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Persistence dynamics

* There is a history of mathematical ecologists asking “is this piece of
habitat sufficient for local persistence of a given species?”

* Early work goes back to Kierstead, Slobodkin and Skellam (KISS) and the
critical domain size problem is a key component in mathematical ecology
textbooks (eg., Kot 2001)

* The classical model includes a scalar reaction diffusion equation (logistic
growth and diffusion) with hostile boundary conditions.

¢ For this case it is shown that the species persists if and only if the domain
size L satisfies L > L* = 7+/D/r, where D is the diffusion coefficient and r
the intrinsic growth rate.

* I will discuss the critical domain size problem for systems of
integrodifference equations, focusing on an applied example: persistence
of invasive zebra mussels in rivers.
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Spread of zebra mussels in streams

o Ministry of Natural Resources

g

hreelakecoil.

* Zebra mussels were introduced to North America from the
Ponto-Caspian region, likely via ballast water exchange in the Great
Lakes ecosystem.

* They have established in eastern North America, but have not yet made
it to all the western provinces and states.

* They grow in great numbers, cover beaches, clog cooling systems
(including those for nuclear plants) and threaten other species.

* They do fine in lakes, but have been unable to colonize certain stretches
of rivers, particularly when flow rates are high.

* We are going to model this system and try to understand why.
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Including advection

ou ou D82u

5t + va 2 +g(u)u
v = Advection velocity
D = Diffusion coefficient

r(1 —u) per capita growth rate (g(0) =r)

=
=

E
|
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Including advection

ou  Ou O*u
E +va = D@ +g(1/l)u

Flow velocity (v)

/
Upstream \ Downstream
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Including advection

ou ou 0%u

E—i—va: @—l—g(u)u

Flow velocity (v)

Upstream Downstream

¢ = 2ViD—a=c*—-v
ct = 2ViD+a=c"+v
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Advection can cause spread to stall

d
spee spread rate

¢* 4+ v downstream

c* advection speed v

spread rate
c* — v upstream
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Critical patch size with advection

ou ou &*u
E + Ua —f(x7 u) + D@
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Critical patch size with advection

ou ou &*u
E + Ua —f(x7 u) + D@
where

fl,u) = ug(x,u)forallx e R

{ —d, x ¢ (0,L)

glx.u) =
r(1—u), x € (0,L)
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Critical patch size with advection

ou ou &*u
E + Ua —f(x7 u) + D@
where
fl,u) = ug(x,u)forallx e R
_d7 X ¢ (OvL)
glx,u) =
r(1—u), x € (0,L)

v: speed of advection;

L: length of the good patch;

d: death rate in the unsuitable regions;

r: per capita growth rate in the good habitat;
D: diffusion coefficient.
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Critical patch size with advection

ou ou &*u
E + Ua —f(x7 u) + D@
where
fl,u) = ug(x,u)forallx e R
_d7 X ¢ (OvL)
glx,u) =
r(1—u), x € (0,L)

v: speed of advection;

L: length of the good patch;

d: death rate in the unsuitable regions;

r: per capita growth rate in the good habitat;
D: diffusion coefficient.

How large a good patch (L*) is needed for population persistence?
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Existence of a steady state solution

au d*u
v o= rt(l —u) + DW forx € (0,L)
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Existence of a steady state solution

au d*u
v o= rt(l —u) + DW

with boundary conditions

au
-0

0 = n_U(L)—%(L)

0 = sTU(O0)

where
o + Vv? 4 4Dd
B 2D
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Existence of a steady state solution

au d?u
v o= ru(1—UuU) + DW

with boundary conditions

au
-0

0 = m_U(L)—%(L)

0 = sTU(O0)

where
4+ ax+v*44Dd
T
v: speed of advection;
L: length of the good patch;
d: death rate in the unsuitable regions;
r: per capita growth rate in the good habitat;
D: diffusion coefficient.
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Existence of a steady state solution

au d*u
v o= rt(l —u) + DW forx € (0,L)

with boundary conditions

0 = wu -
0 — m_U(L)—%(L)

where

v: speed of advection;

L: length of the good patch;

d: death rate in the unsuitable regions;

r: per capita growth rate in the good habitat;
D: diffusion coefficient.

How large a good patch (L*) is needed for nontrivial solution?
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Existence of a steady state solution

au d*u
v o= rt(l —u) + Dﬁ forx € (0,L)
with boundary conditions
au
— + _ =
0 = kU0 I (0)
au
= r UL)——(L
0 = wUL)- ()
where
+  ax+Vv>44Dd
AT
0 I=
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Linearization about U = 0 yields critical patch size

We solve the boundary value problem

U du

DW—UEJrrU:O forx € (0,L)
dau
— + _
0 = xTU(0) T (0)
au

0 = "UL) - (L)

where
L a+tVv*+4Dd
K= —
2D
and observe that a nontrivial solution emerges when L is larger than the
critical patch size

< 74 (2)°
L*(¢*,a) .= ——L——arctan ri(C)
)’ 1- (&)

where ¢* = 2v/rD.
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Existence of a steady state solution

au d*u
'UE —TU(l—U)—l—DW fOI'xe (O,L)
with boundary conditions
au
— + _
0 = sTU(0) It (0)
au

0 = wUL)- (L)

max height of U(x)

1

domain size L
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Patch size becomes infinite when spread stalls

speed

MARK A. LEWIS

critical |
domain :
1

size

spread rate
c* + a downstream

1 critical
| domain

advection speed a

spread rate
c* — a upstream
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Patch size becomes infinite when spread stalls

The connection between infinite patch size and the advection speed at which
spread stalls can be extended to account for

* Different boundary conditions (McKenzie et al., 2012)

* Long-distance dispersal via integro-difference or integrodifferential
equations (Lutscher et al., 2005)

* Spatial heterogeneity (Lutscher et al., 2006)
* Seasonality in growth and dispersal (Jin and Lewis, 2011)
* Impulsive reaction-diffusion models (Fazly et al., 2020)

A summary of some of these idea is found in Lutscher et al. (2010)
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Critical domain size for zebra mussels

* How large a length of river do the zebra mussels need to survive?

* When the length of good river habitat is too short then the mortality from
the hostile surrounding regions may dominate.

* However, when the river is longer, boundary mortality should be less
important.

* How do other factors such as temperature and water velocity play a role?

¢ Critical domain size problems have been well studied for reaction
diffusion models, but also can be calculated for systems of
integrodifference equations.

* There are two key elements to be discussed

* What are the general theoretical results?
* How can we calculate the critical domain size for the zebra mussel problem?

* We will also look for new biological and theoretical insight.
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Critical domain size analysis

Consider the stage-structured model

L
N(rn+1) = / K(x,y) o BON)IN(y, n)dy. 1)

There is a trivial solution N* = 0. We are interested in conditions on the
domain size L that guarantee existence of a stable nontrivial solution N*(x).

D

0 =

We would like to examine the stability of the model linearized about N* = 0

L
N(x.n+1) = /0 [K(x, ) o AIN(y, n)dy. @)

where A = B(0), and show that, as L increases through L*, N* = 0 becomes
unstable and a stable nontrivial solution N*(x) emerges.
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Conditions for emergence of stable nontrivial solution

Roughly speaking, the following conditions are sufficient (Lutscher and
Lewis, 2004):
* Conditions on the dynamics
* The matrix B(N) is primitive for all N > 0.
* There is no ”Allee effect”, and the growth function B(N)N is monotonic and
saturating.
* The highest per capita growth rate B for each component is at N* = 0.
* Conditions on the dispersal
* There is a constraint on the structure of the nonzero entries of the dispersal
matrix to ensure sufficient dispersal.
» With sufficient iterations, each dispersal kernel will allow dispersal from
every point in the domain to every other point.
* Conditions on the effects of increasing the domain size
¢ Increasing the domain size does not result in a decrease in the per capita
growth rate B(N).
* Increasing the domain size does not result in a decrease in dispersal success
from y to x.
Under these conditions, the dominant eigenvalue of the linearized system will
increase through 1 and the trivial solution will lose its stability as L increases
through the critical domain size L*. A stable nontrivial solution will emerge.
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Integrodifference model for zebra mussels in streams

Population dynamics plus dispersal

](JC,I’Z+1) = (p(](X,ﬂ),A(X 1’1 er x y)dy’ (3)
Ak +1) = p(J(x, ). AGx, ), T) [Sj(T)I(x, n) + S,,mA(x, n),

Symbols Definitions Estimates

r Reproduction rate of adults 4218/year

@ Temperature-dependent competition function

81, 5j,Sa Temperature-dependent survival functions

m Mortality rate of dispersing larvae 1.44/day

o Settling rate of dispersing larvae 0.00144/day

Huang and Lewis (2017)
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Integrodifference model for zebra mussels in streams

Population dynamics plus dispersal

Jx,n+1) = p(J(x,n),A(x,n) T) r [, A( K(x,y)dy,
Alx,n+1) = p(J(x,n), A(x, ")7 T) [Sj(T)](x, n) + Sa(T)A(% n),

Competition

1
PRAD = TR T LAl @
Survival

~exp(bo+ b1 T+ byT?)
1+ eXp(bo + 01T + szz) ’

Initial conditions for juveniles and adults

J(x,0) = °(x), A(x,0) =A%), xe€Q.
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Mechanistic dispersal kernels: Gaussian

* Consider a propagule moving randomly in one dimension, released from
the point x = 0 at time t = 0.

* The probability density function w(x, t) for the propagule’s location at
time ¢ satisfies the diffusion equation
oo _pPw
ot ox2

with initial condition w(x,0) = d(x).

)
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Mechanistic dispersal kernels: Gaussian

Consider a propagule moving randomly in one dimension, released from
the point x = 0 at time t = 0.

The probability density function w(x, t) for the propagule’s location at
time ¢ satisfies the diffusion equation

ow OPPw
o~ Dae ©
with initial condition w(x,0) = d(x).
The solution to the problem is
1 —x?
w(x,t) = exp| — | . 6
() = e () ©

Thus, for individuals released from the point y = 0, moving randomly
and settling at time ¢, the dispersal kernel becomes

1 —x?
K(x) = \/mexp (4Dt) . (7)
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Dispersal kernels: Laplace Kernel

* Laplace kernel comes from random motion plus settling:

ou 8%u

a ~ Paa—ow ®
Ous

T ou. 9)

* Consider a point release u(x,0) = d(x) and u,(x,0) = 0.
¢ Define the dispersal kernel to be long term settling density K = u(x, 00).
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Dispersal kernels: Laplace Kernel

* Laplace kernel comes from random motion plus settling:

ou 8%u

a ~ Paa—ow ®
Ous

T ou. 9)

Consider a point release u(x,0) = 6(x) and u,(x,0) = 0.
Define the dispersal kernel to be long term settling density K = u;(x, c0).
Integrating (13) yields

K@) = o / u(x, £)dt
0
* Integrating (12) and applying u(x, o) = 0 yields

D 6°K
=50 K

a modified Helmholtz equation for the dispersal kernel.

(10)
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Dispersal kernels: Laplace Kernel

* Laplace kernel comes from random motion plus settling:

ou 0%u
a - Pz
Ous "
ot "

* Consider a point release u(x,0) = d(x) and u,(x,0) = 0.

—ou

7

®)
©)

¢ Define the dispersal kernel to be long term settling density K = u(x, 00).

* Integrating (13) yields

K@) = o / u(x, £)dt
0
* Integrating (12) and applying u(x, o) = 0 yields

—0(x) =

Dok

o Ox?

9

a modified Helmholtz equation for the dispersal kernel.

* The solution is the Laplace (or double-exponential) kernel,

[e%

K(x) = 5 exp(—alx]),

2
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Dispersal kernels

0.8

o7t Laplace :
—

0.6 1
i Gauss

0.4

0.31

0.2r

0.1
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Including advection, settling and mortality

ou O*u  Ou

a = D@—Ua_(m'f'o)u,
O _ Ly

o = OJu.
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Including advection, settling and mortality

ou O*u  Ou
O
E = OU. (13)

* This yields

K = LK, (14)
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Including advection, settling and mortality

Ou Pu  Ou

a = D@—Ua_(m'f'o)u,
O _ Ly

ot 7

* This yields
—o(x) = DOPK _vdu _m+o
T o 0x2 o ox o

K = K,

¢ The solution on a infinite domain is

_ [ aexp{nlx—y)}, x<y,
K(x,y)—{ aexp{n(x—-y)}, x>y,

where where

-2 4
» 2T 5p

o v (0)2 m+o

2 +4D(m + o) 2D D
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Dispersal kernel for streams

It turns out that, because the process includes mortality as well as settling:
(o]
o

/Oo K(x,y)dx :/ K(x,y)dy = pripe

—0Q0

— 00

space X
27 /47
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Dispersal kernel on a finite domain (0, L)

Boundary conditions depend on the biology/physics

e Hostile
u(0,t) =0, wu(L,t)=0.

e General

ot (0, 1) + apuy(0,8) =0,  asu(L,t) + cqu(L, t) = 0.
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Dispersal kernel on a finite domain (0, L)

Boundary conditions depend on the biology/physics

e Hostile
u(0,t) =0, wu(L,t)=0.

e General

ot (0, 1) + apuy(0,8) =0,  asu(L,t) + cqu(L, t) = 0.

* These give boundary conditions for K, eg for hostile boundary conditions
we solve

subject to

K(O0) =0 /OOO u(0,H)dt =0, K(L) = a/ooo ou(L, t)dt = 0.
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Integrodifference model for zebra mussels in streams

Population dynamics plus dispersal

](X, n+ 1) = @(](x’ n),A(x, n)) sir fQA(% ”)K(xay)d%
A(x’ n+ 1) = QO(](JC, n),A(x, I’l)) [S]‘](X, Tl) + SHA(xv 1’1)},

(16)
Competition

1
W(]M‘UZW,
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Integrodifference model for zebra mussels in streams

Population dynamics plus dispersal

](X, n+ 1) = @(](x’ n),A(x, n)) sir fQA(% ”)K(xay)d%
A(x’ n+ 1) = QO(](JC, n),A(x, I’l)) [S]‘](X, Tl) + SHA(xv 1’1)},

(16)
Competition

1
W(]M‘UZW,

We will use the fact that

/o:o K(x,y)dx = /oo K(x,y)dy = 7

oo o+m

when deriving the nonspatial model.
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Nonspatial model
We consider spatially homogeneous solutions to (16)
- S|;ro
Jon+1) = (1), A(n) 22 An),

A(n+1) = @(J(n), A(n))[si (n) + saA(n)];

where
1

ol A4) = 1+ Bl4] + LA]
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- S|;ro
Jon+1) = (1), A(n) 22 An),

A(n+1) = @(J(n), A(n))[si (n) + saA(n)];

where ,
A= — -
U A) = 1+ Bl4] + tA]
Linearized about trivial equilibrium:
o Sj;ro
Jin+1) = 27 AGn),

A(n+1) = [si](n) + s.A(n)],
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Nonspatial model
We consider spatially homogeneous solutions to (16)
- S|;ro
Jon+1) = (1), A(n) 22 An),

A(n+1) = @(J(n), A(n))[si (n) + saA(n)];

where ,
A= — -
U A) = 1+ Bl4] + tA]
Linearized about trivial equilibrium:
o Sj;ro
Jin+1) = 27 AGn),

A(n+1) = [siJ(n) + s.A(n)],
Net reproductive rate:

s(T)si(Tyr——

1 —5,(T)

RI¢(T) > 1 gives zebra mussel survival in the 10-23°C range.
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Critical domain size analysis for zebra mussel model

L
NGen+1) = [ [KGey) o AIN(y. my. 18)
where N(x,n) = (J(x,n),A(x,n))T and

0 5( - ) K(7 )
a<(y U) xew= (500 5T ) m
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Critical domain size analysis for zebra mussel model

L
NGen+1) = [ [KGey) o AIN(y. my. (18)
where N(x,n) = (J(x,n),A(x,n))T and
0 5( - ) K( ’ )
A= ( 5 Ssl: )’ Kx.y) = ( 6&*}5) 5(xxfy]/) ) 19)

The eigenvalue problem becomes

L
AN(x) = / [K(x, ) o AIN(y)dy. (20)
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Critical domain size analysis for zebra mussel model

L
NGen+1) = [ [KGey) o AIN(y. my. (18)
where N(x,n) = (J(x,n),A(x,n))T and
0 5( - ) K( ’ )
A= ( 5 sz )’ Kx.y) = ( 6&*}5) 5(xxfy]/) ) 19)

The eigenvalue problem becomes

L
ING) = [ K(x.9) o ANy, 0)
and the stability condition A =1 yields

J(x) = slr/ Ay, m)K(x,y)dy,
Alx) = sjJ(x)+s.A(x), or
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Critical domain size analysis for zebra mussel model

L
NGen+1) = [ [KGey) o AIN(y. my. (18)
where N(x,n) = (J(x,n),A(x,n))T and
0 5( - ) K( ’ )
A= ( 5 sz )’ Kx.y) = ( 6&*}5) 5(xxfy]/) ) 19)

The eigenvalue problem becomes

L
ING) = [ K(x.9) o ANy, 0)
and the stability condition A =1 yields

J(x) = slr/ Ay, m)K(x,y)dy,
Alx) = sjJ(x)+s.A(x), or

- ijsaslr /0 A(y)K(x,y)dy. (21)
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An Ry approach to critical domain size

* Consider a small adult population density A(y).
¢ Life time production of larvae from adults at point y is

Aly) 22)

AW +s++. =D,

* The density of larvae arriving at point x from all possible y is

L
A
/ MrK(x, y)dy. (23)
0o 1—s;
* New adults produced over the life time of initial distribution of adults is
_ 55
(TA)(x =1, / Ay (24)

e This is the next generation operator and we define Ry = p(T'").

* We can prove that the eigenvector corresponding to Ry is positive.

* Critical domain size is found by solving A =T'A (i.e., Rg = 1) for L = L*.

* There is a well developed theory for infinite-dimensional next generation
operators such as this (Thieme 2009).
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Solving the critical domain size problem

We want to solve X
sisir [t
A = 725 [ AwK .

K(0,y) = K(L*,y) = 0 yield boundary conditions A(0) = A(L*) = 0.
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Solving the critical domain size problem

We want to solve

Sisir
Alx) =
() =1— ;.

;
/O A)K(x, y)dy.

K(0,y) = K(L*,y) = 0 yield boundary conditions A(0) = A(L*) = 0.

Recall

Applying this operator yields

Sisir
LA =
1-—s,

.
/O Aly) [£K(x,y)] dy = —

or
sisjro m-+o

A"(x) — %A’(x) + <(1 o R

with boundary conditions A(0) = A(L*) = 0.
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Solving the critical domain size problem

A'(x) — BA) + ((15’_SZSD - mg ") A(x) =0, A(0) = A(L*) = 0. (25)
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Solving the critical domain size problem

A'(x) — BA) + ( ST _my ”) A(x)=0, A(0)=A(L")=0.

1-s)D D

The characteristic equation for (25) is

2_2 n Sisjro _m+a —0
FPop’"\a=s)Dx D )

with discriminant

AN = (%)2 —4 ((1 Sisé:()TDA a mg 0)

A(x) = cexp (%x) sin <_2A()\)x> :

and solution
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Solving the critical domain size problem

sisjro B m-+o
1-s)D D

A(x) = () + (
The characteristic equation for (25) is

2_2 n Sisjro _m+a —0
FPop’"\a=s)Dx D )

with discriminant

AN = (%)2 —4 ((1 Sisé:()TDA a mg 0)

A(x) = cexp (%x) sin <_2A()\)x> :

A(L*) = 0 requires

and solution
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Solving the critical domain size problem
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Solving the critical domain size problem

27D 27D

L* = = .
\/4D (2D ) — 2 \/AD(o -+ m) (RE<(T) 1) — 02
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Critical values of other parameters

The trivial solution loses stability and a nontrivial solution emerges when
2D

L= .
\/4D(a +m) (RYS(T) — 1) — 02

We can fix the domain size L and calculate the critical values with respect to
temperature and advection speed

Hostile Boundary Conditions
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Dynamics below and above critical advection speed

Persistence Case Washout Case
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Upstream and downstream spread

It is possible that, even on an infinite domain, the zebra mussel population
could be “washed out” by high advection speeds.

Upstream and Downstream Spread Downstream Spread and Washout
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Upstream and downstream spreading speeds

oo

N(r.n+1) = / [K(x — ) o AIN(y, n)dy,

— 00

where N(x,n) = (J(x,n),A(x,n))T and

A=(97) xe-n= (5070 56T
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03
02

01fF

space x
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Upstream and downstream spreading speeds

¢ = nf gnplH(-0), 28)

cf = inf 1ln,o[H(@)]7 (29)
0<0<—2

H(O) — /jo K(5)69§d§OA<gj Sl”;f(e)) (30)
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Upstream and downstream spreading speeds
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Conclusions

* There is a newly emerging theory for critical domain size analysis for
systems of integrodifference equations

* The theory discussed today is suited to systems where the linearized
dynamics give a primitive matrix (eg, age structured, cooperative
dynamics).

e Itis possible to look at the problem from perspectives of both classical
bifurcation analysis and next generation operator analysis.

* When dispersal has an underlying physical model (PDE), we can use this
to our advantage when calculating the critical domain size.

¢ Critical domain size problems in advective environments can be
connected to spreading speed analysis.

* There are several papers that approximate IDEs using a dispersal success
approximation (Lutscher 2019). These can be very useful.
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