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Think of a population that consists of n age groups. Let ui (m)
denote the number of individuals in the i–th age group at time m.
Let fi , i = 1, . . . , n, denote the fecundity of each individual in the
i–th age group and let pi , i = 1, . . . , n − 1 denote the proportion
of individuals that survive from age i to age i + 1. Assume that
both the fecundity and survival rates are independent of the time
m. Then, as can be readily ascertained, the age vector at time
m + 1, m ≥ 0, can be described by the matrix – vector relation:

u(m + 1) =



f1 f2 . . . . . . fn−1 fn
p1 0 . . . . . . 0 0
...

. . .
...

... 0 0
... . . .

. . .
...

...
...

... . . . . . .
. . .

...
...

0 . . . . . . . . . pn−1 0


u(m) =: Au(m).
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Here u(m) =
[
u1(m) . . . un(m)

]>
for all m ≥ 0. Evidently we

have u(m) = Amu(0), so that the sequence of population vectors is
an example of the power method applied to u(0).

“Pick a basis of eigenvectors and decompose u(0) as a linear
combination of eigenvectors,

∑
j cjvj , so that u(m) =

∑
j cjλ

m
j vj .

As m→∞, u(m)/1>u(m)→ v1/1>v1. Here λ1 is the dominant
eigenvalue. ”

Can we justify this?
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Imagine for now that we can justify those statements.

Denoting the all–ones vector by 1, the age distribution vector at
time m is given by u(m)/1>u(m), while the total size of the
population at time m is 1>u(m).

As m→∞, we find that the population size is asymptotically
growing like λm1 , the age distribution vector converges to an
appropriately scaled eigenvector of A corresponding to λ1. In
particular, the eigenvalue λ1 has demographic significance, as it is
interpreted as the asymptotic growth rate for the population under
consideration.
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Recall that for a square matrix A, a (complex) scalar λ is an
eigenvalue if there is a nonzero vector v , an eigenvector, such that
Av = λv .

Each eigenvalue is a root of the characteristic polynomial
det(zI − A), and the algebraic multiplicity of λ is its multiplicity as
a root of the characteristic polynomial.

The geometric multiplicity is the dimension of the null space of
λI − A.
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E.g. A =

0 3
4

1
4

1 0 0
0 1 0

 , with characteristic polynomial

z3 − 3
4z −

1
4 = (z − 1)(z + 1

2)2. Eigenvalue 1 with 1 as eigenvector;

eigenvalue −1
2 with eigenspace spanned by v =

 1
−2
4

 .
So, no basis of eigenvectors, but observe that we “almost” have a

third eigenvector: ṽ =

−4
4
0

 satisfies Aṽ = −1
2 ṽ + v .
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For a matrix A with eigenvalue λ, a Jordan chain associated with λ
is a list of nonzero vectors v1, . . . , vk such that
Av1 = λv1,Av2 = λv2 + v1,Av3 = λv3 + v2,Avk = λvk + vk−1.

Related to that is a Jordan block:

J(λ)k =



λ 1 0 0 . . . 0
0 λ 1 0 . . . 0
...

. . .
. . .

...

0 0 . . . 0 λ 1
0 0 . . . 0 0 λ


k×k
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Theorem

Suppose that A is an n × n real (or complex) matrix. There is a
nonsingular complex matrix S , complex scalars λ1, . . . , λq, and
k1, . . . , kq ∈ N with k1 + . . .+ kq = n such that

A = S

J(λ1)k1
. . .

J(λq)kq

S−1.

Remarks: The matrix in the middle is known as the Jordan
canonical form for A. The eigenvalues are λ1, . . . , λq, and the
algebraic multiplicity of λj is the number of times it appears on the
diagonal, while the geometric multiplicity is the number of J(λj)
blocks that appear on the diagonal. Columns of S are eigenvectors
and generalised eigenvectors. Jordan matrix is unique up to
reordering the blocks.
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Proof outline:

a) A = UTU∗, U unitary T triangular (Schur’s lemma, induction,
start with an eigenvector as first column in U). Diagonal entries of
T can be taken in any prescribed order.

b) Take T so that all the λ1 come first on the diagonal, then the
λ2s etc. Show that T is similar to a direct sum of upper triangular
matrices each with common entry on the diagonal.

c) Show that any such diagonal block is similar to a direct sum of
J(λ) blocks.
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To understand powers of A, we need to understand the powers of
the Jordan canonical form.
For m ∈ N,

J(λ)mk =



λm
(m
1

)
λm−1

(m
2

)
λm−2

(m
3

)
λm−3 . . .

( m
k−1
)
λm−k+1

0 λm
(m
1

)
λm−1

(m
2

)
λm−2 . . .

( m
k−2
)
λm−k+2

...
. . .

. . .
...

0 0 . . . 0 λm
(m
1

)
λm−1

0 0 . . . 0 0 λm


(Use induction on m.)

We have essentially justified the “pick a basis of eigenvectors” step
in our Leslie model discussion.
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“Dominant eigenvalue”

A square n × n matrix A is nonnegative if ajk ≥ 0, j , k = 1, . . . , n.
Associated with A is a directed graph on vertices labelled 1, . . . , n,
with j → k iff ajk > 0. We say that A is irreducible if that directed
graph is strongly connected – i.e. for any pair of vertices j , k there
is a suitable sequence of directed arcs by which we can walk from j
to k. A is primitive if Am has all positive entries for some m ∈ N.

Observe that notions of irreducibility/primitivity are combinatorial;
they don’t depend on the sizes of the positive entries, only on their
placement relative to each other.
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Theorem

Suppose that A is a primitive nonnegative matrix. Then:
a) A has a positive eigenvalue r ;
b) there are left and right eigenvectors of A corresponding to r
that have all positive entries;
c) if λ is an eigenvalue of A and λ 6= r , then |λ| < r ;
d) r is algebraically simple and geometrically simple;
e) the only left or right eigenvectors of A having all positive entries
are those corresponding to r .

Remark: r is called the Perron value, and positive left/right
eigenvectors corresponding to r are Perron vectors.
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Proof’s core idea:

Let S = {t ≥ 0|∃x ∈ Rn 3 x ≥ 0, 1>x = 1,Ax ≥ tx}. Then
r = sup(S). The properties of the supremum, the fact that Am > 0
for some m ∈ N, and the triangle inequality, are then used to prove
most of a)–e).

Remark: If A is irreducible but not primitive, then a), b), d), e)
still hold, and in c) <→≤.

If A is reducible then some similar statements can be made, but
further details depend on the specific combinatorial structure of
the matrix and the sizes of the positive entries.

However, for any square nonnegative matrix, we can say that i) the
spectral radius is an eigenvalue, and ii) associated with the spectral
radius there are nonnegative left and right eigenvectors.
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Corollary

Suppose that A is an n × n irreducible nonnegative matrix with
Perron value r . Let B be another n × n nonnegative matrix such
that B ≤ A (entrywise). Denoting the Perron value of B by r̂ , we
have r̂ ≤ r . Further, if the entrywise inequality is strict in at least
one position, then r̂ < r .

Idea: Let x be a right Perron vector for A and ŷ> be a left Perron
vector for B. Note that x > 0, ŷ ≥ 0, ŷ 6= 0. We have
ŷ>Bx ≤ ŷ>Ax , i.e., r̂ ŷ>x = ŷ>Bx ≤ ŷ>Ax = r ŷ>x . (Observe
that ŷ>x > 0.)

Suppose that the inequality is strict in the (j , k) position. Let
C = A− εeje>k where ε > 0 is chosen so that C is irreducible and
B ≤ C . Denote the left Perron vector for C by ỹ> and Perron
value by r̃ . Then r̃ ỹ>x = ỹ>(A− εeje>k )x = r ỹ>x − εỹjxk < r ỹ>x .
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Corollary

Suppose that A is a primitive nonnegative matrix with Perron value
r and left and right Perron vectors y>, x, normalized so that
y>x = 1. Then as m→∞, 1

rmA
m → xy>.

Proof sketch:

From the Jordan Canonical Form: there is an invertible matrix S
so that Am = SJmS−1, where J = [r ]⊕ J(λ2)k2 ⊕ . . .⊕ J(λq)kq
and r > |λj |, j = 2, . . . , q.

Observe: the moduli of the entries in 1
rm J(λj)

m
kj

are no larger than

mkj−1
(
|λj |
r

)m
. These last tend to 0, so that 1

rm J
m → e1e

>
1 as

k →∞. Note that Se1 = x , e>1 S−1 = y>.
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E.g. Matrix for the desert tortoise with the following stages:
yearling, juvenile 1, juvenile 2, immature 1, immature 2, subadult,
adult 1, adult 2.

A =



0 0 0 0 0 1.300 1.980 2.570
0.716 0.567 0 0 0 0 0 0

0 0.149 0.567 0 0 0 0 0
0 0 0.149 0.604 0 0 0 0
0 0 0 0.235 0.560 0 0 0
0 0 0 0 0.225 0.678 0 0
0 0 0 0 0 0.249 0.851 0
0 0 0 0 0 0 0.016 0.860


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Perron value r = 0.9581, right Perron vector x =



0.2217
0.4058
0.1546
0.0651
0.0384
0.0309
0.0718
0.0117


The species is endangered – observe that in x , the sum of the
entries corresponding to reproductive stages comprise only 11.44%
of the total.
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Suppose that we have a Leslie matrix

A =



f1 f2 . . . . . . fn−1 fn
p1 0 . . . . . . 0 0
...

. . .
...

... 0 0
... . . .

. . .
...

...
...

... . . . . . .
. . .

...
...

0 . . . . . . . . . pn−1 0


with

pj > 0, j = 1, . . . , n − 1, fn > 0, and gcd{j |fj > 0} = 1. Denote the
Perron value by r , and iterate u(m) = Au(m − 1),m ∈ N with
u(0) ≥ 0, u(0) 6= 0. Then as m→∞,

u(m)/1>u(m)→
(

1
1+

∑n
j=2

p1...pj−1/r j−1

)


1
p1
r

p1p2
r2
...

p1...pn−1

rn−1

 ≡ x .
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Our Perron vector x is interpreted as the asymptotically stable age
distribution.

Asymptotically, we have 1>u(m) = constant× rm + e(m), where
e(m)
rm → 0 as m→∞.

So, asymptotically, the size of the population is growing
geometrically at rate r .
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Suppose that we have our primitive Leslie matrix A, and we want
to perturb it to A + εE (also irreducible & nonnegative matrix).
How is the Perron vector (stable age distribution) x affected?

Ax = rx , so differentiating wrt ε, A′x + Ax ′ = r ′x + rx ′. There’s
good information in x ′ and we would like to find it. Observe that
(rI − A)x ′ = A′x − r ′x = Ex − r ′x . It’s inconvenient that our
coefficient matrix rI − A is a singular, but it has some extra
structure – i.e. all offdiagonal entries are nonpositive, and there is
a positive eigenvector (a null vector in this case).

A matrix M is called an M–matrix if it can be written as sI − A
where A is nonnegative and s ≥ spectral radius of A.

The ’M’ is apparently in honour of Minkowski.

Closely related is the notion of a Z–matrix: a square matrix B is a
Z–matrix if all of its off–diagonal entries are nonpositive.
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Properties:

If M is a nonsingular M–matrix, then M−1 ≥ 0. Idea is:
M = sI − A, where s is larger than the spectral radius of A.
Observe that

∑∞
j=0

1
s j
Aj converges (JCF), and hence

M−1 =
∑∞

j=0
1

s j+1A
j . If A happens to be irreducible, then in fact

M−1 is positive.

Suppose that we have a Z–matrix B, and wlog suppose that
b11 = max bjj . Write B as B = b11I − A, where
ajj = b11 − bjj , ajk = |bjk |, j 6= k . Evidently B is an M–matrix iff
b11 is at least as large as the spectral radius of A, say r .

Suppose that there is a positive vector v such that Bv ≥ 0, i.e.
b11v ≥ Av . Let y> be a nonnegative left eigenvector of A
corresponding to r . Then b11y

>v ≥ ry>v so that b11 ≥ r .
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A Z–matrix B is an M–matrix if all of its eigenvalues lie in the
right half–plane.

B = b11I − A, and A has spectral radius r as an eigenvalue, so B
has b11 − r as an eigenvalue. If all eigenvalues of B have
nonnegative real part, then necessarily b11 ≥ r .

There are plenty of equivalent characterizations of M–matrices,
e.g. in terms of principal minors, inverse positivity, Lyapunov
stability, etc.
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As suggested already, M–matrices arise naturally in perturbation
theory for Perron eigenvectors/eigenvalues. I will discuss this more
in Lecture 9.

In certain SIR epidemic models on patch networks, an M–matrix M
associated with the network arises naturally. The spectral radius of
M−1 then measures the invasibility of the epidemic.

Other applications: convergence of iterative methods for large
sparse linear systems, electrical networks, discretization of the
Laplacian operator, Markov chains.
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