still a connectivity
matrix. So, it suffices to find the “bases”. The answer is applicable to the multipatch Ross–
Macdonald model where the reproduction number attains its minimum as the distributions
of hosts and vectors are proportional (see Remark 2 in Gao et al. [8]).
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Braess’ paradox for a random walk on a graph:
how bad could it be?

Steve Kirkland
Department of Mathematics, University of Manitoba, Winnipeg, MB, Canada

1 Introduction

Connections are important, but they can a↵ect network structure in unex-
pected ways. For example, Braess’ paradox [1] is the name given to the
unexpected situation in which the addition of a new route into a vehicle traf-
fic network has the e↵ect of increasing travel times. This project explores
an analogue of Braess’ paradox in the context of Markov chains. (Side note:
Markov chains will be discussed extensively in Lecture 5.)

Specifically, we consider a connected undirected graph G on vertices la-
belled 1, . . . , n. Associated with G is a random walk; this is a special type
of Markov chain in which the random walker begins at an initial vertex j0 of
G, and proceeds as follows: if the random walker is at vertex jk at time k,
it selects one of the neighbours of jk at random, and moves to that vertex at
time k+1. (One may think of an intruder entering a network and randomly
wandering from one vertex to another.)

The key properties of the random walk are captured by the corresponding
transition matrix, T , which can be written as D�1A, where:
i) A is the adjacency matrix for G, i.e. ajk = 1 if vertices j and k are adjacent
and ajk = 0 otherwise;
ii) D is the diagonal matrix of vertex degrees, i.e. D = diag(A1), where 1
denotes the all–ones vector.
Evidently T is a nonnegative matrix, and each of its row sums is equal to
1. Observe that 1 is an eigenvalue of T, since T1 = 1. In the language of
Lecture 1, the Perron value of T is 1 and 1 is a corresponding right Perron
vector.
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The long–term properties of the random walk are reflected in the station-
ary distribution for T : this is the left eigenvector wT of T corresponding to
the eigenvalue 1, normalized so that its entries sum to 1. (In particular, wT

is a left Perron vector for T .) It is not hard to show that wT = 1
1TD11

TD, so
that in fact the stationary distribution wT is governed by the vertex degrees
in G. Since the entries of wT are positive and sum to 1, we can interpret the
stationary distribution as a probability distribution on {1, . . . , n}.

The short–term properties of the random walk are captured by its mean
first passage times. The mean first passage time from vertex j to vertex
k, mjk, is the expected number of steps required for the random walker to
reach vertex k for the first time, given that the walker started at vertex j.
Informally we may think of these first passage times as ‘travel times’ for the
random walker. The entries in the stationary distribution and the mean first
passage times are the ingredients used in defining Kemeny’s constant (G)
for the graph G ([2]):

(G) + 1 =
X

j,k=1,...,n

wjmjkwk.

Inspecting the formula for Kemeny’s constant, we see that (G) measures
the expected number of steps required by a random walker to move from
a randomly chosen initial vertex (i.e. randomly chosen according to the
stationary distribution) to a randomly chosen final vertex (again, chosen
according to the stationary distribution). Evidently Kemeny’s constant can
be regarded as a measure of overall transit time for the random walk on G.

What happens when a new edge is added into a graph? Generically we
expect that this overall transit time will decrease, as the new edge o↵ers
our random walker more routes with which to move around the graph. That
intuition is supported by the fact that over all graphs on n vertices, Kemeny’s
constant is minimized by the complete graph on n vertices (in other words,
the graph with all possible edges).

Let’s look at a couple of examples.
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Example A
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In Example A we see that the behaviour conforms with our intuition –
adding the new edge decreases the value of Kemeny’s constant.

Example B
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Example B illustrates an analogue of Braess’ paradox for graphs. That
is, the addition of the new edge has the counterintuitive e↵ect of increasing
Kemeny’s constant; such an edge is known as a Braess edge. There are sev-
eral known examples of families of graphs having Braess edges. For example
in [5] it is shown that fraction of trees on n vertices having a Braess edge
tends to 1 as n ! 1.
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Example C Consider the K9,9, the complete bipartite graph on 18 ver-
tices. Here the vertices are partitioned into two sets S1 = {1, . . . , 9}, S2 =
{10, . . . , 18}, and there’s an edge between vertices j and k if and only if one
of j, k is in S1 and the other is in S2. It turns out that (K9,9) =

33
2 .

Now pick two distinct indices j1, j2 2 S1, and let G be the graph formed
from K9,9 by adding the edge between j1 and j2. Then (G) = 14900

903 >
(K9,9).

Example C shows that it’s possible for a single graph to have many Braess
edges.

2 Questions

1. Suppose that our graph G has a Braess edge, e, so that (G[{e}) > (G).
How large can the increase in Kemeny’s constant be? A general line of inquiry
is to look for an upper bound on (G[{e})�(G). There is a combinatorial
formula for (G) (see [5]) and analysing it may yield some insights that would
lead to an upper bound.
2. For some nicely structured families of graphs, for example trees, Question
1 may be tractable and would furnish insight into the general case.
3. An analytic approach may also be productive. One can think of adding
the new edge with a positive weight x, then find an upper bound on the
derivative of Kemeny’s constant with respect to x. The group inverse of
I � T is expected to be an important tool in this approach. (The group
inverse is covered in Lecture 9.)
4. There is an analogue of this entire development for directed graphs, and
Questions 1–3 can also be explored in the directed case.
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Title: Modelling the European green crab and its parasite using a system of integrodifference 
equations. 
 
Author: Mark Lewis 
 
Description: European green crab (Carcinus maenas) is an aquatic invader. It feeds on native 
animals, destroys shellfish beds and outcompetes native crab species for food. It has invaded 
sites on both the east and west coast of North America, spreading spatially along coastal 
ecosystems, which often have directional currents.  

A number of authors have modelled the spread of green crab using integrodifference 
equations.  A useful reference to start with is Marculis and Lui (2016), but there are many others 
also.  The green crab has juvenile and adult stages, connected via larval dispersal, which occurs 
after yearly reproduction events.  Although they live in many habitats, they prefer eelgrass 
(Zostera marina) beds. To start 

• Write down an integrodifference model for the green crab juvenile and adult stages.  
Construct a dispersal kernel as we did in Lecture 10.  Consider two possibilities (i) an 
“infinitely” long patch of coastal habitat (ii) an isolated patch of eelgrass outside of which 
the habitat is hostile.  What are the appropriate “boundary conditions” associated with the 
edge of the eelgrass habitat?  Consider different possibilities. Also, be sure to include a 
saturating growth function for the dynamics. 

• Calculate the trivial and nontrivial spatially homogeneous equilibria for this model.  Are 
they stable? 

• Calculate the up- and down-stream spreading speeds on the infinite domain for green 
crab, into and away from the directional current flow, following the ideas of Lectures 6 
and 10.  You may want to read details of similar calculations in Huang et al. (2017). 

• Calculate the critical patch size/critical water current speed for green crab on a patch of 
eel grass.  You have the option of whether you would like to formulate this as a classical 
critical patch size problem or a spatial $R0$ problem. What size does the patch need to be 
and/or what is the critical current speed?  Is it possible to connect this calculation to the 
spreading speed(s) calculation above? 

• It is possible to connect the eigenvalue for the critical patch size problem to a 
modification of eigenvalue for the nonspatial problem via a so-called dispersal success 
approximation.  This is described nicely in the recent textbook by Frithjof Lutscher 
(2019).  Try this approximation and see how good a job it does at estimating the critical 
patch size. 

If you have time, consider the biological control agent, Sacculina carcini. This parasitic 
castrator of green crabs prevents the crab from moulting and reproducing.  This agent has been 
modelled mathematically.  (Again, see for example, Marculis and Lui, 2016.) Now consider the 
case where the green crab has already invaded a patch of eel grass.  To simplify assume that the 
green crab has reached a spatially homogeneous equilibrium within the patch.  Can the castrator 
invade and establish itself in the patch, potentially driving down the green crab population and 
helping preserve the eelgrass bed?  Could there possibly be patches of certain sizes that will 
support the crab but not the control agent?  What are the implications? 



Note, only enough references have been given to get started, but you should be able to find 
many more in the literature. 
 
References: 
 
Lutscher F. Integrodifference equations in spatial ecology. Springer International Publishing; 
2019. 
 
Huang Q, Wang H, Lewis MA. A hybrid continuous/discrete-time model for invasion dynamics 
of zebra mussels in rivers. SIAM Journal on Applied Mathematics. 2017;77(3):854-80. 
 
Marculis NG, Lui R. Modelling the biological invasion of Carcinus maenas (the European green 
crab). Journal of Biological Dynamics. 2016 Jan 1;10(1):140-63. 



Minimal network structure for Turing instability

Junping Shi1

1 Department of Mathematics, William & Mary, Williamsburg, Virginia, 23187-8795, USA

Reaction-di↵usion partial di↵erential equation models have been used to describe the forma-

tion of spatiotemporal patterns in biology, chemistry and physics. Alan Turing [15] proposed that

di↵erent di↵usion coe�cients of a pair of chemicals in a biochemical system are responsible for the

generation of spatially inhomogeneous patterns, and this di↵usion-induced instability (Turing in-

stability) has been credited as one of the most important driving mechanisms of pattern formations

[7].

The Turing instability is caused by the destabilization of a constant equilibrium solution U = U0

of a spatially homogeneous reaction-di↵usion system Ut = P�U + g(U) with n (� 2) variables and

coupled with proper boundary conditions, where U = U(x, t) with t > 0, x belongs to a spatial

domain, P is a diagonal n ⇥ n matrix with non-negative diagonal entries (di↵usion coe�cients),

and g is a smooth nonlinear vector function satisfying g(U0) = 0. Through the techniques of

linearization, the stability of the equilibrium U = U0 is reduced to a linear system of di↵usion

equations Vt = P�V +AV , where A = g0(U0) is a real-valued n⇥n Jacobian matrix. The constant

equilibrium U0 is asymptotically stable if each solution V of the linearized di↵usion system converges

to zero uniformly as t ! 1. From the theory of linear di↵erential equations, this is equivalent

to the condition that each eigenvalue of the matrix A � µjP has negative real part, where µj

(j = 0, 1, 2, · · · ) are the eigenvalues of the Laplace operator with compatible boundary conditions,

and µj satisfy 0 = µ0 < µ1  µ2  · · · and lim
j!1

µj = 1 [12, 15].

Because of the wide applicability of Turing instability, there has been considerable interest

in the study of stable matrices and stable matrices exhibiting Turing instability [9, 14]. Many

realistic biological reaction mechanisms involve a large number of chemical reactants and a complex

biological regulatory network. It is important to identify the key components of the biological

network that is capable of generating desired patterns, and it is also important to classify minimal

biological network for pattern formation [16].

To capture the behavior of the model relating to or describing the network connection of the

di↵erent components, we need the following definitions. Let Mn be the set of all n ⇥ n matrices

with real-valued entries. A matrix A 2 Mn is said to be stable if for each of its eigenvalues �j

(j = 0, 1, 2, · · · , n), Re(�i) < 0. We define the sign pattern of a matrix A = [ajk] to be an n ⇥ n

matrix S(A) = [sjk] such that, for j, k 2 {1, · · · , n}, sjk = 0 when ajk = 0, sjk = � when ajk < 0,

and sjk = + when ajk > 0. We also define the non-zero pattern of A to be an n ⇥ n matrix

partially based on [6]

1



N(A) = [njk] such that, for j, k 2 {1, · · · , n}, njk = 0 when ajk = 0, and njk = ⇤ when ajk 6= 0.

A non-zero pattern of A can be assigned ± signs so it becomes a sign pattern. If some matrix

A 2 Mn is found to be stable, then the sign pattern S(A) is said to be potentially stable. For a

stable n⇥n matrix A, if there is a nonnegative n⇥n diagonal matrix P such that the matrix A�tP

is unstable for some positive t > 0, then A is said to exhibit Turing Instability. We are interested

in the minimum number of nonzero entries of a stable matrix in Mn, which will exhibit Turing

instability. We will consider the minimal number Sn of nonzero entries that an n ⇥ n irreducible

matrix A must have in order for it to exhibit Turing instability.

An n ⇥ n sign pattern S(A) with only Sn nonzero entries can be considered as a minimal

network topology generating Turing instability. Turing’s original work on the subject [15] implies

that S2 = 4. Indeed it is well-known that up to a permutation or transpose, the only 2 ⇥ 2 sign

pattern that can possibly generate Turing instability is the activator-inhibitor type

2

4� +

� +

3

5 . A

related index is the minimum number of nonzero entries required for an n ⇥ n irreducible sign

pattern to be potentially stable, and it is denoted by mn. Note that, trivially, mn  Sn for any

n since A is assumed to be stable. The known results about Sn and Mn are summarized in the

following table:

n 2 3 4 5 6 7 8 upper bound

Mn 3 5 6 8 9 11 12  2n� 1� bn3 c

Sn 4 6 7 8? 10?  2n+ 1� bn3 c

The results for Mn were proved in [4] for n  6 and the general upper bound, [5] for n = 7 and [1]

for n = 8. The results for S3 and general upper bound of Sn were proved in [6], and the conjecture

of Sn for n � 4 was given by Diego [2]. The result that S4 = 7 was recently verified in [10].

In the 2014 paper by Raspopovic et.al. [13], it was claimed that in order for an irreducible

3 ⇥ 3 matrix to exhibit Turing instability, it must have at least 6 nonzero entries. But the claim

was not proved in the paper. The result in [6] provided theoretical justification for that claim,

and all distinct irreducible 3⇥ 3 non-zero patterns with 6 non-zero entries (up to a permutation or

transpose) were also classified (see Table 1). Note that the seven non-zero patterns in Table 1 were

found in [3] Fig. 5. In [13], the diagonal matrix P is assumed to be diag(p1, p2, 0) while our results

hold for any nonnegative (including positive) diagonal matrix P . The graph-theoretical methods

to analyze network topologies for Turing instability were also used in [3, 8, 11].

Each of the seven non-zero patterns listed in Table 1 can be realized by one or more sign

patterns and matrices exhibiting Turing instability. All non-equivalent sign patterns are listed in

the following Table 2.

Questions.

1. Rigorously determine S5, and classify all distinct irreducible 5 ⇥ 5 non-zero patterns with

S5 non-zero entries. It is conjectured that S5 = 8 [2], which will provide first example that

Sn = Mn. For 2  n  4, it is known that Sn > Mn.
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1.
1

2

3
=)

2

6664

⇤ ⇤ 0

0 ⇤ ⇤

⇤ ⇤ 0

3

7775
2.

1

2

3
=)

2

6664

⇤ ⇤ 0

⇤ ⇤ ⇤

⇤ 0 0

3

7775

3. 1

2

3 =)

2

6664

⇤ ⇤ 0

⇤ ⇤ ⇤

0 ⇤ 0

3

7775
4. 1

2

3 =)

2

6664

⇤ ⇤ 0

⇤ 0 ⇤

0 ⇤ ⇤

3

7775

5.
1

2

3
=)

2

6664

⇤ ⇤ 0

⇤ 0 ⇤

⇤ ⇤ 0

3

7775
6.

1

2

3
=)

2

6664

0 ⇤ 0

⇤ ⇤ ⇤

⇤ ⇤ 0

3

7775

7.
1

2

3
=)

2

6664

⇤ ⇤ 0

0 ⇤ ⇤

⇤ 0 ⇤

3

7775

Table 1: List of potential digraphs with 3 vertices and 6 edges.

2

664

� + 0

0 � +

� + 0

3

775

2

664

� + 0

0 + +

+ � 0

3

775

2

664

+ + 0

0 � +

� � 0

3

775

2

664

� + 0

� + +

� 0 0

3

775

2

664

� + 0

+ � +

0 � 0

3

775

(a) (b) (c) (d) (e)
2

664

� + 0

� + +

0 � 0

3

775

2

664

+ + 0

� � +

0 + 0

3

775

2

664

� + 0

� 0 +

0 + �

3

775

2

664

+ + 0

� 0 +

0 � �

3

775

2

664

� + 0

+ 0 +

+ � 0

3

775

(f) (g) (h) (i) (j)
2

664

� + 0

� 0 +

� + 0

3

775

2

664

0 + 0

� � +

� + 0

3

775

2

664

� + 0

0 + +

� 0 �

3

775

(k) (l) (m)

Table 2: Nonequivalent sign patterns that are potentially exhibiting Turing Instability.

2. It is observed [2] that for n = 2 and n = 3, a minimal network structure for Turing instability

satisfies Sn = n + Cn � 1, where Cn is the number of cycles in the minimal network with n

vertices. Prove (or disprove) this relation Sn = n+ Cn � 1 for n � 5.

3. Find the exact values of Mn for n � 9 and Sn for n � 5.
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Objective.

Investigate qualitatively (population persistence/disease invasion) and quantitatively (population
biomass/disease endemicity) the impact of movement networks/matrices on spatially heterogeneous
populations in stream environments.

Problem O (Everything starts with zero)

Assume the network of n nodes (patches) corresponding to a given stream environment has no cycles
of length greater than 2. We thus call this as a stream network. There are 3 configurations for stream
networks of 3 nodes (as depicted in the following; this is resulted due to the asymmetric movements:
downstream movements are generally larger than upstream movements).

t?
t?
t

t
A
A
A
AAU

t
�
�

�
��↵

t t
A
A
A
AAUt

�
�

�
��↵ t

O1. Identify all configurations for stream networks of 4 nodes, 5, 6, etc.
O2. Is there a general formula for the number of these configurations?
O3. Which configuration is more suitable for modeling a river or stream in your hometown?

Spatially heterogeneous populations in a stream environment can be modeled as a coupled system of
patch models (sub-systems) on a stream network. It is of both mathematical and biological interests to
investigate the impact of movements on the network population growth rate (i.e., r = s(J), the spectral
bound of a certain Jacobian matrix, which determines whether populations persist) and when r > 0, the
total population biomass B (is there a natural way to define B?). Specifically, the following questions
might serve as a starting point.

Q1. Which configuration yields to the largest (smallest) value of r?
Q2. Which configuration yields to the largest (smallest) biomass, given r > 0?
Q3. When do Q1 and Q2 have the same answer? When do not? Why?

1



Problem S (Single Species)

Consider a single species in a stream environment and its population dynamics can be modeled as
the following coupled system on a stream network (i.e., a weighted digraph of no cycles of length > 2)
(G, A) with movement (weight) matrix A = [aij ]n⇥n:

x0
i = rixi

�
1� xi

Ki

�
+ ↵

nX

j=1

(aijxj � ajixi), i = 1, 2, . . . , n. (S)

S1. Assume that all intrinsic growth rates ri are the same (assumption A1) and that all carrying
capacity parameters Ki are the same (assumption A2). Would r be a constant, irregardless of stream
networks? How about B?

S2. Now only assume A1 but di↵erent values of Ki are allowed. Try answering questions Q1, Q2
and Q3, possibly starting with stream networks of 3 nodes (n = 3).

S3. Now only assume A2 and di↵erent values of ri exist. Answer questions Q1, Q2 and Q3.
S4. Without any assumptions (neither A1 nor A2), what conclusions can your group draw?

Problem C (Competitive Species)

For this problem, each patch model can be described by either a classic competition system

u0 = ru(1� u� ev),
v0 = �v(1� ✏u� v),

(CC)

or a di↵erent representation (e.g., see [7, 8])

x0 = rx
�
1� x+ y

K

�
,

y0 = �y
�
1� x+ y

K

�
.

(CD)

C1. Answer questions Q1, Q2 and Q3 for representation (CC).
C2. Answer these questions again for representation (CD).
C3. Do answers in C1 and C2 depend on the representation? Why?

Problem W (Waterborne Disease)
Cholera is a waterborne disease caused by Vibrio cholerae that can live and move within a river or

stream. A typical cholera model takes the following form

S0 = ⇤� �SW � µS,
I 0 = �SW � �I � ⌘I � µI,
R0 = �I � µI,
W 0 = ⇠I � �W.

(W )

W1. Assume only pathogen (W ) move. Answer Q1, Q2 and Q3 in the understanding of the network
basic reproduction number and the disease endemicity respectively.

W2. There is an analog of reaction-di↵usion equation models (continuous structure) to metapopu-
lation (patch) models (discrete structure). Formulate the corresponding PDE model (see, e.g., [5]) and
answer questions in W1.

W3. What are possible challenges if both pathogen and human movements are allowed in the
model? How to address these challenges?

Remark. There are two ebooks [2, 3] on modeling population dynamics which you and your group
might find helpful. River structures are discussed in [10, 13], stream fish in [6, 9], and possible seasonal

impact [4, 12, 14]. You might also want to check a survey [11] for the e↵ect of dispersal patterns on
stream populations (continue structure) and recent results [1] for discrete structure (heavily relying on
linear algebra !).
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Modeling COVID-19 with Testing Regimes
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In the past couple of years, researchers have formulated many mathematical models of

COVID-19. To describe the dynamics, of this virus, di↵erent types of models have been

used: for example, ordinary di↵erential equation models, network models, stochastic mod-

els, agent based models. Each type has its assumptions and each relies on data for practical

applications, although some are more data intensive than others. Ordinary di↵erential equa-

tion models usually take the classical SIR disease model and include other compartments to

make the model more realistic for COVID-19. For example, testing rate and isolation rate

are included in a model by Gharouni et al. (2022), various vaccination regimes are consid-

ered in Saad-Roy et al. (2021), testing and tracing are included in a model by Sturniolo et

al. (2021), various public health interventions are modeled by Wu et al. (2020), and Levine

and Earn (2022) investigate the e↵ect of face masks. Many more examples can be found on

the web. One advantage of ordinary di↵erential equation models is that mathematical the-

ory, especially linear algebra, can often be used to prove some qualitative theoretical results

about the model. These usually need to be supplemented with numerical simulations.

Formulate an ordinary di↵erential equation model for COVID-19 that includes testing

of all individuals, including those who are susceptible, pre-symptomatic and symptomatic.

The two latter classes test positive with di↵erent rates, and individuals testing positive are

isolated. One suggestion is to modify the formulation in Gharouni et al. (2022), but you

could investigate di↵erent formulations as your assumptions vary. This blanket testing has

been in force at Princeton University, with everyone required to be tested at least weekly

until recently when this was changed to monthly.

Analyse your model(s) using tools from linear algebra. For example, find the control

reproduction number, consider the sensitivity (or elasticity) of this number to changes in a

parameter, and compute target reproduction numbers (see Lewis et al. (2019)) for various

means of control. What conclusions can you draw from your model(s)?
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