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Outline

• The problem of invasive weed control.
• Classical methods for evaluating discrete-time 

structured population growth, including eigenvalue 
and elasticity analysis

• Calculation and analysis of basic reproduction 
number/net reproductive rate (𝑅!).

• Insight regarding control of scentless chamomile.
• A graphical method for calculating 𝑅!.
• Generation time and fecundity profile



The problem of invasive weed control

Case Study: 
Scentless chamomile (Matricaria perforata)

•Annual, biennial or short-lived perennial 
•Prefers disturbed habitats (poor competitor)
•Invades agricultural ecosystems
•Three distinctive life cycle stages: (1) seeds (2) rosettes, 
and (3) flowering plants 
•Stage-structured life cycle:



Complex Stage-Structures of Some Invaders

Nodding thistle
(Carduus nutans)

Common teasel
(Dypsacus sylvestris)

Tansy ragwort
(Senecio jacobaea)

Bullfrog
(Rana catesbeiana)

Common cat’s ear
(Hypochaeris radicata)



Matrix Population Models
Matrix model:

Life cycle graph:



• If A is primitive (Ak > 0 for some k) the Perron-Frobenius
theorem ensures there is a positive and simple dominant 
eigenvalue with a corresponding positive eigenvector. 

• This eigenvalue yields the asymptotic growth rate of the 
population and the corresponding eigenvector yields the 
stable age distribution, which the population 
asymptotically achieves.

• This dominant eigenvalue    must be determined from the 
characteristic polynomial.

Asymptotic Growth Rate



Dominant Eigenvalue

Dominant eigenvalue of A

Population growth rate (    ):

decrease

constant

increase

Caswell (2001)

(𝜆!, 𝑛!) eigenvector-eigenvalue pair satisfy

𝐴𝑛! = 𝜆!𝑛!

There will be k such pairs for a k x k matrix. 𝜆 is the largest 
of these 𝜆! and denotes the long term geometric growth rate 
of the population



Elasticity Analysis

Dominant eigenvalue of A

Population growth rate (    ):

decrease

constant

increase

Elasticity analysis:

Measures the relative contributions of transitions to 
population growth

Caswell (2001)

𝐸!" denotes the proportionate change in 𝜆 with respect to a 
proportionate change in 𝑎!".



Demographic Analysis
Matrix models for control:

1. Determine life cycle and estimate parameters
2. Calculate population growth rate
3. Calculate  E and target transitions with higher elasticities
4. Verify is control agents affect transitions with high 

elasticities



Scentless Chamomile

Case Study: 
Scentless chamomile (Matricaria perforata)

•Annual, biennial or short-lived perennial 
•Seed production of up to 256,000 seeds/plant
•Three distinctive life cycle stages: seeds (n1), rosettes 
(n2), and flowering plants (n3):



Data collection

Case Study: Scentless chamomile (Matricaria perforata)
Data collected in Vegreville, AB, 2003-2005



Demographic Analysis

Case Study: Scentless chamomile (Matricaria perforata)

Control Target: flower to flower transition

2004 2005

( Here the elasticities have been rescaled to add to 100.)



Demographic Analysis—Elasticity 

2004 2005



Demographic Analysis
Matrix models for control:

1. Determine life cycle and estimate parameters.
2. Calculate population growth rate    .
3. Calculate E and target transitions with higher elasticities
4. Verify if control agents affect transitions with high 

elasticities.

Is this the best method for assessing control?



Demographic Analysis
Matrix models for control:

1. Determine life cycle and estimate parameters.
2. Calculate population growth rate     .
3. Calculate E and target transitions with higher elasticities.
4. Choose control agents that affect transitions with high 

elasticities.

Is this the best method for assessing control?

1. There is no simple formulae for the eigenvalue        
for high order polynomials.

2. Both E and     have to be calculated numerically for a 
particular dataset.

3. Assessment of the impacts of control is indirect.



Net Reproductive Rate
Transition and fecundity matrix:

Transition matrix
(Survival)

Fecundity matrix
(Fecundity)



Net Reproductive Rate

Net Reproductive rate (R0):

Next generation operator (Q):

Cushing and Yicang (1994)

This is the number of individuals that one individual produces over 
its lifetime.  It is the largest eigenvalue of the next generation 
operator Q. The population asymptotically grows if R0 > 1 and dies 
out if R0 < 1.

if and only if
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Net Reproductive Rate
Transition and fecundity matrix:

Transition matrix
(Survival)

Fecundity matrix
(Fecundity)
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Net Reproductive Rate

Seed
bank pathway

Rosette
pathway

Flowering plant
pathway

32 31 2 3

1. Seeds
2. Rosettes
3. Flowering plants

Scentless chamomile:



• Analytical formula for R0 yields insight regarding 
effective control

• Is there a simple way to calculate R0 ?
• It turns out that R0 can be calculated directly from a 

graph related to the fecundity and transition matricies
F and T. 

• Method is based on the fact that R0 can be defined 
implicitly as    

𝑅! = 𝜌(𝑅!𝐓 + 𝐅)

• Then graph reduction rules are used to solve this 
equation.

de Camino Beck and Lewis (2006)

Calculating the Net Reproductive Rate



• The z-transformed graph of A, GA(l) is defined as the 
graph obtained by replacing each entry by aij l-1 

• The characteristic polynomial can be defined terms of the 
graph P(GA(l)) = det(A l-1-I)

P(GA(l)) = 1 - ∑" 𝐿(")+ ∑"∗ 𝐿(")𝐿(&)- ∑"∗ 𝐿(")𝐿(&)𝐿(')+…

– 𝐿(") is the product of arc coefficients in the ith loop of GA(l) 
– * indicates the sum is taken over pairs, triplets,..., n−tuples of 

disjoint loops

Characteristic Polynomial from the Graph of A

Mason and Zimmerman (1960)

Hubbell and Werner (1979)

• Eigenvalues are found by solving P(GA(l)) = 0 and the 
largest of these is l = 𝜌(𝐀).



P(GA(l)) = 1 - ∑" 𝐿(")+ ∑",&∗ 𝐿(")𝐿(&)- ∑",&,'∗ 𝐿(")𝐿(&)𝐿(')+…

– 𝐿(") is the product of arc coefficients in the ith loop of GA(l) 
– * indicates the sum is taken over pairs, triplets,..., n−tuples of 

disjoint loops

A Simple Example

Mason and Zimmerman (1960)

P(GA(l)) = 1- a22 l-1 -a12 a21 l-2 



Chen (1976)

Caswell (2001)

Graph reduction leaves polynomial unchanged



The Simple Example using Graph Reduction



Graphical method for calculating 𝑅! = 𝜌(𝑅!𝐓 + 𝐅)

1. Create a graph of the controlled matrix, 

where the fecundities (entries of F) are 

multiplied by R0 -1

2. Reduce graph to a single node, using 

Mason’s graph reduction rules.  

3. Set the weight for the final node equal 

to 1 and solve for R0
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1 2
a(1-b)-1

=

a

1 2

b

1 2
a+b

=

1 2 3a b

1 3
ab=

De Camino Beck and Lewis (2006)



Scentless chamomile:

1. Multiply fecundities by R0
-1



2. Reduce graph
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Node 2 eliminated
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Mason’s rules



Node 1 eliminated

1 2
a

b

1 2
a(1-b)-1

=

a

1 2

b

1 2
a+b

=

1 2 3a b

1 3
ab=

Mason’s rules



Set the final node equal to 1 and solve for R0



Back to the control of scentless chamomile

Scentless chamomile:
2004 2005

Seed
bank pathway

Rosette
pathway

Flowering plant
pathway

32 31 2 3

1. Seeds
2. Rosettes
3. Flowering plants



Back to the control of scentless chamomile

Scentless chamomile:
2004 2005

Seed Weevil 
(Omphalapion (Apion) hookeri)

Gall midge
(Rhopalomyia sp.)

Control Agents:

Seed
bank pathway

Rosette
pathway

Flowering plant
pathway

Mechanical control 
(removal of seed head and 
destruction of stems) used 
to simulate control agents 
and validate modelTomas de Camino Beck

(Grad (Mathbio) studenticus)



Back to the control of scentless chamomile

1. It is not possible to control scentless chamomile by 
reducing growth alone.

2. It is possible to control via reduced fecundity or a 
mixed strategy 

3. However, the biocontrol agents are not sufficiently 
effective to completely control because of very high 
fecundity.

4. Both of these biocontrol agents (seed weevil and 
gall midge) have now been released in Alberta.



Net Reproductive Rate

Nodding thistle
(Carduus nutans)

Common teasel
(Dypsacus sylvestris)

Tansy ragwort
(Senecio jacobaea)

Bullfrog
(Rana catesbeiana)

Common cat’s ear
(Hypochaeris radicata)



Generation Time

Explicit R0 formulae can be used to determine when the new 
offspring are produced (fecundity profile)

Relates to Cole (1954):
Effect of life history traits on population growth and 
Generation-Law method

De Camino Beck and Lewis (2007)

R R R R R R R



Generation Time
Number of new individuals:

From this it is possible to calculate mean generation time       
and generation time variance

  

€ 
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3
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2 + a33T
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2 +…

R0 = R(1) = R1 + R2 +…
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R2 = R' '(0) /2


R0 generating

function

€ 

R0 =
a31a13 + a13a21a32
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+ a32a23 + a33



Conclusions
• Our focus is on structured population models which can be described by a model 

with a nonnegative matrix which is a primitive.
• We have only considered linear models, although it is reasonable to make this 

assumption when population levels are low (relevant to endangered species or 
initial stages of an invasion).

• Eigenvalue analysis and sensitivity analysis are the classical approaches for 
modelling asymptotic population growth.

• 𝑅! provides a convenient and transparent formula describing life-time 
contribution of offspring by a single individual, particularly when life-cycle 
details are complex.

• A straightforward graph reduction method can be used to calculate 𝑅!. 
• The methods can be applied to give insight about the generation time and 

fecundity profile.



R0 versus a target reproduction number

However, this eigenvalue R0 typically be written down easily 
and explicitly and yields insight into factors driving growth

How do we address the problem of targeted control agents?

It turns out that the idea of R0 can be generalized to deal 
specifically with targeted control to give a target 
reproduction number.

R0 provides an easier method for assessing whether growth occurs

As with       we still need to calculate an eigenvalue, now of  
the next generation operator Q



Biocontrol agents

Scentless chamomile:

Seed Weevil 
(Omphalapion (Apion) hookeri)

Gall midge
(Rhopalomyia sp.)

Control Agents:

Seed
bank pathway

Rosette
pathway

Flowering plant
pathway

How much does the seed weevil need to reduce seed production in order to 
control the weed?

𝑅! =
"!"""!#""!"#""!#

$%"""
+ 𝑎&' 𝑎'&+ 𝑎&&



Target reproduction number for fecundity

Effect of seed weevil:

• The seed weevil would control the population by reducing fecundity F. 
• Suppose we want to target fecundity by rescaling it by factor 1/ 𝜏 so as 

to control population growth.  What value should 𝜏 at least be?

• To control the population, we need 𝜏 ≥ 𝜏( = 𝑅!.
• 𝜏( = 𝑅! can be thought of as the target reproduction number that is 

needed to rescale fecundity sufficiently to control the population.

𝑎!!/𝜏

𝑎"!/𝜏

𝑎#!/𝜏

𝑅! =
"!"""!#""!"#""!#

$%"""
+ 𝑎&' 𝑎'&+ 𝑎&&

1 = "!"""!/,#""!/, "#""!#
$%"""

+ 𝑎&' 𝑎'&/𝜏 + 𝑎&&/𝜏
⟹ 𝜏 = 𝑅!



Target reproduction number for growth

Scentless chamomile:

Seed Weevil 
(Omphalapion (Apion) hookeri)

Gall midge
(Rhopalomyia sp.)

Control Agents:

What if we were to try to control the population by rescaling growth (via the 
gall midge)?
Can we come up with a target reproduction number for growth?

Seed
bank pathway

Rosette
pathway

Flowering plant
pathway

𝑅! =
"!"""!#""!"#""!#

$%"""
+ 𝑎&' 𝑎'&+ 𝑎&&



Target reproduction number for growth
Transition and fecundity matrix:

Residual matrix Target matrix

A = B + C = 
𝑎$$ 0 𝑎$&
𝑎'$ 0 𝑎'&
𝑎&$ 𝑎&' 𝑎&&

B  = 
𝑎$$ 0 𝑎$&
0 0 𝑎'&
0 0 𝑎&&

C  = 
0 0 0
𝑎'$ 0 0
𝑎&$ 𝑎&' 0

𝜌 𝐁 < 1require

𝑎!!
𝑎#!

𝑎#" 𝑎!#
𝑎"!

𝑎!"

for controllability



Target reproduction number theory
Definition: For A, B, C, nonnegative matricies such that A = B + C is irreducible,
C ≠ 0 and 𝜌 𝐁 < 1, 𝜏- is defined as

𝜏- = 𝜌 𝐂(𝐈 − 𝐁)%𝟏 .
(Note: if C = A then 𝜏- = 𝜆. If B = T (transition) and C = F (fecundity) then 𝜏- = 𝑅!.) 

Theorem 1: Let 𝐀/ 𝜏 = 𝐁 + $
,
𝐂 be the controlled matrix. Then 𝜌 𝐀/ 𝜏 = 1

if and only if 𝜏 = 𝜏-.  (This yields the practical method for calculating 𝜏-.)

Theorem 2:
(1) 𝜌 𝐀 > 1 iff 𝜏- > 1;
(2) 𝜌 𝐀 = 1 iff 𝜏- = 1;
(3) 𝜌 𝐀 < 1 iff 𝜏- < 1.

Interpretation:
(1) a growing population has a target reproduction number greater than 1

(entries of C must be shrunk if the population is to be controlled, e.g. weed); 
(2) a stationary population has a target reproduction number equal to 1; 
(3) a shrinking population has a target reproduction number less than 1

(entries of C must be made larger if the population is to grow, e.g. at risk pop’n).



Target reproduction number for growth
Transition and fecundity matrix:

Residual matrix Target matrix

A = B + C = 
𝑎$$ 0 𝑎$&
𝑎'$ 0 𝑎'&
𝑎&$ 𝑎&' 𝑎&&

B  = 
𝑎$$ 0 𝑎$&
0 0 𝑎'&
0 0 𝑎&&

C  = 
0 0 0
𝑎'$ 0 0
𝑎&$ 𝑎&' 0

Let 𝐀/ 𝜎 = 𝐁 + $
0
𝐂 be the controlled matrix. Then

𝐀/ 𝜎 =
𝑎$$ 0 𝑎$&
𝑎'$/𝜎 0 𝑎'&
𝑎&$/𝜎 𝑎&'/𝜎 𝑎&&

, 

and 𝜎- is found by (1) solving 𝜌 𝐀/ 𝜎 = 1 by Theorem 1 or, 2 alternatively,

𝜎- = 𝜌 𝐂(𝐈 − 𝐁)%𝟏 .



Target reproduction number for growth

1 = "!"/0 ""!#""!"#"/0 "!#/0
$%"""

+ 𝑎&'/𝜎 𝑎'&+ 𝑎&&,

𝐀/ 𝜎 =
𝑎$$ 0 𝑎$&
𝑎'$/𝜎 0 𝑎'&
𝑎&$/𝜎 𝑎&'/𝜎 𝑎&&

, 
𝑎!!

𝑎#!
𝑎#" 𝑎!#

𝑎"!

𝑎!"

1 = ""!"#" "!#
$%"""

𝜎%' + "!" ""!
$%"""

+ 𝑎&' 𝑎'& 𝜎%$ + 𝑎&&.

or equivalently

(1) Solving 𝜌 𝐀/ 𝜎 =1 for 𝜎/ yields

𝜎/ is the real root to this polynomial equation. (We know there is only one by 
Theorem 1.) 

We know that 𝜎/ > 1 providing 𝜌 𝐀 > 1 by Theorem 2. 

(2) Alternatively, we calculate 𝐂(𝐈 − 𝐁)%𝟏 = 
0 ""! "#"

($% """)($% "!!)

𝑎&'
""! "!"

($% """)($% "!!)
+ "#! "!#

($% "!!)

Which gives the same characteristic polynomial for 𝜎/ .



Steps to determine a target reproduction number
1. Break down the population projection matrix A into a nonnegative target 

matrix C and a nonnegative residual matrix B such that C ≠ 0. Ensure that 
𝜌 𝐁 < 1 so as to be able to control the system.  

2. Let 𝐀/ 𝜏 = 𝐁 + $
,
𝐂 be the controlled matrix. This system can be 

controlled (𝜏 can be found such that 𝜌 𝐀/ 𝜏 = 1) so long as 𝜌 𝐁 < 1.
3. Set 𝜌 𝐀/ 𝜏 = 1 to get a polynomial in 𝜏.
4. Solve for 𝜏- over the real numbers to get the target reproduction number.
5. This determines the level of control 𝜏 needed to stabilize the population 

(so that 𝜌 𝐀/ 𝜏- = 1).

Note 1: If the original population was growing, then 𝜏- > 1 and, if the original 
population was shrinking, then 𝜏- < 1.
Note 2: If B is the transition matrix and C is the fecundity matrix then the 
above method determines the net reproductive rate 𝑅!. (This is also referred to 
as the basic reproduction number.)
Note 3: If you have an expression for 𝑅! then steps 2 and 3 can be replaced by 
setting 𝑅! =1 in that expression and then rescaling elements of C by 𝜏.



Target reproduction with two controls

1 = "!"/0 ""!/,#""!/,"#"/0 "!#/0
$%"""

+ 𝑎&'/𝜎 𝑎'&/𝜏 + 𝑎&&/𝜏,

𝐀/ 𝜎 =
𝑎$$ 0 𝑎$&/𝜏
𝑎'$/𝜎 0 𝑎'&/𝜏
𝑎&$/𝜎 𝑎&'/𝜎 𝑎&&/𝜏

, 
𝑎!!

𝑎#!
𝑎#" 𝑎!#

𝑎"!

𝑎!"

𝜏 = ""!"#" "!#
$%"""

𝜎%' + "!" ""!
$%"""

+ 𝑎&' 𝑎'& 𝜎%$ + 𝑎&&.

or equivalently

Solving 𝜌 𝐀/ 𝜎, 𝜏 =1 for 𝜎/ yields

Parameters for control of fecundity (𝜏) and growth (𝜎)are given by a curve in 
𝜏 − 𝜎 space.  

We assume that the cost of control is D(𝜏, 𝜎) = 𝑑$ 𝜏 − 1 + 𝑑' 𝜎 − 1 and 
look for the least cost solution



Target reproduction with two controls

𝐀/ 𝜎 =
𝑎$$ 0 𝑎$&/𝜏
𝑎'$/𝜎 0 𝑎'&/𝜏
𝑎&$/𝜎 𝑎&'/𝜎 𝑎&&/𝜏

𝑎!!
𝑎#!

𝑎#" 𝑎!#
𝑎"!

𝑎!"

𝜏 = ""!"#" "!#
$%"""

𝜎%' + "!" ""!
$%"""

+ 𝑎&' 𝑎'& 𝜎%$ + 𝑎&&.

D(𝜏, 𝜎) = 𝑑$ 𝜏 − 1 + 𝑑' 𝜎 − 1

𝐷 < 𝐷3 𝐷 = 𝐷3

𝐷 > 𝐷3


