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Basic models considered:

Deterministic compartmental models suitable to understand
or predict the spread of infectious diseases among humans
Knowledge driven rather than data driven models

Simple models that leave out a lot of the biology
but give some observed qualitative behavior
"A scienti�c theory should be as simple as possible
but no simpler" Albert Einstein

Taking continuous time, models are formulated as
ordinary di�erential equations (ODEs)
Taking discrete time, models are formulated as di�erence equations

Start with a simpli�ed version of the continuous time model
introduced by Kermack, McKendrick 1929, and use a modeling framework
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Susceptible-Infectious-Recovered plus demographics

1. Biological Problem: Will measles become endemic in the population?

2. Assumptions: Measles is a viral disease, so SIR model appropriate
Include demographics, but ignore death due to measles
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3. Formulation of Model:

S , I ,R denote the number of susceptible, infectious, recovered people
with N = S + I + R as the total population

A denotes the rate of input into S

d denotes the natural death rate

γ denotes the rate of recovery (this assumes that the infectious period is
exponentially distributed;

∫∞
0

e−γsds = 1/γ)

λ denotes the number of contacts in unit time by an infectious person
called the transmission parameter

Assume standard incidence, and all parameters are positive
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dS

dt
= A− dS − λSI

N
dI

dt
=

λSI

N
− (d + γ)I

dR

dt
= γI − dR

Initial conditions are S(0) > 0 u N, I (0) > 0 small, R(0) = 0
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dS

dt
= A− dS − λSI

N
,

dI

dt
=
λSI

N
− (d + γ)I

4. Analysis of Model:

The model is well posed, solutions remain nonnegative and are bounded

There is a disease free equilibrium (DFE):
S = A

d , I = 0, R = 0

Linearizing about the DFE gives

dI

dt
= (λ− (d + γ))I = (d + γ)(R0 − 1)I

where R0 =
λ

d+γ

There is also an endemic equilibrium I ∗ > 0 with

I ∗ =
dN

d + γ
(1− 1

R0
)

provided the the bracket is positive, i.e. R0 > 1
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5. Interpret Solution:

R0 =
λ

d+γ is the basic reproduction number

and is the product of the contact rate λ
and the average death adjusted infectious time 1/(d + γ)

If R0 < 1 then the DFE is (locally) stable, measles dies out

If R0 > 1 then there is an endemic equilibrium I ∗,R∗ = γI ∗/d
and I → I ∗ as t →∞ so measles is endemic in the population

R0 determines a sharp threshold with a forward bifurcation at R0 = 1
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6. Validate Model:

Sometimes measles and other viral diseases die out quickly but other times
they give rise to an endemic situation

Data for R0 in countries where measles is endemic con�rms that R0 > 1
but data is confounded by vaccination
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7. Use Model Results:

If a fraction p of the population is vaccinated so that (1− p)R0 < 1
then measles will be eradicated

p > (1− 1

R0
)

is the fraction needed to give herd immunity

For example:
if R0 = 2 then need to vaccinate 50%
if R0 = 5 then need to vaccinate 80%
if R0 = 10 then need to vaccinate 90%
Note: this assumes that the vaccine is perfect
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Susceptible-Infectious-Recovered without demographics

In�uenza is usually a short epidemic so demographics can be ignored

If demographics are ignored, A = d = 0, then the previous analysis fails!

Putting this assumption into the previous model gives

dS

dt
= −λSI

N
,

dI

dt
=
λSI

N
− γI , dR

dt
= γI

Thus I = 0 is the only equilibrium and I (t)→ 0 as t →∞
To see how the dynamics evolve consider

dI

dS
= −1+ γN

λS

integrating gives

I + S − γN

λ
log S = C

where C is a constant
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I + S − γN

λ
log S = C

Initial conditions are S(0) > 0 u N, I (0) > 0 small, R(0) = 0
so C is �nite, giving S(∞), some escape infection

The parameter R0 =
λ
γ still acts as a threshold

If R0 < 1, then I → 0 monotonically, in�uenza dies out
If R0 > 1, then I �rst increases to a peak, then I → 0

Approximating: I (0) = 0, I (∞) = 0 the �nal size equation can be written

log
S(0)

S(∞)
= R0(1−

S(∞)

N
)

The total number of people infected is I (0) + S(0)− S(∞)

The attack ratio, i.e. fraction of people infected is approx. 1− S(∞)
N

If R0 = 2 then is ≈ 79%
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Simulation of the in�uenza SIR model showing the number of infectious
people against time, with λ = 0.5, γ = 0.25,N = 1, 000, I (0) = 5
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For small time I (t) u I (0) exp{γ(R0 − 1)t}
can be used to estimate R0 from data

The maximum number of infectious people can be found from dI
dt = 0

and I (t) can be �tted to data on in�uenza epidemics

For seasonal in�uenza R0 is usually 1.4 to 2.4
Herd immunity applies: p > 1− 1

R0
giving around 50% vaccination needed

to eliminate in�uenza

BUT there are many strains of in�uenza, the virus mutates, some people
are asymptomatic, some are latently infected, age structure is important...
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Susceptible-Infectious-Susceptible Model

Bacterial diseases (e.g. gonorrhea) do not usually give immunity on
recovery so an SIS model is appropriate

dI

dt
= λI

N − I

N
− (d + γ)I
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dI

dt
= λI

N − I

N
− (d + γ)I

with S = N − I and initial condition I (0) > 0 small
Logistic equation!

Again R0 =
λ

d+γ acts as sharp threshold

If R0 < 1 then the disease dies out

If R0 > 1 then it goes to an endemic level I ∗ = N(1− 1
R0

)

This result remains true if d = 0: unlike the epidemic in the SIR model
so input into the S class is important
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SIS with heterosexual transmission

Assuming that gonorrhea is transmitted heterosexually, how does the
dynamics evolve?

Need to divide the population into females NF and males NM and model
transmission between them

Assume there is no death due to disease

λMF , λFM are transmission coe�cients from M to F, F to M
1
γF
, 1
γM

are mean infectious periods for F, M
The number of infectious F and M evolve according to the equations:

dIF
dt

= λMF
NF − IF

NF
IM − (d + γF )IF

dIM
dt

= λFM
NM − IM

NM
IF − (d + γM)IM

Suppose there is initially a small number of M or F infected with
gonorrhea, will it die out or persist?
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dIF
dt

= λMF
NF − IF

NF
IM − (d + γF )IF

dIM
dt

= λFM
NM − IM

NM
IF − (d + γM)IM

There is a DFE IF = IM = 0 and linear stability is determined by the
eigenvalues of

J =

[
−(d + γF ) λMF

λFM −(d + γM)

]

Eigenvalues of J are given by the roots of the characteristic equation

z2 + z(2d + γF + γM) + (d + γF )(d + γM)− λMFλFM = 0
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z2 + z(2d + γF + γM) + (d + γF )(d + γM)− λMFλFM = 0

Both roots of this quadratic have negative real parts if and only if the
constant term is positive. Can R0 be calculated?
With this condition small perturbations from the DFE decay and the
DFE is linearly stable and can be proved to be globally stable

There is also the possibility of an endemic (positive) equilibrium:

I ∗M =
(λMFλFM − (d + γF )(d + γM))NFNM

(d + γM)λMFNM + λMFλFMNF

if the numerator is positive, with a corresponding formula for I ∗F

Global stability of the endemic state (when it exists) can be proved
but it may still be an open problem to prove this if disease deaths are
incorporated into the model
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Discrete time model

Data on outbreaks of diseases are often given at regular intervals:
Number of in�uenza cases and deaths each week during a seasonal epidemic
Daily number of new COVID-19 cases at some times during the pandemic

Consider a discrete-time, deterministic, compartmental, spatially
homogeneous model with recruitment and disease transmission
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SEIR discrete-time model

For childhood diseases, e.g. chickenpox (varicella),
at time t ∈ {0, 1, 2, . . .} each member of a population is

St : susceptible
Et : exposed and mildly infectious
It : infectious or
Rt : recovered with life long immunity

Total population Nt = St + Et + It + Rt
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Recruitment and total population

At each time t ∈ {0, 1, 2, · · ·} the total population

Nt+1 = g (Nt) + (1− d)Nt

where d is the probability of death

Recruitment g (Nt) limt→∞Nt , positive constant

Beverton-Holt r Nt
1+bNt

0 if Rd = r
d < 1

Beverton-Holt r Nt
1+bNt

(Rd−1)
b if Rd > 1

Ricker rNte
−bNt 0 if Rd < 1

Ricker rNte
−bNt lnRd

b if 1 < Rd < e
2
d .

Ricker recruitment: if Rd > e
2
d , then total population undergoes

period-doubling bifurcations route to chaos
r > 0 is the intrinsic growth rate
b > 0 is the scaling parameter
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Disease transmission assumptions

Fraction ϑ of St interacting with It become exposed with probability
ϕ̂( It

Nt
) = (1− ϕ( It

Nt
)), remain susceptible with probability ϕ( It

Nt
), where

ϕ : [0,∞)→ [0, 1] is a nonlinear decreasing smooth concave up function
with ϕ(0) = 1, i.e., ϕ′(x) < 0 and ϕ′′(x) > 0 for all x ≥ 0.

Example: If infections are modeled as Poisson processes, then

ϕ
(

It
Nt

)
= exp

(
−β It

Nt

)
with β > 0

Similarly a fraction (1− ϑ) of St interacting with Et become exposed with

probability ψ̂
(
ε Et
Nt

)
=
(
1− ψ

(
ε Et
Nt

))
with similar assumptions on ψ and

0 < ε < 1
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ϕ
(

It
Nt

)
= exp

(
−β It

Nt

)
with β > 0

Similarly a fraction (1− ϑ) of St interacting with Et become exposed with

probability ψ̂
(
ε Et
Nt

)
=
(
1− ψ

(
ε Et
Nt

))
with similar assumptions on ψ and

0 < ε < 1
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Disease progression assumptions

Per unit time and assuming no death due to disease:

probability Et progress to It+1 is κ ∈ (0, 1)
probability It recover and progress to Rt+1 is γ ∈ (0, 1)
probability of natural death is d ∈ (0, 1) in all classes

Events are assumed to happen in the following order:
disease transmission and recovery
survival (natural death)
reproduction/recruitment
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Flow diagram into classes for the SEIR model
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Model equations

Assume that the total population is asymptotically constant and
limt→∞Nt ≡ S∞ > 0

For the limiting system, take proportions

st =
St
S∞

, et =
Et

S∞
, it =

It
S∞

, and rt =
Rt

S∞

Since st = 1− et − it − rt , the model reduces to

et+1 = (1− d) st
(
θϕ̂ (it) + (1− θ) ψ̂ (εet)

)
+ (1− κ) (1− d) et

it+1 = κ (1− d) et + (1− γ) (1− d) it
rt+1 = γ (1− d) it + (1− d) rt

with disease-free equilibrium (DFE) (e, i , r) = (0, 0, 0)

Does the disease die our or persist, can R0 be calculated?
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Some remaining questions
How to

incorporate more realistic assumptions:
For COVID-19 some individuals are asymptomatic (infected but never
develop symptoms), some are presymptomatic (infected develop
symptoms later)

estimate parameters from data (e.g. transmission term)

incorporate more realistic assumptions about the infectious period
(ODEs assume that it is exponentially distributed)

identify R0 for ODE & discrete-time systems (LA)

account for movement of humans, e.g. metapopulations (LA)

prove global stability of DFE or endemic equilibrium (algebraic and
combinatorial methods to determine Lyapunov functions)

incorporate control strategies (LA)

Thank you!
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