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Warmup:

Source: StudioAllenShop
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Both players start on square 1. Players take turns rolling the die,
advancing on the board, moving up ladders and down snakes,
depending on which square they land on. Game ends the first time
that either of the players lands on square 100.

Key features:
• The state of the game can be represented by an ordered pair
(n1, n2), n1, n2 ∈ {1, . . . , 100}, where nj is the number of the
square that player j sits on, j = 1, 2.
• The state of the game after k rolls of the die depends on the
state of the game after k − 1 rolls.
• The state of the game after k rolls of the die does not depend
the earlier history of the game for rolls k − 2, k − 3, etc.
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Generalize:
• Consider a particle that can occupy one of n states, labelled
1, . . . , n.
• At each discrete time step, the particle can either stay in its
current state or move to a new state.
• For each i , j = 1, . . . , n, let aij denote the probability that the
particle moves from state i to state j in one time step. Note that
these probabilities are assumed to be the same for all time steps.
• Starting from some initial probability distribution for the particle
occupying the various states, we iterate the system in discrete
time, according to these rules.

This is a discrete–time, time homogeneous Markov chain on a
finite state space.
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Formalize:
An n × n matrix A is stochastic if it is entrywise nonnegative, and
A1 = 1, where 1 denotes the all ones vector in Rn. Note that 1 is
an eigenvalue of A, with 1 as a corresponding right eigenvector.

Let x(0)> denote an initial probability vector in Rn – i.e. a
nonnegative vector such that x(0)>1 = 1. The Markov chain
associated with A is sequence of nonnegative vectors
x(k), k = 0, 1, 2, 3, . . . satisfying x(k + 1)> = x(k)>A and
x(k)>1 = 1, k ∈ N ∪ {0}. Evidently x(k)> = x(0)>Ak , for each
k ∈ N.

A is the transition matrix for the Markov chain.
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Species succession:



.7725 .1022 .0170 .0040 .0150 .0010 .0180 .0120 .0020 .0140 .0030 .0020 .0050 .0030 .0291

.1450 .6090 .0310 .0110 .0280 .0050 .0220 .0250 .0110 .0150 .0120 .0080 .0050 .0040 .0690

.0519 .0609 .7093 .0040 .0200 .0040 .0080 .0080 .0250 .0030 .0050 .0070 .0020 .0080 .0839

.0170 .0541 .0060 .8398 .0050 0 .0040 .0060 .0080 .0040 .0060 .0110 0 .0030 .0360

.1169 .2178 .0350 .0040 .4036 .0080 .0330 .0320 .0130 .0070 .0060 .0050 .0060 .0050 .1079

.0090 .0240 .0120 0 .0160 .8647 .0010 .0070 .0160 .0030 .0040 .0070 0 0 .0361

.2412 .2232 .0511 .0160 .0801 .0240 .1051 .0410 .0140 .0330 .0250 .0050 .0140 .0120 .1151

.1986 .2345 .0379 .0180 .0888 .0070 .0439 .1537 .0150 .0269 .0160 .0200 .0090 .0090 .1218

.0559 .1469 .0260 .0110 .0200 .0060 .0110 .0260 .5854 .0210 .0060 .0050 .0010 .0050 .0739

.3084 .2275 .0309 .0100 .0269 .0060 .0419 .0309 .0100 .1647 .0130 .0080 .0120 .0060 .1038

.0559 .2216 .0279 .0080 .0359 0 .0250 .0200 .0070 .0070 .5060 .0020 .0050 .0030 .0758

.0250 .0680 .0180 .0300 .0160 0 .0100 .0160 .0040 .0030 .0010 .5370 .0030 .0030 .2660

.3210 .1790 .0230 0 .0630 0 .0300 .0200 .0030 .0200 .0170 0 .2480 0 .0760

.1583 .4489 .0180 .0180 .0852 .0060 .0301 .0180 .0180 .0301 .0060 .0060 0 .0301 .1273

.1010 .3200 .0250 .0090 .0620 .0050 .0480 .0340 .0130 .0310 .0170 .0170 .0110 .0130 .2940


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Random walk on a graph:
Let G be a connected undirected graph on vertices labelled
1, . . . , n. Think of a random walker who vbegins at an initial
vertex j0 of G , and proceeds as follows: if the random walker is at
vertex jk at time k, it selects one of the neighbours of jk at
random, and moves to that vertex at time k + 1. One may think of
an intruder entering a network and randomly wandering from one
vertex to another.

The corresponding transition matrix, A, which can be written as
D−1C , where:
i) C is the adjacency matrix for G , i.e. cjk = 1 if vertices j and k
are adjacent and cjk = 0 otherwise;
ii) D is the diagonal matrix of vertex degrees, i.e. D = diag(C1).

Google uses a variation of this notion in its random surfer model
that underpins its ranking of web pages.
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A simple SIS model:
Fixed population of size N. Susceptible individuals may be infected
via contact with infected individuals, and infected individuals may
recover and become susceptible again. Individuals mix
homogeneously.

Markov chain with states 0, . . . ,N, where the state of the chain is
the number of infected individuals. Let β, γ represent the
transmission and recovery rates, respectively. Under some
simplifying assumptions, we have a transition matrix A such that:
ajj+1 = βj(N−j)

N , j = 0, . . . ,N − 1,
ajj−1 = γj , j = 1, . . . ,N,
ajj = 1− βj(N−j)

N − γj , j = 1, . . . ,N,
a00 = 1.
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For N = 5, we have

A =

1 0 0 0 0 0
γ 1− γ − 4β

5
4β
5 0 0 0

0 2γ 1− 2γ − 6β
5

6β
5 0 0

0 0 3γ 1− 3γ − 6β
5

6β
5 0

0 0 0 4γ 1− 4γ − 4β
5

4β
5

0 0 0 0 5γ 1− 5γ


.

Note that A is not irreducible, though it has 1 as a simple
eigenvalue.
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Theorem
Suppose that A is an irreducible stochastic matrix. There is a
unique vector w > 0 such that w>A = w>,w>1 = 1.
If A is primitive, then Ak → 1w> as k →∞.
If A is irreducible, then 1

m
∑m−1

k=0 Ak → 1w> as m→∞.

The vector w is called the stationary distribution for the Markov
chain.
Corollary
Given a primitive stochastic matrix A, the corresponding Markov
chain x(k) converges to the stationary distribution, independently
of the initial vector x(0).
Given an irreducible stochastic matrix A, the corresponding Markov
chain x(k) has the property that the sequence of averages
1
m (x(0) + . . .+ x(m − 1)) converges to the stationary distribution,
independently of the initial vector x(0).
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So, the stationary distribution vector w carries the long–term
information about the behaviour of the Markov chain associated
with A.

E.g. For the species succession example the stationary distribution
is:
[ .3387 .2631 .0760 .0454 .0435 .0272 .0232 .0220 .0217 .0170 .0162 .0139 .0069 .0050 .0801 ] .

E.g. For the example of a random walk on a connected graph,
recall that A = D−1C , where D = diag(D1). Observe that
(1>D)A = (1>D)D−1C = 1>C = (1>D). Hence the stationary
distribution is 1

1>D11>D.
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Stationary vectors: another view
Suppose that A is irreducible n × n and stochastic, with stationary
vector w>. Then
(I − A)adj(I − A) = adj(I − A)(I − A) = (det(I − A))I = 0.
Deduce that adj(I − A) = c1w>, for some constant c.

Hence w> is a scalar multiple of the vector whose j–th entry is
det(I − A(j)), where A(j) is formed from A by deleting the j–th row
and column.

That determinant can be evaluated via the Matrix Tree Theorem.
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Consider the weighted directed graph associated with the
off–diagonal entries in A. Look for the directed trees that a) use all
of the vertices, b) have all of the arcs directed towards j . Compute
the weight of those trees as the product of the corresponding arc
weights, then sum.

That sum is det(I − A(j)).

E.g. A =

0 1 0
1
2 0 1

2
0 1 0

 . u u u- -

� �

1 1
2

11
2

w> =
[

1
4

1
2

1
4

]
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Suppose that we have an irreducible n × n stochastic matrix A.
The short–term properties of the corresponding Markov chain are
captured by its mean first passage times. The mean first passage
time from state j to state k, mjk , is the expected number of steps
required for the Markov chain to reach state k for the first time,
given that it started at state j . Informally we may think of these
mean first passage times as ‘travel times’ between states.

Condition on the state after one step:
mjk = ajk +

∑
6̀=k aj`(m`k + 1) = 1 +

∑
` 6=k aj`m`k .

In matrix terms: M = A(M −Mdg) + J , where J =all ones, and
Mdg is the diagonal matrix whose diagonal entries coincide with
those of M.
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Denote the stationary vector by w> and observe that
w>M = w>A(M −Mdg) + w>J = w>M − w>Mdg + 1>. Deduce
that w>Mdg = 1>, i.e. mjj = 1

wj
for j = 1, . . . , n.

Offdiagonal entries of M? Have (I − A)M = J − AMdg, so look at
the last column on both sides. Set
I − A =

[
I − A(n) −(I − A(n))1
∗ ∗

]
,M =

[
M11 M12
∗ mnn

]
. Then

(I − A(n))M12 −mnn(I − A(n))1 = 1−mnn(I − A(n))1, and deduce
that M12 = (I − A(n))−11.

In general, for j 6= k mjk corresponds to the appropriate entry of
(I − A(k))−11.
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E.g. Random walk on a path on 3 vertices:

A =

0 1 0
1
2 0 1

2
0 1 0

 and M =

4 1 4
3 2 3
4 1 4

 .

Sample computation: (I − A(3)) =
[

1 −1
−1

2 1

]
so

(I − A(3))−1 =
[

2 2
1 2

]
, which has row sum vector

[
4
3

]
.
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E.g. Species succession: mean first passage times from state 15
(bare rock)

0 5 10 15
0

50

100

150

200

250

300
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For the SIS model, we can still consider the mean first passage
times into state 0 (i.e. no infected individuals), computed as
(I − A(0))−11.

For example if N = 5, we have


m10
m20
m30
m40
m50

 =



24β4+150β3γ+500β2γ2+1250βγ3+3125γ4

3125γ5

48β4+360β3γ+1375β2γ2+3750βγ3+9375γ4

6250γ5

144β4+1080β3γ+4425β2γ2+13125βγ3+34375γ4

18750γ5

288β4+2160β3γ+8850β2γ2+27750βγ3+78125γ4

37500γ5

288β4+2160β3γ+8850β2γ2+27750βγ3+85625γ4

37500γ5


.

Evidently m10 < m20 < m30 < m40 < m50; each mj0 is increasing
in β and decreasing in γ.
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Consider our irreducible n × n stochastic matrix A with stationary
vector w>, and denote the eigenvalues of A by 1, λ2, . . . , λn.

The matrix I − A + 1w> has eigenvalues 1, 1− λ2, . . . , 1− λn, and
so in particular it is nonsingular.

It turns out that the mean first passage matrix M is given by
M = (I − Z + JZdg)W−1, where: Z = (I − A + 1w>)−1 and W is
the diagonal matrix constructed from the entries of w .

Use the relationships between A,Z ,w> to show that this
candidate satisfies M = A(M −Mdg) + J .

Lecture 9 will present an alternate expression for the mean first
passage matrix.
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Recall that we used the equation M = A(M −Mdg) + J , multiplied
on the left by w>, to generate the connection between the mjj ’s
and the wj ’s.

How about multiplying on the right?
Mw = A(M −Mdg)w + Jw = AMw − A1 + 1 = A(Mw). So, Mw
is an eigenvector of A corresponding to the eigenvalue 1.

Deduce that there is a constant c such that Mw = c1.

For each index j the expression
∑n

k=1 mjkwk(= 1 +
∑

k 6=j mjkwk) is
independent of the index j .

In other words, the expected number of steps to go from state j to
a randomly chosen state (i.e. randomly chosen according to the
stationary distribution) does not depend on j .
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What’s the constant?

We have Mw = (I − Z + JZdg)W−1w = (I − Z + JZdg)1 =
1− Z1 + trace(Z )1 = trace(Z )1.

If the eigenvalues of A are 1, λ2, . . . , λn, then the eigenvalues of Z
are 1, 1

1−λ2
, . . . , 1

1−λn
. Hence

Mw =
(

1 +
n∑

k=2

1
1− λk

)
1.

The number κ =
∑n

k=2
1

1−λk
is called Kemeny’s constant for the

Markov chain. Evidently κ+ 1 =
∑n

j,k=1 wjmjkwk so Kemeny’s
constant can be expressed in terms of the expected number of
steps to go from a randomly chosen initial state to a randomly
chosen destination state.

Steve Kirkland Lecture 5 – Markov chains



Introduction
Long–term behaviour
Short–term behaviour

Kemeny’s constant

E.g. Random walk on a path on 3 vertices:

A =

0 1 0
1
2 0 1

2
0 1 0

 ,w> =
[

1
4

1
2

1
4

]
and M =

4 1 4
3 2 3
4 1 4

 .
Mw = 5

21, so κ = 3
2 .

E.g. Species succession: for this example, Kemeny’s constant is
34.3260. We saw that some of the mean first passage times were
large (on the order of 260), but those were into states
corresponding to small entries in the stationary vector, hence the
modest value of κ.
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Kemeny’s constant arises in a number of applied settings,
including: vehicle traffic networks (overall efficiency), wireless
networks (robustness), economics (flow of money between
nations), and consensus algorithms (resistance to noise).

Sample results:
For an irreducible n × n stochastic matrix, the corresponding value
of Kemeny’s constant satisfies κ ≥ n−1

2 . Equality holds in the lower
bound iff the transition matrix is the adjacency matrix of a
directed n–cycle: 1→ 2→ . . .→ n→ 1.

For a random walk on a connected graph on n vertices, κ ≥ (n−1)2

n ,
with equality if and only if it is the complete graph.
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