
Sign Pattern Matrices in Population Biology

Pauline van den Driessche
University of Victoria BC

Canada
Department of Mathematics and Statistics

vandendr@uvic.ca

CBMS Conference, UCF, May 2022

Thanks to NSF, NSERC, UCF, Collaborators

Pauline van den Driessche University of Victoria BC Canada Department of Mathematics and Statistics vandendr@uvic.ca CBMS Conference, UCF, May 2022 Thanks to NSF, NSERC, UCF, CollaboratorsSign Pattern Matrices in Population Biology 1 / 31



Dynamical system for Grass-Rabbit-Fox

April 19, 2010
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Let G,R,F denote a measure of the grass, rabbit, fox
population in a closed region
Given positive initial conditions, a, ...,h > 0, populations change
with time as the ODE dynamical system :

dG
dt = aG−bRG
dR
dt = cR−dRF +eRG
dF
dt = fF −gF 2 +hRF
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System linearized about the positive equilibrium

April 19, 2010
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For certain parameter values, there exists a unique equilibrium
with all populations positive G∗,R∗,F ∗

Stability is governed by the linearized community matrix

A =

 0 −bG∗ 0
eR∗ 0 −dR∗

0 hF∗ −gF∗
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The characteristic polynomial of the matrix A is

pA(z) = z3 +gF ∗z2 +(beG∗R∗+dhR∗F ∗)z +begG∗R∗F ∗

Routh-Hurwitz conditions imply that this polynomial has all
eigenvalues with negative real parts

Thus A is a (negative) stable matrix for all parameter values

So the grass-rabbit-fox positive equilibrium is locally stable for
all magnitudes of interactions
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Sign pattern of community matrix with entries ∈ {+,−,0}

For any magnitudes of the parameters (provided that G∗,R∗,F ∗

exist) this community matrix has sign pattern S given by

S =

 0 − 0
+ 0 −
0 + −


and this is stable for all matrix realizations

This sign pattern S is called sign stable, S requires stability

If S has some matrix realization that is stable, then S is
potentially stable, S allows stability
Example: Superpattern of S with 2,2 entry +
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Digraph D(S)

Associated with the n×n sign pattern S = [sij ] is a
signed digraph D(S) with sij ∈ {+,−,0}

vertex set {1, ...,n}
arc set {(i , j) : sij 6= 0}
signed arc (i , j) = sij

S is a tree sign pattern if D(S) is strongly connected
and has no k -cycles for k ≥ 3
i.e. has only 2-cycles and loops:
examples are path sign patterns, star sign patterns
(the G,R,F system)

Conditions for potential or sign stability are often stated in terms
of this signed digraph
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Sign patterns

Samuelson (1947) considered qualitative problems in
economics involving sign patterns
Quirk (1968) and Quirk and Maybee (1969) studied these
from a matrix/digraph point of view and wrote:
"Specification of necessary and sufficient conditions for
potential stability remains an unsolved problem"
Apart from a few special cases, this remains true today

Sign stability was characterized by Jeffries et al (1977)
and they gave an algorithm to test whether or not a sign
pattern is sign stable
Since the 1970s researchers have derived many results
about sign patterns and applied some to dynamical
systems e.g. economics, food webs

Pauline van den Driessche University of Victoria BC Canada Department of Mathematics and Statistics vandendr@uvic.ca CBMS Conference, UCF, May 2022 Thanks to NSF, NSERC, UCF, CollaboratorsSign Pattern Matrices in Population Biology 7 / 31



Sign patterns

Samuelson (1947) considered qualitative problems in
economics involving sign patterns
Quirk (1968) and Quirk and Maybee (1969) studied these
from a matrix/digraph point of view and wrote:
"Specification of necessary and sufficient conditions for
potential stability remains an unsolved problem"
Apart from a few special cases, this remains true today
Sign stability was characterized by Jeffries et al (1977)
and they gave an algorithm to test whether or not a sign
pattern is sign stable
Since the 1970s researchers have derived many results
about sign patterns and applied some to dynamical
systems e.g. economics, food webs

Pauline van den Driessche University of Victoria BC Canada Department of Mathematics and Statistics vandendr@uvic.ca CBMS Conference, UCF, May 2022 Thanks to NSF, NSERC, UCF, CollaboratorsSign Pattern Matrices in Population Biology 7 / 31



Stability of a dynamical system

Assume a general ODE dynamical system is at an equilibrium
x∗ ∈ Rn

Considering small perturbations and linearizing about x∗

the time evolution is governed by

dx(t)
dt

= Ax(t)

for some n×n Jacobian community matrix A

Solutions are of the form x(t) = eAtx0
and if A is a stable matrix then perturbations die out and
x∗ is an asymptotically stable equilibrium of the linear system

To investigate this and other possibilities, we introduce two sets
determined by the eigenvalues of A
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Refined inertia Kim et al. (2009)

The refined inertia of matrix A ∈ Rn×n is the 4-tuple of
nonnegative integers summing to n
ri(A) = (n+,n−,n0,2np), where (counting multiplicities):

n+ is the number of eigenvalues with positive real part
n− is the number of eigenvalues with negative real part
n0 is the number of zero eigenvalues
2np is the number of nonzero imaginary eigenvalues

Note that the inertia of A is (n+,n−,n0 +2np)

The refined inertia of S is {ri(A) : A is a realization of S}

If (0,n,0,0) ∈ ri(S) then S is potentially stable

If {(0,n,0,0)}= ri(S) then S is sign stable
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Sets of refined inertias

Bodine et al. (2012) For n ≥ 3, define the set of refined inertias

Hn = {(0,n,0,0),(0,n−2,0,2),(2,n−2,0,0)}

The set Hn includes two pure imaginary eigenvalues that cross
over into the positive half plane, and signal the possibility of
Hopf bifurcation leading to an oscillatory solution

Berliner et al. (2017) For n ≥ 2, define the set of inertias

Sn = {(0,n,0),(0,n−1,1),(1,n−1,0)}

The set Sn includes one zero eigenvalue that crosses to
positive, and signals the possibility of a saddle node bifurcation
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Goodwin model

The Goodwin model for a regulatory mechanism in cellular
physiology is formulated as a system of 3 ODEs

dM
dt

=
V

K +Pm −aM
dE
dt

= bM−cE
dP
dt

= dE − eP
k +P

M,E ,P represent the concentrations of messenger RNA, the
enzyme and the product of the reaction of the enzyme and a
substrate, other letters are positive parameters, with Hill
constant m

Linearizing about an equilibrium (with P > 0 at its equilibrium
value)

A =

 −a 0 − VmPm−1

(K+Pm)2

b −c 0
0 d − ek

(k+P)2
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Sign patterns with a full diagonal

Bodine et al (2012)

Theorem
Let Sn be an n×n sign pattern with all its diagonal entries
nonzero. If Sn allows refined inertia (n+,n−,n0,2np) then it
allows refined inertias (n++n0 +2np,n−,0,0) and
(n+,n−+n0 +2np,0,0)

If A is a realization of Sn with ri(A) = (n+,n−,n0,2np), then by
continuity A± εIn are also realizations of Sn with
ri(n++n0 +2np,n−,0,0) and ri(n+,n−+n0 +2np,0,0), resp.

Corollary
An n×n sign pattern with all entries on its diagonal negative
allows Hn if and only if it allows refined inertia (0,n−2,0,2)
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Negative diagonal plus negative n-cycle

For n ≥ 3, let sign pattern Kn =−In +Cn where
In has each diagonal entry equal to + and all other entries 0
Cn = [cij ] is the sign pattern of a negative n-cycle matrix with
c12,c23, · · · ,cn−1,n =+,cn1 =− and all other entries 0
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Sign pattern of linearized Goodwin model is equivalent to K3
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Results about Kn

Kn =−In +Cn

Kn allows Hn for all n ≥ 3
The set of eigenvalues of a realization Cn of Cn consists of
a positive scalar multiple of the nth roots of −1, so Cn has a
unique pair of complex conjugate eigenvalues with
maximum real part α > 0. Matrix −αIn +Cn has refined
inertia (0,n−2,0,2), then apply the Corollary

Kn requires Hn for 3≤ n ≤ 6

For n = 3, if K3 allows H3 then it requires H3
In this case any realization A has trace(A)< 0, det(A)< 0,
so has at least one negative eigenvalue and the product of
the other two eigenvalues is positive
Thus (0,3,0,0), (0,1,0,2), (2,1,0,0) are the only possible
refined inertias

Oscillations occur in the linearized Goodwin model, and are
found in the nonlinear Goodwin model due to Hopf bifurcation
for some realistic values of the Hill constant m (e.g. m = 2)
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Infectious disease model

Consider a constant population that is divided into three disjoint
classes with S(t), I(t),R(t) denoting the fractions of the
population that are Susceptible to, Infectious with,
Recovered from a disease

β is the constant contact rate
γ is the constant recovery rate

Assume that the disease confers temporary immunity on
recovery (e.g. influenza, COVID-19?)

This can be modeled by splitting R(t) into a chain of recovered
classes R1,R2, . . . ,Rk with the waiting time in each subclass
assumed exponentially distributed with mean waiting time 1/ε
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Dynamical system for the infectious disease model

The S, I,R1,R2, . . . ,Rk ,S model is described schematically by

S I R1 R2 ... RkRk
βSI γI εR1 εR2 εRk−1

εRk

The differential equations governing the evolution of disease
with S = 1− I−R1−·· ·−Rk are:

dI
dt = βSI− γI
dR1
dt = γI− εR1

dRi
dt = εRi−1− εRi , i = 2, . . . ,k
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Equilibria

This system has a disease free equilibrium with S = 1 and
other variables zero

Here R0 =
β

γ
is the basic reproduction number

If R0 < 1 then this is the only equilibrium
and the disease dies out

If R0 > 1 there is also an endemic (positive) equilibrium with

S∗ = 1
R0
, I∗ = (1− 1

R0
)/(1+ n γ

ε
), R∗i = γI∗

ε

To find out about linear stability of this endemic equilibrium,
consider the Jacobian matrix at this equilibrium

Pauline van den Driessche University of Victoria BC Canada Department of Mathematics and Statistics vandendr@uvic.ca CBMS Conference, UCF, May 2022 Thanks to NSF, NSERC, UCF, CollaboratorsSign Pattern Matrices in Population Biology 17 / 31



Equilibria

This system has a disease free equilibrium with S = 1 and
other variables zero

Here R0 =
β

γ
is the basic reproduction number

If R0 < 1 then this is the only equilibrium
and the disease dies out

If R0 > 1 there is also an endemic (positive) equilibrium with

S∗ = 1
R0
, I∗ = (1− 1

R0
)/(1+ n γ

ε
), R∗i = γI∗

ε

To find out about linear stability of this endemic equilibrium,
consider the Jacobian matrix at this equilibrium

Pauline van den Driessche University of Victoria BC Canada Department of Mathematics and Statistics vandendr@uvic.ca CBMS Conference, UCF, May 2022 Thanks to NSF, NSERC, UCF, CollaboratorsSign Pattern Matrices in Population Biology 17 / 31



Equilibria

This system has a disease free equilibrium with S = 1 and
other variables zero

Here R0 =
β

γ
is the basic reproduction number

If R0 < 1 then this is the only equilibrium
and the disease dies out

If R0 > 1 there is also an endemic (positive) equilibrium with

S∗ = 1
R0
, I∗ = (1− 1

R0
)/(1+ n γ

ε
), R∗i = γI∗

ε

To find out about linear stability of this endemic equilibrium,
consider the Jacobian matrix at this equilibrium

Pauline van den Driessche University of Victoria BC Canada Department of Mathematics and Statistics vandendr@uvic.ca CBMS Conference, UCF, May 2022 Thanks to NSF, NSERC, UCF, CollaboratorsSign Pattern Matrices in Population Biology 17 / 31



Equilibria

This system has a disease free equilibrium with S = 1 and
other variables zero

Here R0 =
β

γ
is the basic reproduction number

If R0 < 1 then this is the only equilibrium
and the disease dies out

If R0 > 1 there is also an endemic (positive) equilibrium with

S∗ = 1
R0
, I∗ = (1− 1

R0
)/(1+ n γ

ε
), R∗i = γI∗

ε

To find out about linear stability of this endemic equilibrium,
consider the Jacobian matrix at this equilibrium
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Magnitudes matter

Take for example 3 recovered classes (k = 3)

A =


−βI∗ −βI∗ −βI∗ −βI∗

γ −ε 0 0
0 ε −ε 0
0 0 ε −ε



The leading principal submatrices of orders 2,3,4 give the
Jacobian with k = 1,2,3

k = 1: S, I,R1,S: The leading 2×2 subpattern requires refined
inertia (0,2,0,0): sign stable

k = 2: S, I,R1,R2,S: The leading 3×3 subpattern allows H3
but the magnitude structure restricts its refined inertia to
(0,3,0,0): stable

k = 3: S, I,R1,R2,R3,S: Here S r allows H4 and for some
parameter values this model exhibits periodic solutions arising
from a Hopf bifurcation

Pauline van den Driessche University of Victoria BC Canada Department of Mathematics and Statistics vandendr@uvic.ca CBMS Conference, UCF, May 2022 Thanks to NSF, NSERC, UCF, CollaboratorsSign Pattern Matrices in Population Biology 18 / 31



Magnitudes matter

Take for example 3 recovered classes (k = 3)

A =


−βI∗ −βI∗ −βI∗ −βI∗

γ −ε 0 0
0 ε −ε 0
0 0 ε −ε


The leading principal submatrices of orders 2,3,4 give the
Jacobian with k = 1,2,3

k = 1: S, I,R1,S: The leading 2×2 subpattern requires refined
inertia (0,2,0,0): sign stable

k = 2: S, I,R1,R2,S: The leading 3×3 subpattern allows H3
but the magnitude structure restricts its refined inertia to
(0,3,0,0): stable

k = 3: S, I,R1,R2,R3,S: Here S r allows H4 and for some
parameter values this model exhibits periodic solutions arising
from a Hopf bifurcation

Pauline van den Driessche University of Victoria BC Canada Department of Mathematics and Statistics vandendr@uvic.ca CBMS Conference, UCF, May 2022 Thanks to NSF, NSERC, UCF, CollaboratorsSign Pattern Matrices in Population Biology 18 / 31



Magnitudes matter

Take for example 3 recovered classes (k = 3)

A =


−βI∗ −βI∗ −βI∗ −βI∗

γ −ε 0 0
0 ε −ε 0
0 0 ε −ε


The leading principal submatrices of orders 2,3,4 give the
Jacobian with k = 1,2,3

k = 1: S, I,R1,S: The leading 2×2 subpattern requires refined
inertia (0,2,0,0): sign stable

k = 2: S, I,R1,R2,S: The leading 3×3 subpattern allows H3
but the magnitude structure restricts its refined inertia to
(0,3,0,0): stable

k = 3: S, I,R1,R2,R3,S: Here S r allows H4 and for some
parameter values this model exhibits periodic solutions arising
from a Hopf bifurcation

Pauline van den Driessche University of Victoria BC Canada Department of Mathematics and Statistics vandendr@uvic.ca CBMS Conference, UCF, May 2022 Thanks to NSF, NSERC, UCF, CollaboratorsSign Pattern Matrices in Population Biology 18 / 31



Magnitudes matter

Take for example 3 recovered classes (k = 3)

A =


−βI∗ −βI∗ −βI∗ −βI∗

γ −ε 0 0
0 ε −ε 0
0 0 ε −ε


The leading principal submatrices of orders 2,3,4 give the
Jacobian with k = 1,2,3

k = 1: S, I,R1,S: The leading 2×2 subpattern requires refined
inertia (0,2,0,0): sign stable

k = 2: S, I,R1,R2,S: The leading 3×3 subpattern allows H3
but the magnitude structure restricts its refined inertia to
(0,3,0,0): stable

k = 3: S, I,R1,R2,R3,S: Here S r allows H4 and for some
parameter values this model exhibits periodic solutions arising
from a Hopf bifurcation

Pauline van den Driessche University of Victoria BC Canada Department of Mathematics and Statistics vandendr@uvic.ca CBMS Conference, UCF, May 2022 Thanks to NSF, NSERC, UCF, CollaboratorsSign Pattern Matrices in Population Biology 18 / 31



Magnitudes matter

Take for example 3 recovered classes (k = 3)

A =


−βI∗ −βI∗ −βI∗ −βI∗

γ −ε 0 0
0 ε −ε 0
0 0 ε −ε


The leading principal submatrices of orders 2,3,4 give the
Jacobian with k = 1,2,3

k = 1: S, I,R1,S: The leading 2×2 subpattern requires refined
inertia (0,2,0,0): sign stable

k = 2: S, I,R1,R2,S: The leading 3×3 subpattern allows H3
but the magnitude structure restricts its refined inertia to
(0,3,0,0): stable

k = 3: S, I,R1,R2,R3,S: Here S r allows H4 and for some
parameter values this model exhibits periodic solutions arising
from a Hopf bifurcation

Pauline van den Driessche University of Victoria BC Canada Department of Mathematics and Statistics vandendr@uvic.ca CBMS Conference, UCF, May 2022 Thanks to NSF, NSERC, UCF, CollaboratorsSign Pattern Matrices in Population Biology 18 / 31



Host parasitoid model, Weisser et al. 1997

Parasitoid wasp ovipositing into the body of an aphid

[en.wikipedia.org]
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dH
dt = rH− HP

1+ThH

dP
dt = HP

1+ThH − (d +e)P + fQ

dQ
dt = eP− (f +s)Q

H,P = host, parasitoid density in patch
Q = density of parasitoid in transit
r = rate of H growth in absence of P
d ,s = death rate of P,Q
e, f = emigration rate of P,Q
Th = handling time (Type II functional response) of parasitoids,
measures the limit of hosts that the parasitoids can parasitise

If αTh < 1 with α = d + es
f+s then ∃ positive equilibrium H∗,P∗,Q∗
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Linearization of Weisser model

Linearizing about this positive equilibrium and using the
equilibrium conditions gives the Jacobian matrix

A =

 αrTh −α 0
r(1−αTh) α− (d +e) f

0 e −(f +s)


with tree sign pattern

S =

 + − 0
+ − +
0 + −



This sign pattern allows both S3 and H3, so depending on the
parameter values, the host parasitoid system may have a
saddle node or a Hopf bifurcation
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Numerical examples

By continuity we just need to show that S allows inertia (0,2,1)
and refined inertia (0,1,0,2)

inertia (0,2,1) for S to allow S3 1 −1 0
2 −3 1
0 2 −2


has eigenvalues 0,−2±

√
3

Berliner et al. (2018)

refined inertia (0,1,0,2) for S to allow H3 0.01 −1 0
1 −0.1 1
0 1 −11.03128


has eigenvalues approx. ±0.995i ,−11.121
Culos et al. (2016)
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Zero handling time

If Th = 0 i.e. the handling time is zero, then the system
becomes a Lotka-Volterra System
The linearized matrix becomes

A =

 0 −(d + es
f+s ) 0

r − es
f+s f

0 e −(f +s)



Using the Routh-Hurwitz conditions, this matrix is stable for all
parameters r ,d ,s, f ,e > 0

So the Type II functional response of the parasitoids is
responsible for the instability
If the handling time is small, then the system is locally stable,
but higher handling time can lead to "extremely complicated
dynamics"
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Predator prey n-patch model with linear prey growth

An n-patch predator prey system with only the predators
moving between patches feeding on the prey, the prey grow
linearly, die due to predation, with a linear Lotka-Volterra type
functional response:

For i = 1...n, the ODE model is:
dPi
dt = Pi(aibiRi −Ci −Eii)+∑j 6=i EijPj

dRi
dt = Ri(ri −aiPi)

Pi ,Ri are population levels of predator, prey in patch i
ri = per capita growth rate of prey in patch i
ai = rate at which predator catches prey in patch i
bi = measure of foraging for Pi
Ci = mortality rate for Pi
Eij = predator emigration/immigration rates between patches

At equilibrium:
P∗i = ri/ai = di , R∗i = (Ci +Eii −∑j 6=i EijP∗j /P∗i )/aibi assume > 0
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Linearizing around this equilibrium and taking a positive
diagonal similarity gives

J =

[
B C
I 0

]
where B = [bij ] has bii =− 1

di
∑j 6=i Eijdj ,bij = Eij , i 6= j

and C is a diagonal matrix with i th diagonal entry −aibi riR∗i
Note that J has a fixed sign pattern and is nonsingular

If µ is an eigenvalue of J then taking a Schur complement µ is a
root of the quadratic

det(µ2I−µB−C) = 0

This is the quadratic eigenvalue problem (QEP)
see Tisseur, Meerbergen (2001)for a review of QEP
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Two patches, Holt 1984

For two patches:

J =


−E12d2/d1 E12 −a1b1r1R∗1 0

E21 −E21d1/d2 0 −a2b2r2R∗2
1 0 0 0
0 1 0 0


J has a fixed sign pattern that requires H4, Garnett et al. (2013)

If C is a scalar matrix C =−cI,c > 0, i.e. a1b1r1R∗1 = a2b2r2R∗2
and λ is an eigenvalue of B, then the determinant equation
becomes µ2−λµ+c = 0, see e.g. Berliner et al. (2022)

But B has a zero eigenvalue and a negative eigenvalue
When λ = 0, µ2 = c, so ±i

√
c are eigenvalues of J

When λ < 0, the real parts of µ are negative

In this case the predator prey system is semi-stable
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With more general C in the two-patch case, B can be
diagonally symmetrized, so J has the same eigenvalues as

H =

[
F G
−G 0

]
where det(F ) = 0, fii < 0, f12 = f21 =

√
E12E21, G is diagonal

Using Bendixson’s Theorem:
R e (an eigenvalue of H) ≤ max eigenvalue of H+HT

2

= max eigenvalue of F+F T

2 ≤ 0
i.e. J is semi-stable.

Holt used Routh Hurwitz conditions, Angeli et al. (2014) used
the second additive compound matrix to prove that if
a1b1r1R∗1 6= a2b2r2R∗2 the predator prey system is linearly stable
showing the stabilizing effect of predator movement

No periodic solutions occur for this predator-prey system
rather there is coexistence for this two-patch case
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n-patches: Culos et al. (2016)

For n ≥ 3 matrix J is not diagonally symmetrizable, so use
M-matrix theory

J =

[
B C
I 0

]
Matrix B is singular with a positive right nullvector
x = [d1,d2, ...,dn]

T and −B has the Z sign pattern
−B is a singular M-matrix since (−B+ εI)x = εx > 0 for ε > 0
see e.g. Berman, Plemmons (1994, Chapter 6), Horn, Johnson
(1991, Section 2.5)

Theorem
If −B is a singular M-matrix and C is a diagonal matrix with all
cii < 0, then J is semi-stable.
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Idea of Proof:
With X a diagonal matrix with xii =

√
aibi riR∗i , J is diagonally

similar to

K =

[
B −X
X 0

]

From the assumptions on B it follows from Berman, Plemmons
(1994, p. 136) and continuity that there exists a diagonal matrix
Y with all yii > 0 so that BT Y +YB is negative semi-definite

Letting
⊕

denote the direct sum:

K T (Y
⊕

Y )+(Y
⊕

Y )K = BT Y +YB
⊕

0

since X and Y are diagonal

Thus K T (Y
⊕

Y )+(Y
⊕

Y )K is negative semi-definite and so J
is semi-stable, Horn, Johnson (1991, Lemma 2.4.5)
No Hopf bifurcation occurs in this n-group predator prey model
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Jacobian of full rank (superpatterns)

Suppose A is an order n real matrix with m ≥ n nonzero entries
ai1j1 ,ai2j2 , . . . ,aim jm
Let X denote the matrix obtained from A by replacing aik jk with
the variable xk for k = 1, . . . ,m

The characteristic polynomial of X is
pX (z) = zn +p1zn−1 + · · ·+pn−1z +pn with pi = pi(x1,x2, . . . ,xm)

Let J = JX be the n×m Jacobian matrix with (i , j) entry equal to
∂pi
∂xj

for 1≤ i ≤ n and 1≤ j ≤m, and JX=A denote the Jacobian
matrix evaluated at xk = aik jk for 1≤ k ≤m

If J has rank n then A allows a Jacobian of full rank

This Jacobian and the Implicit Function Theorem are used to
prove the following result
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Let J = JX be the n×m Jacobian matrix with (i , j) entry equal to
∂pi
∂xj

for 1≤ i ≤ n and 1≤ j ≤m, and JX=A denote the Jacobian
matrix evaluated at xk = aik jk for 1≤ k ≤m

If J has rank n then A allows a Jacobian of full rank

This Jacobian and the Implicit Function Theorem are used to
prove the following result
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Superpatterns

Berliner et al. (2020) based on Cavers et al. (2013)

Theorem
Let An be a sign pattern of order n with a matrix realization A
having i(A) = (0,n−1,1) or ri(A) = (0,n−2,0,2) and A allows
a Jacobian of full rank
Then An and any superpattern allows Sn or Hn resp.

This leads to superpatterns that indicate bifurcations of
biological dynamical systems?
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