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SIR Compartmental Epidemic ODE Model

Simple model for influenza

S, I,R : number susceptible, infectious, recovered at time t
β: transmission coefficient between I and S, mass action βSI
1
α

: mean infectious time f : fraction of I recovering

dI
dt

= βSI − αI

Disease free equilibrium (DFE): S = S0, I = 0, R = 0
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dI
dt

= βSI − αI

DFE is locally asymptotically stable (LAS) ifR0 =
βS0

α
< 1

unstable ifR0 > 1

R0 is the basic reproduction number
= (transmission coefficient)(mean infectious time) S0

R0 : expected number of secondary infections caused by
a primary case introduced into a susceptible population

Dynamical behavior:
R0 < 1⇒ number of infectious decreases monotonically to 0

R0 > 1⇒ number first increases (before→ 0) : an epidemic
Initial increase I(t) ≈ I(0) exp[α(R0 − 1)t]
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Estimated Mean Values ofR0 from Data

smallpox Indian subcont. (1968-73) 4.5 [Anderson, May 1991]
poliomyelitis Europe (1955-60) 6 [Anderson, May 1991]
measles Ghana (1960-68) 14.5 [Anderson, May 1991]
SARS epidemic (2002-03) 3.5 [Gumel et al. 2004]
1918 Spanish flu in Geneva

spring wave 1.5 [Chowell et al. 2006]
fall wave 3.8 [Chowell et al. 2006]

H2N2 flu pandemic US (1957) 1.68 [Longini et al. 2004]
H1N1 flu South Africa (2009) 1.33 [White et al. 2013]
Ebola Guinea (2014) 1.51 [Althaus 2014]
Omicron S. Korea (Nov-Dec 2021) 1.9 [Kim et al. 2021]
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SEIR Compartmental Epidemic Model

In many infectious diseases there is an exposed period after the
transmission of infection to susceptibles but before infected
individuals can transmit infection
If this exposed period is relatively long then an exposed
compartment E should be included to give an SEIR model with
mean exposed period 1

κ , input A, natural death rate d > 0

dS
dt

= A− dS− βSI (1a)

dE
dt

= βSI − (d + κ)E (1b)

dI
dt

= κE− (d + α)I (1c)

dR
dt

= αI − dR (1d)

with nonnegative initial conditions
DFE (S0,E, I,R) = (A

d , 0, 0, 0). How to findR0 for this system?
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ComputingR0 for ODE Compartmental Models

[Diekmann et al. 1990; vdD, Watmough 2002; Hastings, vdD, 2016]

x = (x1, x2, . . . , xn)T gives number of individuals in each compartment
First m < n compartments contain infected individuals
Assume DFE x0 exists and is stable in absence of disease
Assume the linearized equations for x1, . . . , xm decouple from the
other equations

Consider dxi
dt = Fi(x)− Vi(x) for i = 1, 2, . . . ,m

Fi(x) is rate of appearance of new infections in compartment i
Vi(x) is rate of other transitions between compartments
Here Fi and Vi ∈ C2, Fi = 0 if i > m . . .

Define F =

[
∂Fi(x0)

∂xj

]
, V =

[
∂Vi(x0)

∂xj

]
for 1 ≤ i, j ≤ m
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Next Generation Matrix Method

F is entrywise non-negative (F ≥ 0)

V is a non-singular M-matrix, V ∈M (so V−1 ≥ 0)
Linearizing at the DFE, the Jacobian matrix is F− V

Let ψ(0) be the number of initially infected individuals

Then FV−1ψ(0) is expected number of new infections

FV−1 ≥ 0 and has (i, j) entry equal to the expected number of
new infections in compartment i produced by an infected
individual introduced in compartment j

FV−1 is the next generation matrix

R0 = ρ(FV−1)

where ρ denotes the spectral radius
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Linear stability of DFE determined by s(F− V)
where s is the maximum real part of the eigenvalues

Theorem
If x0 is a DFE, then x0 is locally asymptotically stable (LAS) if
R0 = ρ(FV−1) < 1, but unstable ifR0 > 1, i.e. sign s(F− V) = sign
(R0 − 1)

Proof: Matrix V − F has Z sign-pattern (off-diagonals - or 0)

s(F− V) < 0 ⇔ V − F ∈M
⇔ I − FV−1 ∈M
⇔ ρ(FV−1) < 1

Also s(F− V) = 0 ⇔ ρ(FV−1) = 1
Thus s(F− V) > 0 ⇔ ρ(FV−1) > 1

Therefore x0 is LAS if s(F− V) < 0, equivalentlyR0 < 1, and x0 is
unstable if s(F− V) > 0, equivalentlyR0 > 1.
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Computation ofR0 for SEIR Model

The infected compartments are E and I
At DFE matrices F and V are

F =

[
0 βS0
0 0

]
, V =

[
d + κ 0
−κ d + α

]
, FV−1 =

[
κβS0

(d+κ)(d+α)
βS0
d+α

0 0

]

So FV−1 has eigenvalues 0 andR0 where

R0 =
κβS0

(d + κ)(d + α)

βS0 is infection rate of 1 person in a population of S0 susceptibles
κ/(d + κ) is the fraction progressing from E to I
1/(d + α) is the mean time in I
The (1,1) entry of FV−1 is the expected number of secondary infections
produced in compartment E by an infected person originally in E
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Extension of the SEIR Model

Suppose that individuals in E are mildly infectious at a reduced rate
εβSE with 0 < ε < 1

Show that
R0 =

κβS0

(d + κ)(d + α)
+

εβS0

(d + κ)

and interpret the result
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SIS with heterosexual transmission

At the DFE the Jacobian matrix is:

J =

[
−(d + γF) λMF
λFM −(d + γM)

]
Eigenvalues of J are given by the roots of the characteristic equation

z2 + z(2d + γF + γM) + (d + γF)(d + γM)− λMFλFM = 0

DFE is linearly stable iff constant term is positive

F =

[
0 λMF
λFM 0

]
V =

[
d + γF 0

0 d + γM

]
SoR0 = ρ(FV−1) =

√
λMFλFM

(d+γM)(d+γF)

The square root (geometric mean) indicates that it takes two
”generations” for infected M to produce another infected M
Note: R0 < (>)1 exactly when the constant term is positive (negative)
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A Vector-Host Model
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Some disease, e.g., West Nile Virus, Dengue fever, malaria, Zika virus
are transmitted through a vector
Simple vector-host model is SIS for the hosts and SI for the vector

Susceptible hosts Sh become infectious hosts Ih at rate βvhShIv
by bites from infectious vectors Iv

Susceptible vectors Sv become infectious vectors at a rate βhvSvIh
by biting infectious hosts

Let Ah,Av be recruitment rates, dh, dv be removal rates
γ be recovery rate of Ih where Iv are assumed to be infectious for life
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dSh

dt
= Ah − dhSh − βvhShIv + γIh (2a)

dIh

dt
= βvhShIv − (dh + γ)Ih (2b)

dSv

dt
= Av − dvSv − βhvSvIh (2c)

dIv

dt
= βhvSvIh − dvIv (2d)

Infected compartments are Ih , Iv
DFE is Sh0 = Ah/dh,Sv0 = Av/dv, Ih = Iv = 0

F =

[
0 βvhSh0

βhvSv0 0

]
, V =

[
dh + γ 0

0 dv

]

FV−1 =

[
0 βvhSh0

dv
βhvSv0
dh+γ

0

]
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The entries of FV−1 are interpreted as the number of secondary
infections produced by infected vectors and hosts during
the course of their infections
Note the cross infection between vectors and hosts

R0 =

√
βvhβhvSh0Sv0

dv(dh + γ)

This is a geometric mean
The square root indicates that it takes two generations for infected
hosts to produce new infected hosts

In practise the square root is often omitted
giving the same threshold at 1

Control measures: reduce Sv0 by spraying, reduce βvh by bed nets.....
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Sensitivity and Elasticity

To determine best control measures, the relative importance of the
different factors responsible for transmission is needed
Initially disease transmission is related toR0 and sensitivity predicts
which parameters have a high impact onR0

The sensitivity index ofR0 with respect to a parameter ω is ∂R0
∂ω

Another measure is the elasticity index (normalized sensitivity index) that
measures the relative change ofR0 with respect to ω

ΥR0
ω =

∂R0

∂ω
× ω

R0

For the simple SIR model withR0 = βS0
α :

ΥR0
β = 1, ΥR0

α = −1
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Model of Bovine Babesiosis (BB)

Bovine Babesiosis is a disease of cattle (bovine) that is endemic in
many regions including Africa
Transmitted by ticks, which can also transmit the pathogen vertically
Juvenile cattle have an innate resistance to BB, once infected they
rarely show clinical symptoms, and once recovered they acquire
natural immunity

ODE Model of BB [Saad-Roy, Shuai, vdD, 2015]
related to the PDE model [Friedman, Yakubu, 2014]

SBJ,SBA denote the susceptible junior, adult bovine population
ABJ denotes the asymptomatic infectious juvenile bovine population
IBA,RBA denote the infectious, recovered adult bovine population
ST, IT denote the susceptible, infectious tick population
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Table: Parameter values from Aranda et al. [2012], time unit = 1 day

Parameter Value Definition
bB 0.0002999 Bovine birth rate
dB 0.0002999 Bovine death rate
bT 0.001609 Tick birth rate
dT 0.001609 Tick death rate
τB 0.000265 Bovine natural recovery rate
αB 0.00100 Bovine loss of immunity rate
βBT 0.000610 Infectivity rate, tick to bovine
βTB 0.000480 Infectivity rate, adult bovine to tick
p 0.1 Probability of no vertical transmission in ticks
mBJ 0.003703 Maturation rate of juvenile cattle
εβTB ε = 0.5 Infectivity rate, juvenile bovine to tick
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SBJ ABJ

SBA IBA RBA

ST IT
bT(ST + pIT)

mBJABJ

βBT
SBJ
NBJ

IT

dBSBA dBIBA dBRBA

dTST dTIT(1− p)bTIT

mBJSBJ

βBT
SBA
NBA

IT τBIBA

bBNBA

αBRBA

βTB
IBA
NBA

ST + εβTB
ABJ
NBJ

ST

Figure: Bovine and Tick Populations Flowchart
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Calculation ofR0 and Elasticity Indices

If vertical transmission in ticks is taken as a transfer (i.e., in V matrix)

R0 =

√
βBTβTBNT

pbTNBA

(
ε

bB
+

1
τB + bB

)

Elasticity indices:

ΥR0
βBT

= ΥR0
βTB

= 0.5, ΥR0
p = ΥR0

bT
= −0.5

ΥR0
ε =

ε(τB + bB)

2[ε(τB + bB) + bB]
, ΥR0

τB
= − bB

2[ε(τB + bB) + bB]

τB

τB + bB

ΥR0
bB

= − (τB + bB)bB

2[ε(τB + bB) + bB]

(
ε

bB
+

bB

(τB + bB)2

)
Note that all indices are sign determined
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Table: Elasticity Indices

Parameter Value of Parameter Index ofR0

βBT 0.0006100 0.5
βTB 0.0004800 0.5
bT 0.0016090 -0.5
p 0.1 -0.5
bB 0.0002999 -0.3792
ε 0.5 0.2425
τB 0.0002650 -0.1208

Natural recovery rate (τB) has little effect onR0
For control, infectivity rates need to be reduced, or vertical
transmission reduced (p increased)

Further sensitivity analysis indicates that for this model, targeting only
one parameter may not be a feasible method of eliminating BB
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Calculation ofR0 for a Discrete-Time Model

[Cushing, Zhou, 1994; Li, Schneider, 2002; Allen, vdD, 2008]

x (t + 1) = F (x (t) , y (t)) + T (x (t) , y (t))
y (t + 1) = G (x (t) , y (t))

x(t), y(t) represent the population sizes in the disease and non-disease
compartments at time t

Fi represents the density of new infections that appear in i
Ti represents the population size of individuals that transition
between compartment i and other compartments

Assume disease-free system has unique LAS equilibrium y (t) = y∞
Define

F =

[
∂Fi(0, y∞)

∂xj

]
and T =

[
∂Ti(0, y∞)

∂xj

]
F ≥ 0 is the matrix of new infections, T is the transition matrix
The Jacobian matrix J = F + T, LAS if ρ(J) < 1, unstable if ρ(J) > 1
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between compartment i and other compartments

Assume disease-free system has unique LAS equilibrium y (t) = y∞
Define

F =

[
∂Fi(0, y∞)

∂xj

]
and T =

[
∂Ti(0, y∞)

∂xj

]
F ≥ 0 is the matrix of new infections, T is the transition matrix
The Jacobian matrix J = F + T, LAS if ρ(J) < 1, unstable if ρ(J) > 1
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Next Generation Matrix for a Discrete-Time System

Since some of the population may die ρ (T) < 1 with (Id− T) ∈M

(Id− T)−1 = Id + T + T2 + · · ·+ Tn + · · ·,

assuming that T ≥ 0 and ρ (T) < 1 implying (Id− T)−1 ≥ 0
F(Id− T)−1 has (i, j) entry equal to the expected number of secondary
infections in compartment i produced by an infected individual
introduced in compartment j; it is the next generation matrix
The basic reproduction number for the discrete-time system is

R0 = ρ
(
F(Id− T)−1)

Proof of the next theorem uses the Perron-Frobenius Theorem

Theorem
If (0, y∞) is DFE of the system
x (t + 1) = F (x (t) , y (t)) + T (x (t) , y (t)), y (t + 1) = G (x (t) , y (t))
then (0, y∞) is LAS ifR0 = ρ

(
F (Id− T)−1

)
< 1 but unstable ifR0 > 1
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Computation ofR0 for the Discrete-Time SEIR Model

et+1 = (1− d) st

(
θϕ̂ (it) + (1− θ) ψ̂ (εet)

)
+ (1− κ) (1− d) et

it+1 = κ (1− d) et + (1− γ) (1− d) it
rt+1 = γ (1− d) it + (1− d) rt

with disease-free equilibrium (DFE) (e, i, r) = (0, 0, 0)

Write the Jacobian at the DFE as F + T assuming a new infection means
entry into the mildly infectious exposed class

F =

[
− (1− d) (1− θ) εψ′ (0) − (1− d) θϕ′ (0)

0 0

]

The transition matrix T ≥ 0 with spectral radius ρ(T) < 1

T =

[
(1− κ) (1− d) 0
κ (1− d) (1− γ) (1− d)

]
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Local stability of DFE

These matrices give

R0 = ρ
(

F (Id− T)−1
)

= R0E +R0I

where

R0E =
− (1− d) (1− θ) εψ′ (0)

1− (1− κ) (1− d)

R0I =
−κ (1− d)2 θφ′ (0)

(1− (1− γ) (1− d)) (1− (1− κ) (1− d))

R0I gives contributions from the infectious compartment I
R0E gives contributions from the mildly infectious compartment E,
increasingR0

Under the asymptotically constant growth assumption the DFE
(1, 0, 0, 0) is LAS ifR0 < 1 and unstable ifR0 > 1
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Concluding remarks

• The next generation matrix method (derived using results from
linear algebra including Perron Frobenius, M-matrices, stability...)
works well in continuous-time and discrete-time models
• It is especially useful if F has low rank (preferably rank 1), and has

biological meaning

• Usually the threshold 1 distinguishes between the DFE being
stable or unstable, and another endemic (positive) equilibrium
appearing and being LAS. But in some models there is a backward
bifurcation when an endemic equilibrium can also occur ifR0 < 1.
Linear algebra then helps to determine local stability, which can
be initial value dependent
• What about global stability? Linear algebra and combinatorial

ideas can help in the construction of Lyapunov functions
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HAIKU FORR0

To control disease
Stop spots, coughs and a sneeze:
R0’s a breeze
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