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Introduction

Both players start on square 1. Players take turns rolling the die,
advancing on the board, moving up ladders and down snakes,
depending on which square they land on. Game ends the first time
that either of the players lands on square 100.

Key features:

e The state of the game can be represented by an ordered pair
(n,n2), n1,np € {1,...,100}, where n; is the number of the
square that player j sits on, j =1, 2.

e The state of the game after k rolls of the die depends on the
state of the game after k — 1 rolls.

e The state of the game after k rolls of the die does not depend
the earlier history of the game for rolls kK — 2, k — 3, etc.
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Introduction

Generalize:

e Consider a particle that can occupy one of n states, labelled
1,...,n.

e At each discrete time step, the particle can either stay in its
current state or move to a new state.

e For each i,j =1,...,n, let aj; denote the probability that the
particle moves from state / to state j in one time step. Note that
these probabilities are assumed to be the same for all time steps.
e Starting from some initial probability distribution for the particle
occupying the various states, we iterate the system in discrete
time, according to these rules.

This is a discrete—time, time homogeneous Markov chain on a
finite state space.
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Formalize:

An n x n matrix A is stochastic if it is entrywise nonnegative, and
Al =1, where 1 denotes the all ones vector in R". Note that 1 is
an eigenvalue of A, with 1 as a corresponding right eigenvector.

Let x(0)" denote an initial probability vector in R" —i.e. a
nonnegative vector such that x(0)"1 = 1. The Markov chain
associated with A is sequence of nonnegative vectors

x(k),k =0,1,2,3,... satisfying x(k + 1)T = x(k) " A and
x(k)T1 =1,k € NU{0}. Evidently x(k)T = x(0) " AX, for each
k e N.

A is the transition matrix for the Markov chain.
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Species succession:

L7725 1022 0170 -0040 0150 0010 0180 0120 0020 0140 0030 0020 0050 -0030 0291
.1450 .6090 .0310 0110 .0280 .0050 .0220 .0250 0110 .0150 0120 .0080 .0050 0040 .0690
.0519 .0609 7093 .0040 .0200 .0040 .0080 .0080 .0250 .0030 .0050 .0070 .0020 .0080 .0839
0170 .0541 0060 .8398 0050 0 .0040 0060 .0080 0040 0060 .0110 0 .0030 0360
1169 2178 0350 0040 4036 0080 0330 0320 .0130 0070 0060 0050 0060 0050 1079
0090 0240 0120 0 0160 8647 0010 0070 .0160 0030 0040 0070 0 0 0361
2412 2232 L0511 0160 .0801 .0240 .1051 .0410 0140 .0330 0250 .0050 .0140 0120 .1151
.1986 .2345 .0379 .0180 .0888 .0070 .0439 11537 .0150 .0269 .0160 .0200 .0090 .0090 1218
0559 .1469 0260 .0110 .0200 0060 .0110 0260 .5854 .0210 0060 .0050 .0010 .0050 .0739
3084 2275 0309 .0100 0269 0060 0419 0309 .0100 1647 0130 0080 0120 0060 1038
0559 2216 0279 0080 0359 0 0250 0200 .0070 0070 5060 0020 0050 0030 0758
.0250 .0680 .0180 0300 .0160 0 .0100 .0160 .0040 .0030 .0010 .5370 .0030 .0030 .2660
.3210 .1790 .0230 0 .0630 [ .0300 .0200 .0030 .0200 .0170 0 .2480 0 .0760
1583 .4489 .0180 .0180 .0852 0060 .0301 .0180 .0180 0301 0060 .0060 0 .0301 1273
.1010 .3200 0250 0090 0620 0050 .0480 0340 .0130 0310 0170 0170 0110 .0130 2940
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Random walk on a graph:

Let G be a connected undirected graph on vertices labelled
1,...,n. Think of a random walker who vbegins at an initial
vertex jo of G, and proceeds as follows: if the random walker is at
vertex ji at time k, it selects one of the neighbours of ji at
random, and moves to that vertex at time k + 1. One may think of
an intruder entering a network and randomly wandering from one
vertex to another.

The corresponding transition matrix, A, which can be written as

D~1C, where:

i) C is the adjacency matrix for G, i.e. ¢y = 1 if vertices j and k
are adjacent and cjx = 0 otherwise;

ii) D is the diagonal matrix of vertex degrees, i.e. D = diag(C1).

Google uses a variation of this notion in its random surfer model
that underpins its ranking of web pages.
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A simple SIS model:

Fixed population of size N. Susceptible individuals may be infected
via contact with infected individuals, and infected individuals may
recover and become susceptible again. Individuals mix
homogeneously.

Markov chain with states 0, ..., N, where the state of the chain is
the number of infected individuals. Let 3, represent the
transmission and recovery rates, respectively. Under some
simplifying assumptions, we have a transition matrix A such that:
g =20 i —o.. . N-1

jj+1 N oJ 7oy )

djj—1 :’yj,j::!.,...,/v,

gy =1-B0Z) i1 N,

aop = 1.
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For N =5, we have

1 0 0 0 0 0 ]
v 1-y-% 8 0 0 0
0 2y 1-2y-% & 0 0
0 0 3y 1-3y-% 88 0
0 0 0 4y 1-4y-% 28
0 0 0 0 5y 1—57]

Note that A is not irreducible, though it has 1 as a simple
eigenvalue.
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Long—term behaviour

Suppose that A is an irreducible stochastic matrix. There is a
unique vector w > 0 such that w A=w',w'l =1.

If A is primitive, then Ak — 1w’ as k = oo.

If A is irreducible, then + =Y s LAk 5 1wT as m — oo.

The vector w is called the stationary distribution for the Markov
chain.

Corollary

Given a primitive stochastic matrix A, the corresponding Markov
chain x(k) converges to the stationary distribution, independently
of the initial vector x(0).

Given an irreducible stochastic matrix A, the corresponding Markov
chain x(k) has the property that the sequence of averages

%(X(O) + ...+ x(m — 1)) converges to the stationary distribution,
independently of the initial vector x(0).
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Long—term behaviour

So, the stationary distribution vector w carries the long—term
information about the behaviour of the Markov chain associated
with A.

E.g. For the species succession example the stationary distribution
is:

[ 3387 2631 0760 0454 .0435 0272 0232 0220 0217 .0170 0162 0139 0069 .0050 .0801 ] .

E.g. For the example of a random walk on a connected graph,
recall that A= D~1C, where D = diag(D1). Observe that
(1"TD)A=(1"D)D71C =1"C = (17 D). Hence the stationary

C . . 1 T
distribution is ;w571 " D.
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Long—term behaviour

Stationary vectors: another view

Suppose that A is irreducible n x n and stochastic, with stationary
vector w'. Then

(I — A)adj(/ — A) = adj(/ — A)(/ — A) = (det(/ — A))I = 0.
Deduce that adj(/ — A) = clw ', for some constant c.

Hence w' is a scalar multiple of the vector whose j-th entry is

det(/ — A(j)), where A(j) is formed from A by deleting the j-th row
and column.

That determinant can be evaluated via the Matrix Tree Theorem.
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Long—term behaviour

Consider the weighted directed graph associated with the
off-diagonal entries in A. Look for the directed trees that a) use all
of the vertices, b) have all of the arcs directed towards j. Compute
the weight of those trees as the product of the corresponding arc
weights, then sum.

That sum is det(/ — A;)).

1
010 15

Eg A=|1 0 1 AN\
010 -
1 1 1

WT:[ZEZ}
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Short—term behaviour

Suppose that we have an irreducible n x n stochastic matrix A.
The short—term properties of the corresponding Markov chain are
captured by its mean first passage times. The mean first passage
time from state j to state k, mj, is the expected number of steps
required for the Markov chain to reach state k for the first time,
given that it started at state j. Informally we may think of these
mean first passage times as ‘travel times' between states.

Condition on the state after one step:
Mk = ajk + 2opzk aje(Mek + 1) = 143704 ajemux.

In matrix terms: M = A(M — My,) + J, where J =all ones, and

Mg is the diagonal matrix whose diagonal entries coincide with
those of M.
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Short—term behaviour

Denote the stationary vector by w' and observe that
w'M=wlAM— M) +w'J=w'M—w"M +1". Deduce
that WTMdg =17 ie. mj; = % forj=1,...,n

J

Offdiagonal entries of M7 Have (I — A)M = J — AMyg, so look at

the last column on both sides. Set

| — A= = A ‘ _(/_A("))1 ] M= [ My | Mo ] . Then
* * x| Mpn

(/ — A(n))M12 — m,,,,(l — A(n))]- =1- m,,,,(l — A(n))]-a and deduce

that My, = (/ — A(n))_ll.

In general, for j # k mj, corresponds to the appropriate entry of
(/ — A(k))ill.
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Short—term behaviour

E.g. Random walk on a path on 3 vertices:

010 4 1 4
A=|3 0 3landM=|3 2 3
010 41 4

Sample computation: (/ — A(3)) = [ 11 _11] >0
T2

(I—Ag)t = E g] , which has row sum vector lg] .
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Short—term behaviour

E.g. Species succession: mean first passage times from state 15
(bare rock)

300 T T

150 o 1

100 7

50 [ o © q
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Short—term behaviour

For the SIS model, we can still consider the mean first passage
times into state 0 (i.e. no infected individuals), computed as
(/ — A(o))_ll.

For example if N =5, we have

[ 248%4+15083y4+5008272+12508734+3125+* ]
mio 31255
48344+36083y+13758%y 2+375o,37 +9375¢*
myo 625075
m _ 144/34+1080/337+4425/3272+13125/37 +34375+*
30| — 1875075
Mag 28854+216OB37+885062 +2775057 +7812544
mso 288ﬁ4+216053'y+8850B2 Z+2775me 318562574
L 3750075 J

Evidently mig < mpo < m3g < mao < msg; each mjg is increasing
in B and decreasing in 7.
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Short—term behaviour

Consider our irreducible n x n stochastic matrix A with stationary
vector w ', and denote the eigenvalues of A by 1, s, ..., Ap.

The matrix /| — A+ 1w has eigenvalues 1,1 — X»,...,1 — A, and
so in particular it is nonsingular.

It turns out that the mean first passage matrix M is given by
M=l -Z+JZyg )WL, where: Z=(I—A+1w')"!and Wis

the diagonal matrix constructed from the entries of w.

Use the relationships between A, Z, w' to show that this
candidate satisfies M = A(M — Mgyg) + J.

Lecture 9 will present an alternate expression for the mean first
passage matrix.
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Kemeny's constant

Recall that we used the equation M = A(M — Mgyg) + J, multiplied
on the left by w', to generate the connection between the mj;'s
and the w;'s.

How about multiplying on the right?
Mw = A(M — Mgg)w + Jw = AMw — A1 + 1 = A(Mw). So, Mw
is an eigenvector of A corresponding to the eigenvalue 1.

Deduce that there is a constant ¢ such that Mw = c1.

For each index j the expression 3_7 1 mxwi(= 1+ 324 ; mjxwi) is
independent of the index j.

In other words, the expected number of steps to go from state j to
a randomly chosen state (i.e. randomly chosen according to the
stationary distribution) does not depend on ;.
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Kemeny's constant

What's the constant?

We have Mw = (I — Z + JZgg )W ™tw = (I — Z + JZ4,)1 =
1— Z1 + trace(Z)1 = trace(Z)1.

If the eigenvalues of A are 1, Ay, ..., A, then the eigenvalues of Z
are 1, 1_—1)\2, e 1_1>\n. Hence

"o
Mw = (1 1.
()

The number Kk =3}, ﬁ is called Kemeny's constant for the
. . k y
Markov chain. Evidently k +1 = Zj’:kzl wjmjwy so Kemeny's
constant can be expressed in terms of the expected number of
steps to go from a randomly chosen initial state to a randomly

chosen destination state.
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Kemeny's constant

E.g. Random walk on a path on 3 vertices:

010 4 1 4
A=13 0 3l.wi=[} 1 }adm=13 2 3
010 4 1 4

E.g. Species succession: for this example, Kemeny's constant is
34.3260. We saw that some of the mean first passage times were
large (on the order of 260), but those were into states
corresponding to small entries in the stationary vector, hence the
modest value of .
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Kemeny's constant

Kemeny’s constant arises in a number of applied settings,
including: vehicle traffic networks (overall efficiency), wireless
networks (robustness), economics (flow of money between
nations), and consensus algorithms (resistance to noise).

Sample results:

For an irreducible n x n stochastic matrix, the corresponding value
of Kemeny's constant satisfies k > ";1. Equality holds in the lower
bound iff the transition matrix is the adjacency matrix of a

directed n—cycle: 1 -2 — ... - n— 1.

_1\2
For a random walk on a connected graph on n vertices, kK > %

with equality if and only if it is the complete graph.

)
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Kemeny's constant
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