Background 0000000

SIS Patch Model

SIAR Patch Model

Research Questions

Impact of Human Movement on Disease Persistence

Daozhou Gao

dzgao@shnu.edu.cn

Shanghai Normal University

CBMS Conference: Interface of Mathematical Biology and Linear Algebra University of Central Florida

May 23-27, 2022

SIS Patch Model

SIAR Patch Model

Research Questions

Outline

Outline

- 2 SIS Patch Model
- 3 SIAR Patch Model
- 4 Research Questions

Background •0000000

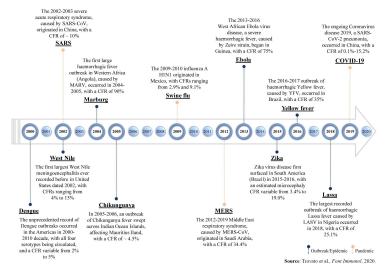
SIS Patch Model

SIAR Patch Model

Research Questions

Infectious Disease Outbreaks

The frequency and scale of disease outbreaks have increased rapidly.



Background	SIS Patch Model	SIAR Patch Model	Research Questions
0000000	0000000	0000000000	
Epidemic 1	Models		

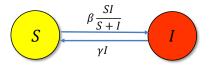
- Simplified means of describing the transmission of infectious disease through individuals.
- Useful in understanding disease spread, predicting the future number of cases and designing control policies.
- With respect to disease status, a population is divided into disjoint classes.

Epidemiologia	eal Terms		
Background 00●00000	SIS Patch Model	SIAR Patch Model	Research Questions

- Basic reproduction number (\mathcal{R}_0): the number of secondary cases produced by a single infection in a completely susceptible population.
- Threshold dynamics: if $\mathcal{R}_0 < 1$, a disease cannot spread; if $\mathcal{R}_0 > 1$, then the disease can spread.
- Disease-free equilibrium: a steady state where there is no disease.
- Endemic disease: a disease that is always present in a certain population or region.
- Endemic equilibrium: a steady state where there is disease.

Background 000●0000	SIS Patch Model	SIAR Patch Model	Research Questions
SIS Model			

• The population is divided into susceptible and infectious classes.



Here β is the transmission rate and γ is the recovery rate.

• Model equations (N = S + I):

$$\frac{dS}{dt} = -\beta \frac{S}{N}I + \gamma I, \qquad \qquad \mathcal{R}_0 = \frac{\beta}{\gamma}.$$
$$\frac{dI}{dt} = \beta \frac{S}{N}I - \gamma I, \qquad \qquad \mathcal{R}_0 = \frac{\beta}{\gamma}.$$

• If $\mathcal{R}_0 \leq 1$, then $E_0 = (N, 0)$ is globally asymptotically stable (GAS); if $\mathcal{R}_0 > 1$, then $E^* = \left(\frac{1}{\mathcal{R}_0}, (1 - \frac{1}{\mathcal{R}_0})N\right)$ is GAS.

Background 00000000	SIS Patch Model	SIAR Patch Model	Research Questions
Changes in Tra	avel		

More people travel more frequently and farther than ever before.

TT 3.6		D'	
00000000	0000000	0000000000	000000
Background	SIS Patch Model	SIAR Patch Model	Research Questions

Human Movement and Infectious Diseases

- Global travel and tourism facilitate the spread of infectious diseases and constitute a major challenge for infection control.
- Mathematical models play a crucial role in characterizing, forecasting, and controlling the spatio-temporal spread of infectious diseases.
- Modeling movement: continuous diffusion in continuous space corresponds to reaction-diffusion models (Fisher 1937) or nonlocal dispersal models (Andreu-Vaillo et al. 2010), while discrete diffusion in discrete space corresponds to patch models (Levin 1969).
- Epidemic patch models are widely used in the study of disease spread in discrete space (Wang 2007, Arino 2009).

Background	
00000000	

Epidemic Patch Models

Specific diseases:

- Baroyan et al. (AAP 1971): influenza
- Dye and Hasibeder (TRSTMH 1986): malaria
- Ruan, Wang and Levin (MBE 2006): SARS
- Gao et al. (BMB 2013): Rift Valley fever
- Tien et al. (JMB 2015): cholera
- Bichara et al. (LBM 2016): dengue fever
- Zhang, Cosner and Zhu (BMB 2018): West Nile fever

Differen factors:

- Sattenspiel and Dietz (MB 1995): acquired immunity
- Wang and Zhao (SIAP 2005): age-structure
- Salmani and van den Driessche (DCDS-B 2006): latent period
- Zhang and Zhao (JMAA 2007): seasonality
- Knipl, Röst and Wu (SIADS 2013): transport-related infection
- Wang et al. (BMB 2015): entry-exit screening

0000000	0000000	000000000	0000000
Background	SIS Patch Model	SIAR Patch Model	Research Questions

Epidemic Patch Models-Cont'd

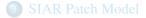
- J. T. Wu, K. Leung, G. M. Leung, Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study, *Lancet*, 395: 689–697, 2020.
- M. Chinazzi, et al., The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak, *Science*, 368:395–400, 2020.
- R. Li, et al., Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV2), *Science*, 368: 489–493, 2020.
- M. Gatto, et al., Spread and dynamics of the COVID-19 epidemic in Italy: Effects of emergency containment measures, *Proc. Natl. Acad. Sci. USA*, 117: 10484–10491, 2020.

SIS Patch Model

SIAR Patch Model

Research Questions

Outline

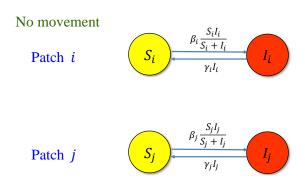


4 Research Questions

Background 00000000	SIS Patch Model •0000000	SIAR Patch Model	Research Questions
Allen, Bol	ker, Lou and Neva	ai, SIAP, 2007	

Following the SIS model by adding migration among $n \ge 2$ patches:

- The model of each patch in isolation remains unchanged.
- Different patches are connected by human movement.

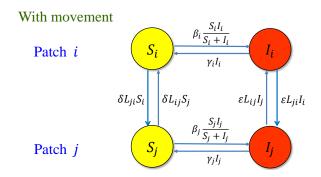


A 11 an D a 11		.: CIAD 2007	
0000000	0000000	0000000000	0000000
Background	SIS Patch Model	SIAR Patch Model	Research Questions

Allen, Bolker, Lou and Nevai, SIAP, 2007

Following the SIS model by adding migration among $n \ge 2$ patches:

- The model of each patch in isolation remains unchanged.
- Different patches are connected by human movement.



A 11	Deller I are and Marsh	CIAD 2007	Cart?d	
00000000	0000000	00000000000		0000000
Background	SIS Patch Model	SIAR Patch Model		Research Questions

Allen, Bolker, Lou and Nevai, SIAP, 2007–Cont'd

An SIS patch model ($\Omega = \{1, \ldots, n\}$):

$$\frac{dS_i}{dt} = -\beta_i \frac{S_i I_i}{S_i + I_i} + \gamma_i I_i + \delta \left(\sum_{j=1, j \neq i}^n L_{ij} S_j - \left(\sum_{j=1, j \neq i}^n L_{ji} \right) S_i \right), \ i \in \Omega,
\frac{dI_i}{dt} = \beta_i \frac{S_i I_i}{S_i + I_i} - \gamma_i I_i + \varepsilon \left(\sum_{j=1, j \neq i}^n L_{ij} I_j - \left(\sum_{j=1, j \neq i}^n L_{ji} \right) I_i \right), \ i \in \Omega.$$

Denote the total emigration rate of patch *i* by $-L_{ii} = \sum_{j=1, j \neq i}^{n} L_{ji}$.

$$\frac{dS_i}{dt} = -\beta_i \frac{S_i I_i}{S_i + I_i} + \gamma_i I_i + \delta \left(\sum_{j=1, j \neq i}^n L_{ij} S_j + L_{ii} S_i \right), \ i \in \Omega,$$

$$\frac{dI_i}{dt} = \beta_i \frac{S_i I_i}{S_i + I_i} - \gamma_i I_i + \varepsilon \left(\sum_{j=1, j \neq i}^n L_{ij} I_j + L_{ii} I_i \right), \ i \in \Omega.$$

 Background
 SIS Patch Model
 SIAR Patch Model
 Research Questions

 00000000
 0000000000
 0000000000
 000000000

Allen, Bolker, Lou and Nevai, SIAP, 2007–Cont'd

An SIS patch model ($\Omega = \{1, \ldots, n\}$):

$$\frac{dS_i}{dt} = -\beta_i \frac{S_i I_i}{S_i + I_i} + \gamma_i I_i + \delta \sum_{j \in \Omega} L_{ij} S_j, \ i \in \Omega,
\frac{dI_i}{dt} = \beta_i \frac{S_i I_i}{S_i + I_i} - \gamma_i I_i + \varepsilon \sum_{j \in \Omega} L_{ij} I_j, \ i \in \Omega.$$
(1)

(A1) $S_i(0) \ge 0$ and $I_i(0) \ge 0$ for $i \in \Omega$, and $\sum_{i \in \Omega} I_i(0) > 0$; (A2) $L = (L_{ij})$ is essentially nonnegative, irreducible, and symmetric; (A3) $H^- = \{i \in \Omega : \mathcal{R}_0^{(i)} := \beta_i / \gamma_i < 1\}$ and $H^+ = \{i \in \Omega : \mathcal{R}_0^{(i)} > 1\}$ are nonempty and $H^- \cup H^+ = \Omega$.

The basic reproduction number is $\mathcal{R}_0 = \rho(FV^{-1})$ where

$$F = \operatorname{diag}(\beta_1, \ldots, \beta_n)$$
 and $V = \operatorname{diag}(\gamma_1, \ldots, \gamma_n) - \varepsilon L$.

Background 00000000	SIS Patch Model	SIAR Patch Model	Research Questions
Allen, Bolker	Lou and Nevai	, SIAP, 2007–Cont'd	

• Open problem:

 $\mathcal{R}_0 = \rho(FV^{-1})$ is a monotone decreasing function of ε .

• For SIS reaction-diffusion model (Allen et al., DCDS-A, 2008):

$$\begin{split} &\frac{\partial S}{\partial t} = \delta \Delta S - \beta(x) \frac{SI}{S+I} + \gamma(x)I, \quad x \in \Omega, \ t > 0, \\ &\frac{\partial I}{\partial t} = \varepsilon \Delta I + \beta(x) \frac{SI}{S+I} - \gamma(x)I, \quad x \in \Omega, \ t > 0, \\ &\frac{\partial S}{\partial n} = \frac{\partial I}{\partial n} = 0, \qquad \qquad x \in \partial \Omega, \ t > 0, \end{split}$$

the basic reproduction number is

$$\mathcal{R}_0(\varepsilon) = \sup\left\{\frac{\int_\Omega \beta \varphi^2}{\int_\Omega \varepsilon |\nabla \varphi|^2 + \gamma \varphi^2} : \varphi \in H^1(\Omega), \ \varphi \neq 0\right\}.$$

Symmetric Movement

Theorem (Gao, SIAP, 2019)

Let $F = \operatorname{diag}(\beta_1, \ldots, \beta_n)$ and $D = \operatorname{diag}(\gamma_1, \ldots, \gamma_n)$ be two positive diagonal matrices and $L = (L_{ij})_{n \times n}$ be an essentially nonnegative, irreducible and symmetric matrix with zero column sums. Then $\mathcal{R}_0 = \rho(FV^{-1})$ with $V = D - \varepsilon L$ is constant if $\mathcal{R}_0^{(i)} = \beta_i / \gamma_i$ is constant and strictly decreasing in $\varepsilon \in [0, \infty)$ with $\mathcal{R}'_0(\varepsilon) < 0$ for $\varepsilon \in (0, \infty)$ otherwise.

Outline of the Proof: By the Perron–Frobenius theorem, there exists a vector $\mathbf{v} \gg \mathbf{0}$ such that $V^{-1}F\mathbf{v} = \rho(V^{-1}F)\mathbf{v} = \mathcal{R}_0\mathbf{v}$, or equivalently,

$$\left(\frac{1}{\mathcal{R}_0}F-V\right)\mathbf{v}=\left(\frac{1}{\mathcal{R}_0}F-D+\varepsilon L\right)\mathbf{v}=\mathbf{0}.$$

We thus have

$$\mathcal{R}_0'(\varepsilon) = \frac{\boldsymbol{\nu}^T \boldsymbol{L} \boldsymbol{\nu}}{\boldsymbol{\nu}^T \boldsymbol{F} \boldsymbol{\nu}} (\mathcal{R}_0)^2.$$

Karlin's Theorem

Lemma (**Reduction Principle in Genetics: Karlin, 1982; Altenberg, PNAS, 2012; Altenberg, SIMAA, 2013**)

Let P be an irreducible stochastic matrix (i.e., nonnegative and each column summing to one), and let D be a positive diagonal matrix that is not a scalar multiple of identity matrix \mathbb{I}_n of order $n \ge 2$. Put

$$M(\alpha) = (1 - \alpha)\mathbb{I}_n + \alpha P.$$

Then for $\alpha > 0$, the spectral bound of matrix $M(\alpha)D$, denoted by $s(M(\alpha)D)$, has the following properties:

(a) $\frac{d}{d\alpha}s(M(\alpha)D) < 0$. Thus $s(M(\alpha)D)$ decreases strictly as α increases.

(b) $s(M(\alpha)D)$ is strictly convex in α . Thus $\frac{d^2}{d\alpha^2}s(M(\alpha)D) \ge 0$.

Background	S
	С

SIS Patch Model

SIAR Patch Model

Research Questions

Asymmetric Movement

Assume that: (B1) *L* is essentially nonnegative and irreducible; (B2) $\mathcal{R}_0^{(i)}$ is non-constant in $i \in \Omega$.

Theorem (Gao and Dong, PAMS, 2020)

For model (1), the basic reproduction number \mathcal{R}_0 is strictly decreasing and strictly convex in $\varepsilon \in [0, \infty)$. Moreover, $\mathcal{R}'_0(\varepsilon) < 0$ and $\mathcal{R}''_0(\varepsilon) > 0$ for $\varepsilon \in (0, \infty)$.

Fast dispersal inhibits disease outbreaks.

Corollary (Gao and Dong, PAMS, 2020)

For model (1) with $\varepsilon \in (0, \infty)$, the reproduction number \mathcal{R}_0 satisfies

 $\min_{i\in\Omega}\mathcal{R}_0^{(i)} < \mathcal{R}_0(\infty) < \mathcal{R}_0(\varepsilon) = \rho(FV^{-1}) < \mathcal{R}_0(0) = \max_{i\in\Omega}\mathcal{R}_0^{(i)},$

where $\mathcal{R}_0(\infty) = \sum_{i \in \Omega} \beta_i L_{ii}^* / \sum_{i \in \Omega} \gamma_i L_{ii}^*$ and $L^* = (L_{ij}^*)^T$ is the adjoint matrix of L.

Related work: Chen et al. (JMB 2020, SIAP 2022).

SIS Patch Model

SIAR Patch Model

Research Questions

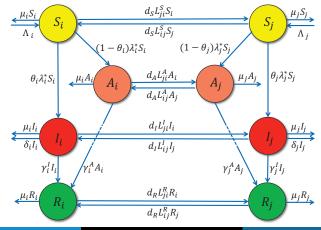
Outline

Asymptom	atic Infection		
Background 00000000	SIS Patch Model	SIAR Patch Model	Research Questions

- An asymptomatic case is an individual who tests positive but experiences no symptoms throughout the course of infection.
- Asymptomatic infection is very common for many infectious diseases including COVID-19, Ebola, influenza, cholera, chlamydia, Zika fever, dengue fever, yellow fever, and malaria.
- Asymptomatic infectives are hard to detect but may transmit the infection to others, acting as silent spreaders.
- Symptomless people have more contacts with others through normal daily activities, so a significant proportion of new infections could be attributed to asymptomatic transmission.

Background 0000000	SIS Patch Model	SIAR Patch Model	Research Questions
Flow Diagram			

The population in patch $i \in \Omega = \{1, ..., n\}$ is divided into classes consisting of susceptible, symptomatic, asymptomatic and recovered individuals, denoted by S_i , I_i , A_i and R_i , respectively.



Model Equ	ations		
Background 00000000	SIS Patch Model	SIAR Patch Model	Research Questions

The transmission dynamics in patch $i \in \Omega = \{1, ..., n\}$ follow:

$$\frac{dS_i}{dt} = d_S \sum_{j \in \Omega} L_{ij}^S S_j + \Lambda_i - \beta_i \frac{I_i + \tau_i A_i}{N_i} S_i - \mu_i S_i,$$

$$\frac{dI_i}{dt} = d_I \sum_{j \in \Omega} L_{ij}^I I_j + \theta_i \beta_i \frac{I_i + \tau_i A_i}{N_i} S_i - (\mu_i + \gamma_i^I + \delta_i) I_i,$$

$$\frac{dA_i}{dt} = d_A \sum_{j \in \Omega} L_{ij}^A A_j + (1 - \theta_i) \beta_i \frac{I_i + \tau_i A_i}{N_i} S_i - (\mu_i + \gamma_i^A) A_i,$$

$$\frac{dR_i}{dt} = d_R \sum_{j \in \Omega} L_{ij}^R R_j + \gamma_i^I I_i + \gamma_i^A A_i - \mu_i R_i,$$
(2)

where d_{\natural} and $L^{\natural} = (L_{ij}^{\natural})$ with $\natural \in \{S, I, A, R\}$ are dispersal rate and connectivity matrix, respectively, and $N_i = S_i + I_i + A_i + R_i$.

Background	SIS Patch Model	SIAR Patch Model	Research Questions
		000000000	

Basic Reproduction Number

Using the next generation matrix method, the basic reproduction number is defined as

$$\mathcal{R}_0 = \rho(FV^{-1}),$$

where

$$F = \begin{pmatrix} F_{11} & F_{12} \\ F_{21} & F_{22} \end{pmatrix} \text{ and } V = \begin{pmatrix} V_{11} & 0 \\ 0 & V_{22} \end{pmatrix}$$

with

$$F_{11} = \operatorname{diag}\{\theta_{1}\beta_{1}, \dots, \theta_{n}\beta_{n}\}, F_{12} = \operatorname{diag}\{\theta_{1}\tau_{1}\beta_{1}, \dots, \theta_{n}\tau_{n}\beta_{n}\},$$

$$F_{21} = \operatorname{diag}\{(1-\theta_{1})\beta_{1}, \dots, (1-\theta_{n})\beta_{n}\},$$

$$F_{22} = \operatorname{diag}\{(1-\theta_{1})\tau_{1}\beta_{1}, \dots, (1-\theta_{n})\tau_{n}\beta_{n}\},$$

$$V_{11} = D_{I} - d_{I}L^{I}, D_{I} = \operatorname{diag}\{\mu_{1} + \gamma_{1}^{I} + \delta_{1}, \dots, \mu_{n} + \gamma_{n}^{I} + \delta_{n}\},$$

$$V_{22} = D_{A} - d_{A}L^{A}, D_{A} = \operatorname{diag}\{\mu_{1} + \gamma_{1}^{A}, \dots, \mu_{n} + \gamma_{n}^{A}\}.$$

Since $F_{12} = F_{11}F_{21}^{-1}F_{22}$, it follows that

$$\mathcal{R}_0 = \rho(F_{11}V_{11}^{-1} + F_{22}V_{22}^{-1}) = \rho(V_{11}^{-1}F_{11} + V_{22}^{-1}F_{22}).$$

Background	SIS Patch Model	SIAR Patch Model	Research Questions
0000000	0000000	0000●000000	
Threshold	Dvnamics		

By using a Lyapunov function and persistence theory, the basic reproduction number \mathcal{R}_0 is shown to be a sharp threshold between disease extinction and persistence.

Theorem (Gao et al., SIAP, 2022)

For model (2), if $\mathcal{R}_0 \leq 1$, then the disease-free equilibrium E_0 is globally asymptotically stable; if $\mathcal{R}_0 > 1$, then the disease is uniformly persistent and there exists at least one endemic equilibrium.

Question: how is \mathcal{R}_0 affected by population dispersal, characterized by dispersal rates d_I and d_A , and connectivity matrices L^I and L^A .

Upper and Lower Bounds on \mathcal{R}_0

The basic reproduction number of patch *i* in isolation is $\mathcal{R}_{0}^{(i)} = \mathcal{R}_{0I}^{(i)} + \mathcal{R}_{0A}^{(i)}$, where $\mathcal{R}_{0I}^{(i)} = \frac{\theta_i \beta_i}{\mu_i + \gamma_i^I + \delta_i}$ and $\mathcal{R}_{0A}^{(i)} = \frac{(1-\theta_i)\tau_i \beta_i}{\mu_i + \gamma_i^A}$.

Theorem (Gao et al., SIAP, 2022)

For model (2), the basic reproduction number \mathcal{R}_0 satisfies

$$\min_{i\in\Omega} \mathcal{R}_{0I}^{(i)} + \min_{i\in\Omega} \mathcal{R}_{0A}^{(i)} \leq \mathcal{R}_0 \leq \max_{i\in\Omega} \mathcal{R}_{0I}^{(i)} + \max_{i\in\Omega} \mathcal{R}_{0A}^{(i)}.$$

Furthermore, the inequality

$$\min_{i \in \Omega} \mathcal{R}_0^{(i)} \leq \mathcal{R}_0 \leq \max_{i \in \Omega} \mathcal{R}_0^{(i)}$$

holds if $\theta_i = \theta$, $\tau_i = \tau$ and $\gamma_i^I + \delta_i = \gamma_i^A$ for all $i \in \Omega$.

Remark: any value between the lower and upper bounds of \mathcal{R}_0 is reachable under appropriate dispersal strategy $(d_I, d_A, L^I \text{ and } L^A)$.

Background 0000000	SIS Patch Model	SIAR Patch Model	Research Questions
\mathcal{R}_0 vs Dispe	ersal Rates: Two	-patch Case	

How does \mathcal{R}_0 vary with dispersal rates, d_I and d_A ?

Proposition (Gao et al., SIAP, 2022)

For model (2) with n = 2, if all parameters are positive, then the derivative of \mathcal{R}_0 with respect to d_I or d_A has sign-preserving property, *i.e.*,

$$\operatorname{sgn}\left(\frac{d\mathcal{R}_{0}}{dd_{I}}\right) = \operatorname{sgn}\left(\left.\frac{d\mathcal{R}_{0}}{dd_{I}}\right|_{d_{I}=0+}\right) \quad and \quad \operatorname{sgn}\left(\left.\frac{d\mathcal{R}_{0}}{dd_{A}}\right) = \operatorname{sgn}\left(\left.\frac{d\mathcal{R}_{0}}{dd_{A}}\right|_{d_{A}=0+}\right)$$

for $d_{I} > 0$ and $d_{A} > 0$.

So, \mathcal{R}_0 is either strictly decreasing or strictly increasing or constant with respect to d_I and d_A . Different from SIS or SIR patch model.

0000000	0000000	0000000000	0000000
Background	SIS Patch Model	SIAR Patch Model	Research Quest

\mathcal{R}_0 vs Dispersal Rates: General Case I

Theorem (Gao et al., SIAP, 2022)

Suppose $\theta_i = \theta$ and $\tau_i = \tau$ for all $i \in \Omega$, and L^I and L^A are symmetric. Then the basic reproduction number $\mathcal{R}_0(d_I)$ of model (2) is constant in terms of d_I if $D_I \mathbf{1}$ is a right eigenvector of $F_{11}D_I^{-1} + F_{22}V_{22}^{-1}$ associated to eigenvalue $\mathcal{R}_0(0) = \rho(F_{11}D_I^{-1} + F_{22}V_{22}^{-1})$, i.e.,

$$(F_{11}D_I^{-1} + F_{22}V_{22}^{-1})D_I\mathbf{1} = \mathcal{R}_0(0)D_I\mathbf{1},$$

and strictly decreasing otherwise. If, in addition, $\gamma_i^I + \delta_i = \gamma_i^A$ for all $i \in \Omega$, then \mathcal{R}_0 is constant in terms of d_I if $\mathcal{R}_0^{(1)} = \cdots = \mathcal{R}_0^{(n)}$, and strictly decreasing otherwise.

Similar conclusions hold for \mathcal{R}_0 with respect to d_A .

\mathcal{R}_0 vs Dispersal Rates: General Case II

Proposition (Gao et al., SIAP, 2022)

Assume that: (i) $\theta_i = \theta$ and $\tau_i = \tau$ for $i \in \Omega$; (ii) the connectivity matrices L^I and L^A are equal (i.e., $L^I = L^A := L$); (iii) there is a positive diagonal matrix C such that CLC^{-1} is symmetric. Let α be a positive right eigenvector of L corresponding to eigenvalue zero. Then the basic reproduction number $\mathcal{R}_0(d_I)$ of model (2) is constant in terms of d_I if $D_I \alpha$ is a right eigenvector of $F_{11}D_I^{-1} + F_{22}V_{22}^{-1}$ associated to eigenvalue $\mathcal{R}_0(0) = \rho(F_{11}D_I^{-1} + F_{22}V_{22}^{-1})$, i.e.,

$$(F_{11}D_I^{-1} + F_{22}V_{22}^{-1})D_I\alpha = \mathcal{R}_0(0)D_I\alpha,$$

and strictly decreasing otherwise. If, in addition, $\gamma_i^I + \delta_i = \gamma_i^A$ for all $i \in \Omega$, then \mathcal{R}_0 is constant in terms of d_I if $\mathcal{R}_0^{(1)} = \cdots = \mathcal{R}_0^{(n)}$, and strictly decreasing otherwise.

\mathcal{R}_0 vs Dispersal Rates: General Case III

When symptomatic or asymptomatic individuals do not move between patches, the monotonic result on \mathcal{R}_0 holds with no additional restrictions on model parameters.

Theorem (Gao et al., SIAP, 2022)

For model (2), if $d_I = 0$ (or $d_A = 0$), then the basic reproduction number

$$\mathcal{R}_0 = \rho(F_{11}D_I^{-1} + F_{22}V_{22}^{-1})$$

is strictly decreasing with respect to d_A (or d_I) whenever $\mathcal{R}_0^{(i)}$ is nonconstant in $i \in \Omega$, and constant otherwise.

In general setting, \mathcal{R}_0 can be decreasing, increasing or nonmonotone in d_I or d_A .

Background	SIS Patch Model	SIAR Patch Model 0000000000	Research Questions
\mathcal{R}_0 vs Disp	ersal and Dispers	al Rates: Independ	lence
Wilson in T	· independent of disc	and an diamanal mater.	

When is \mathcal{R}_0 independent of dispersal or dispersal rates, i.e., $\mathcal{R}_0(d_I, d_A, L^I, L^A) = \text{const}, \text{ or } \mathcal{R}_0(d_I, d_A) = \text{const}?$

Proposition (Gao et al., SIAP, 2022)

For model (2), the following statements on \mathcal{R}_0 hold:

- (a) \mathcal{R}_0 is independent of dispersal if and only if both $\mathcal{R}_{0I}^{(i)}$ and $\mathcal{R}_{0A}^{(i)}$ are constant in $i \in \Omega$.
- (b) \mathcal{R}_0 is independent of dispersal rates d_I and d_A if and only if $\mathcal{R}_0^{(i)}$ is constant in $i \in \Omega$ and $s((D_A F_{22}^{-1} F_{11} D_I^{-1} - d_A L^A F_{22}^{-1})^{-1} - D_I F_{11}^{-1} F_{22} D_A^{-1} + d_I L^I F_{11}^{-1}) = 0$ for any $d_I \ge 0$ and $d_A \ge 0$.
- (c) R₀ is independent of dispersal rates d_I and d_A if R₀⁽ⁱ⁾ is constant in i ∈ Ω and D_Iα^I = kD_Aα^A for some k > 0, where α^β is a right positive eigenvector with eigenvalue zero of matrix L^β for β ∈ {I,A}, but not conversely.
- (d) \mathcal{R}_0 is independent of dispersal rates d_I and d_A if \mathcal{R}_0 is independent of dispersal, but not conversely.

Outline

- 2 SIS Patch Model
- 3 SIAR Patch Model

Background 00000000 SIS Patch Model

.

Question 1: SIS Patch Model

How does disease persistence vary with partial changes in connection?

Let
$$F = \text{diag}(\beta_1, \dots, \beta_n)$$
 and $V = \text{diag}(\gamma_1, \dots, \gamma_n) - \varepsilon L$.
Namely, $\mathcal{R}_0 = \rho(FV^{-1})$ versus *s* where $L_{ij} = sK_{ij}$ holds for

(i) a fixed pair of *i* and *j* with $i \neq j$ (Gao and Ruan, MB, 2011), e.g.,

$$\begin{pmatrix} -sK_{21} - L_{31} & L_{12} & L_{13} \\ sK_{21} & -L_{12} - L_{32} & L_{23} \\ L_{31} & L_{32} & -L_{13} - L_{23} \end{pmatrix}$$

(ii) a given *i* and all $j \neq i$, or a given *j* and all $i \neq j$, e.g.,

$$\begin{pmatrix} -sK_{21} - sL_{31} & L_{12} & L_{13} \\ sK_{21} & -L_{12} - L_{32} & L_{23} \\ sL_{31} & L_{32} & -L_{13} - L_{23} \end{pmatrix}$$

(iii) all $i, j \in \Omega_1 \subset \Omega$ and $i \neq j$, e.g.,

$$\begin{pmatrix} -sK_{21} - L_{31} & sL_{12} & L_{13} \\ sK_{21} & -sL_{12} - L_{32} & L_{23} \\ L_{31} & L_{32} & -L_{13} - L_{23} \end{pmatrix}$$

Ownertian)	· SEIRS Patch M	adal	
			000000
Background	SIS Patch Model	SIAR Patch Model	Research Questions

The transmission dynamics in patch $i \in \Omega = \{1, ..., n\}$ follow:

$$\frac{dS_i}{dt} = d_S \sum_{j \in \Omega} L_{ij}^S S_j - \beta_i \frac{S_i I_i}{N_i} + \alpha_i R_i, \quad i \in \Omega,$$

$$\frac{dE_i}{dt} = d_E \sum_{j \in \Omega} L_{ij}^E E_j + \beta_i \frac{S_i I_i}{N_i} - \sigma_i E_i, \quad i \in \Omega,$$

$$\frac{dI_i}{dt} = d_I \sum_{j \in \Omega} L_{ij}^I I_j + \sigma_i E_i - \gamma_i I_i, \quad i \in \Omega,$$

$$\frac{dR_i}{dt} = d_R \sum_{i \in \Omega} L_{ij}^R R_j + \gamma_i I_i - \alpha_i R_i \quad i \in \Omega,$$
(3)

where d_{\natural} and $L^{\natural} = (L_{ij}^{\natural})$ with $\natural \in \{S, E, I, R\}$ are dispersal rate and connectivity matrix, respectively, and $N_i = S_i + E_i + I_i + R_i$.

 Background
 SIS Patch Model
 SIAR Patch Model
 Research Questions

 Ouestion 2: SEIRS Patch Model–Cont'd
 Ouestion 2: Seire Patch Model–Cont'd

The basic reproduction number is defined as

$$\mathcal{R}_0 = \rho(FV^{-1}) = \rho(-F_{12}V_{22}^{-1}V_{21}V_{11}^{-1}),$$

where

$$F = \begin{pmatrix} 0 & F_{12} \\ 0 & 0 \end{pmatrix}$$
 and $V = \begin{pmatrix} V_{11} & 0 \\ V_{21} & V_{22} \end{pmatrix}$,

with

$$F_{12} = \operatorname{diag}\{\beta_1, \dots, \beta_n\}, \quad V_{11} = \operatorname{diag}\{\sigma_1, \dots, \sigma_n\} - d_E L^E, \\ V_{21} = -\operatorname{diag}\{\sigma_1, \dots, \sigma_n\}, \quad V_{22} = \operatorname{diag}\{\gamma_1, \dots, \gamma_n\} - d_I L^I.$$

Threshold dynamics: the disease-free equilibrium is GAS if $\mathcal{R}_0 \leq 1$, while the disease is uniformly persistent and there exists at least one endemic equilibrium if $\mathcal{R}_0 > 1$.

Background 00000000	SIS Patch Model	SIAR Patch Model	Research Questions
Ouestion 2: SE	IRS Patch Model	-Cont'd	

(i) The basic reproduction number of model (3) satisfies

$$\min_{1 \le i \le n} \mathcal{R}_0^{(i)} \le \mathcal{R}_0 \le \max_{1 \le i \le n} \mathcal{R}_0^{(i)},$$

where $\mathcal{R}_0^{(i)} = \beta_i / \gamma_i$ is the reproduction number of patch *i* in isolation.

- (ii) Give some sufficient conditions under which \mathcal{R}_0 is strictly decreasing in d_E and / or d_I .
- (iii) Completely determine the monotonicity of \mathcal{R}_0 in d_E and d_I for the two-patch case.
- (iv) Find the necessary and sufficient conditions under which \mathcal{R}_0 is independent of dispersal rates or dispersal.
- (iv) Analytically and numerically explore the effects of population movement on disease prevalence (including the asymptotic profiles of the endemic equilibrium).

0		· . •	
0000000	0000000	0000000000	0000000
Background	SIS Patch Model	SIAR Patch Model	Research Questions

Question 3: Connectivity Matrix

Given $\mathbf{x} = (x_1, \dots, x_n)^T \gg \mathbf{0}$, find all connectivity matrices M (essentially nonnegative, irreducible with zero column sums) satisfying $M\mathbf{x} = \mathbf{0}$, e.g.,

$$-\sum_{i=1}^{n} x_{i}I_{n} + \begin{pmatrix} x_{1} & x_{1} & \cdots & x_{1} \\ x_{2} & x_{2} & \cdots & x_{2} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n} & x_{n} & \cdots & x_{n} \end{pmatrix}$$

and

$$\begin{pmatrix} -x_1^{-1} & x_2^{-1} & 0 & \cdots & 0\\ 0 & -x_2^{-1} & x_3^{-1} & \cdots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ x_1^{-1} & 0 & 0 & \cdots & -x_n^{-1} \end{pmatrix}.$$

Background	SIS Patch Model	SIAR Patch Model	Research Questions
0000000	0000000		00000€0
References			

- L. J. S. Allen, B. M. Bolker, Y. Lou, A. L. Nevai (2007), Asymptotic profiles of the steady states for an SIS epidemic patch model, *SIAM J. Appl. Math.*, 67: 1283–1309.
- [2] S. Chen, J. Shi, Z. Shuai, Y. Wu (2020), Asymptotic profiles of the steady states for an SIS epidemic patch model with asymmetric connectivity matrix, *J. Math. Biol.*, 80: 2327–2361.
- [3] D. Gao, S. Ruan (2011), An SIS patch model with variable transmission coefficients, *Math. Biosci.*, 232: 110–115.
- [4] D. Gao, S. Ruan (2012), A multipatch malaria model with logistic growth populations, SIAM J. Appl. Math., 72: 819–841.
- [5] D. Gao (2019), Travel frequency and infectious diseases, SIAM. J. Appl. Math., 79(4): 1581–1606.
- [6] D. Gao, C.-P. Dong (2020), Fast diffusion inhibits disease outbreaks, Proc. Amer. Math. Soc., 148(4): 1709–1722.
- [7] D. Gao, Y. Lou (2021), Impact of state-dependent dispersal on disease prevalence, J. Nonlinear Sci., 31:73, pp. 1–41.
- [8] D. Gao, J. Munganga, P. van den Driessche, L. Zhang, Effects of asymptomatic infections on the spatial spread of infectious diseases, SIAM J. Appl. Math., in press.
- [9] P. Song, Y. Lou, Y. Xiao (2019), A spatial SEIRS reaction-diffusion model in heterogeneous environment, J. Differential Equations, 267(9): 5084–5114.

Background 0000000

SIS Patch Model

SIAR Patch Model

Research Questions

Acknowledgements

THANK YOU!

Daozhou Gao <dzgao@shnu.edu.cn>