Target Reproduction Numbers and Applications to Biological Models

Pauline van den Driessche University of Victoria BC Canada Department of Mathematics and Statistics vandendr@uvic.ca

CBMS Conference, UCF, May 2022

Thanks to NSF, NSERC, UCF, Collaborators

In population dynamics Threshold Parameters determine population persistence, give insight into control and protection strategies Examples: net reproductive value (rate) basic reproduction number...

AIM

To give a general framework for threshold parameters using Target Reproduction Numbers

Key reference: [Lewis, Shuai, vdD, J Math Biol 2019]

 Algebraic and graphical theories for target reproduction numbers

- Algebraic and graphical theories for target reproduction numbers
- Protecting salmonoids (ray-finned fish)

- Algebraic and graphical theories for target reproduction numbers
- Protecting salmonoids (ray-finned fish)
- Resident killer whales

- Algebraic and graphical theories for target reproduction numbers
- Protecting salmonoids (ray-finned fish)
- Resident killer whales
- Controlling scentless chamomile (an invasive weed)

- Algebraic and graphical theories for target reproduction numbers
- Protecting salmonoids (ray-finned fish)
- Resident killer whales
- Controlling scentless chamomile (an invasive weed)
- Modeling cholera control (a bacterial disease)

• Let $A = [a_{ij}]$ be a nonnegative irreducible $n \times n$ matrix and $S = [s_{ij}]$ be the $n \times n$ target matrix of Ai.e., $s_{ij} = a_{ij}$ whenever the entry is targeted, and zero otherwise

- Let $A = [a_{ij}]$ be a nonnegative irreducible $n \times n$ matrix and $S = [s_{ij}]$ be the $n \times n$ target matrix of Ai.e., $s_{ij} = a_{ij}$ whenever the entry is targeted, and zero otherwise
- Define the Target Reproduction Number T_S as

$$\mathcal{T}_S = \rho(S(Id - A + S)^{-1})$$
 provided $\rho(A - S) < 1$

where $\rho(.)$ denotes the spectral radius and *Id* denotes an identity matrix

Theorem

If $\rho(A - S) < 1$, then the controlled matrix A_c , obtained from A by replacing all targeted entries a_{ij} by a_{ij}/\mathcal{T}_S , satisfies $\rho(A_c) = 1$

<u>Theorem</u>

If $\rho(A - S) < 1$, then the controlled matrix A_c , obtained from A by replacing all targeted entries a_{ij} by a_{ij}/\mathcal{T}_S , satisfies $\rho(A_c) = 1$

Idea of Proof: By Perron-Frobenius there exists an eigenvector $x^T \ge 0$ so that

$$x^T S(Id - A + S)^{-1} = \mathcal{T}_S x^T$$

giving

$$x^{T}(A-S+\frac{S}{T_{S}})=1x^{T}$$

$$\mathcal{T}_{S} = \rho(S(\mathit{Id} - A + S)^{-1})$$
 provided $\rho(A - S) < 1$

Target all entries (i.e., S = A): T_S = R₀ = ρ(A)
 Herd immunity: vaccinate more than 1 - 1/R₀ of population

$$\mathcal{T}_{S} = \rho(S(\mathit{Id} - A + S)^{-1})$$
 provided $\rho(A - S) < 1$

- Target all entries (i.e., S = A): T_S = R₀ = ρ(A)
 Herd immunity: vaccinate more than 1 1/R₀ of population
- Target only one entry a_{ij} : $T_{ij} = a_{ij}(Id A + S)_{ji}^{-1}$

$$\mathcal{T}_{\mathcal{S}} =
ho(\mathcal{S}(\mathit{Id}-\mathit{A}+\mathit{S})^{-1}) \hspace{0.2cm} ext{provided} \hspace{0.2cm}
ho(\mathit{A}-\mathit{S}) < 1$$

- Target all entries (i.e., S = A): $T_S = R_0 = \rho(A)$ Herd immunity: vaccinate more than $1 - 1/R_0$ of population
- Target only one entry a_{ij} : $T_{ij} = a_{ij}(Id A + S)_{ji}^{-1}$
- Target the *i*-th row: $\mathcal{T}_{i*} = \sum_{j=1}^{n} a_{ij} (Id A + S)_{ji}^{-1}$

Type reproduction number [Heesterbeek, Roberts, 2003, 2007] Herd immunity: vaccinate more than $1 - 1/T_{i*}$ of city *i*

$$\mathcal{T}_{S} = \rho(S(\mathit{Id} - A + S)^{-1}) \text{ provided } \rho(A - S) < 1$$

• Target all entries (i.e., S = A): $T_S = R_0 = \rho(A)$ Herd immunity: vaccinate more than $1 - 1/R_0$ of population

• Target only one entry
$$a_{ij}$$
: $\mathcal{T}_{ij} = a_{ij}(Id - A + S)_{ji}^{-1}$

• Target the *i*-th row:
$$\mathcal{T}_{i*} = \sum_{j=1}^{n} a_{ij} (Id - A + S)_{ji}^{-1}$$

Type reproduction number [Heesterbeek, Roberts, 2003, 2007] Herd immunity: vaccinate more than $1 - 1/T_{i*}$ of city *i*

• Target the *i*-th column: $T_{*i} = \sum_{i=1}^{n} a_{ji} (Id - A + S)_{ij}^{-1}$

In fact, $T_{*i} = T_{i*}$ [Moon, Shuai, vdD, Lin Algebra Appl 2014]

$$\mathcal{T}_{S} = \rho(S(\mathit{Id} - A + S)^{-1}) \text{ provided } \rho(A - S) < 1$$

• Target all entries (i.e., S = A): $T_S = R_0 = \rho(A)$ Herd immunity: vaccinate more than $1 - 1/R_0$ of population

• Target only one entry
$$a_{ij}$$
: $\mathcal{T}_{ij} = a_{ij}(Id - A + S)_{ji}^{-1}$

• Target the *i*-th row:
$$\mathcal{T}_{i*} = \sum_{j=1}^{n} a_{ij} (Id - A + S)_{ji}^{-1}$$

Type reproduction number [Heesterbeek, Roberts, 2003, 2007] Herd immunity: vaccinate more than $1 - 1/T_{i*}$ of city *i*

• Target the *i*-th column: $T_{*i} = \sum_{i=1}^{n} a_{ji} (Id - A + S)_{ij}^{-1}$

In fact, $T_{*i} = T_{i*}$ [Moon, Shuai, vdD, Lin Algebra Appl 2014]

Theorem [Moon, Shuai, vdD, Lin Alg Appl 2014]

Let *A* be an $n \times n$ nonnegative irreducible matrix with weighted digraph D(A)A cycle union \mathcal{U} of D(A) is a union of disjoint cycles of D(A) $w(\mathcal{U})$ is the product of weights of arcs of \mathcal{U} and $c(\mathcal{U})$ is the number of cycles

Theorem [Moon, Shuai, vdD, Lin Alg Appl 2014]

Let *A* be an $n \times n$ nonnegative irreducible matrix with weighted digraph D(A)A cycle union \mathcal{U} of D(A) is a union of disjoint cycles of D(A) $w(\mathcal{U})$ is the product of weights of arcs of \mathcal{U} and $c(\mathcal{U})$ is the

number of cycles

For
$$1 \le i,j \le n$$

$$\mathcal{T}_{ij} = \frac{\sum_{\mathcal{U}_{ij}} (-1)^{1+c(\mathcal{U}_{ij})} w(\mathcal{U}_{ij})}{\sum_{\mathcal{V}_{ij}} (-1)^{c(\mathcal{V}_{ij})} w(\mathcal{V}_{ij})}$$

where the sums are over all cycle-unions \mathcal{U}_{ij} and \mathcal{V}_{ij} of D(A) that do and do not contain the arc *ji*, respectively

Example calculations of T_S

$$A = \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right]$$

with weights of cycle unions in D(A) being

 $1, a_{11}, a_{22}, a_{11}a_{22}, a_{12}a_{21}$

Example calculations of T_S

г

۲

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
 with weights of cycle unions in $D(A)$ being
1, a_{11} , a_{22} , $a_{11}a_{22}$, $a_{12}a_{21}$

• Take $s_{11} = a_{11}$ as targeted entry

٦.

$$\mathcal{T}_{11} = \begin{bmatrix} a_{11} & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & -a_{12}\\ -a_{21} & 1 - a_{22} \end{bmatrix}^{-1} = \frac{a_{11} - a_{11}a_{22}}{1 - a_{22} - a_{12}a_{21}}$$
If
$$A = \begin{bmatrix} 0.5 & 0.7\\ 0.7 & 0.5 \end{bmatrix}$$

then \mathcal{T}_{11} = 25, so replacing a_{11} by 0.5/25 gives $\rho(A_c) = 1$

Example calculations of T_S

г

۲

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
 with weights of cycle unions in $D(A)$ being
1, a_{11} , a_{22} , $a_{11}a_{22}$, $a_{12}a_{21}$

• Take $s_{11} = a_{11}$ as targeted entry

-

$$\mathcal{T}_{11} = \begin{bmatrix} a_{11} & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & -a_{12}\\ -a_{21} & 1 - a_{22} \end{bmatrix}^{-1} = \frac{a_{11} - a_{11}a_{22}}{1 - a_{22} - a_{12}a_{21}}$$
If
$$A = \begin{bmatrix} 0.5 & 0.7\\ 0.7 & 0.5 \end{bmatrix}$$

then \mathcal{T}_{11} = 25, so replacing a_{11} by 0.5/25 gives $\rho(A_c) = 1$

Both first row entries are targeted (type reproduction number)

$$\mathcal{T}_{1*} = \frac{a_{11} + a_{12}a_{21} - a_{11}a_{22}}{1 - a_{22}}$$

Note that $\mathcal{T}_{1*} = 1 \Leftrightarrow \mathcal{T}_{11} = 1$

Age structured population for x_t population vector of ages/stages at time t, and P the population projection matrix

$$x_{t+1} = Px_t$$

 $\lambda = \rho(P)$ the population growth rate, population grows iff $\lambda > 1$

Age structured population for x_t population vector of ages/stages at time t, and P the population projection matrix

$$x_{t+1} = Px_t$$

 $\lambda = \rho(P)$ the population growth rate, population grows iff $\lambda > 1$

Let P = T + F: transition matrix $T \ge 0$, fecundity matrix $F \ge 0$ The next generation matrix is $F(Id - T)^{-1}$ The net reproductive value $R_0 = \rho(F(Id - T)^{-1})$ [Allen & vdD, 2008, Cushing & Zhou, 1994, Li & Schnieder, 2002]

Age structured population for x_t population vector of ages/stages at time t, and P the population projection matrix

$$x_{t+1} = Px_t$$

 $\lambda = \rho(P)$ the population growth rate, population grows iff $\lambda > 1$

Let P = T + F: transition matrix $T \ge 0$, fecundity matrix $F \ge 0$ The next generation matrix is $F(Id - T)^{-1}$ The net reproductive value $R_0 = \rho(F(Id - T)^{-1})$ [Allen & vdD, 2008, Cushing & Zhou, 1994, Li & Schnieder, 2002]

If $\rho(T) < 1$ then R_0 is the target reproduction number for A = P corresponding to the target matrix S = F

If the target matrix is S = P then $\mathcal{T}_P = \rho(P) = \lambda$

Protecting Salmonoids

Credit: http://kingcd.org/wp-content/uploads/2014/12/pacific-salmon-life-cycle

Pauline van den Driessche University of Victoria BC Canada Threshold Parameters

10/43

Lefkovitch matrix with 4 life stages: egg, fry, juvenile, adult [Huang & Lewis, *Theor Ecol* 2015]

$$P = \begin{bmatrix} 0 & 0 & 0 & b_4 \\ t_1 & 0 & 0 & 0 \\ 0 & t_2 & s_3 & 0 \\ 0 & 0 & t_3 & s_4 \end{bmatrix}$$

The order of events: production of b_4 offspring per survivor, survival probability p_i , proportion $1 - q_i$ moving to the next class

 $s_i = p_i q_i \ge 0$ is the probability of staying $t_i = p_i(1 - q_i)$ is the probability of transition

Control to Protect Endangered Salmonoids

$$[\text{Lewis, Shuai, vdD,} JMB \ 2019] \begin{bmatrix} 0 & 0 & 0 & b_4 \\ t_1 & 0 & 0 & 0 \\ 0 & t_2 & s_3 & 0 \\ 0 & 0 & t_3 & s_4 \end{bmatrix}$$

Assume that the net reproductive value $R_0 < 1$ The first row/column of P each contain 1 nonzero entry $R_0 = \mathcal{T}_{1*} = \mathcal{T}_{14} = \mathcal{T}_{21} = \frac{t_1 t_2 t_3 b_4}{(1-s_3)(1-s_4)}$

To protect endangered salmonoids increase number of eggs per adult b_4 to $> b_4/R_0$ or the proportion of eggs that hatch to the fry stage t_1 to $> t_1/R_0$

Control to Protect Endangered Salmonoids

$$[\text{Lewis, Shuai, vdD,} JMB \ 2019] \begin{bmatrix} 0 & 0 & 0 & b_4 \\ t_1 & 0 & 0 & 0 \\ 0 & t_2 & s_3 & 0 \\ 0 & 0 & t_3 & s_4 \end{bmatrix}$$

Assume that the net reproductive value $R_0 < 1$ The first row/column of P each contain 1 nonzero entry $R_0 = \mathcal{T}_{1*} = \mathcal{T}_{14} = \mathcal{T}_{21} = \frac{t_1 t_2 t_3 b_4}{(1-s_3)(1-s_4)}$

To protect endangered salmonoids increase number of eggs per adult b_4 to $> b_4/R_0$ or the proportion of eggs that hatch to the fry stage t_1 to $> t_1/R_0$

From the second row/column $T_{2*} = T_{21} = T_{32} = R_0$ Increase t_2 proportion of fry that survive to juveniles to t_2/R_0

Control to Protect Endangered Salmonoids

$$\begin{bmatrix} \text{Lewis, Shuai, vdD, JMB 2019} \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & b_4 \\ t_1 & 0 & 0 & 0 \\ 0 & t_2 & s_3 & 0 \\ 0 & 0 & t_3 & s_4 \end{bmatrix}$$

Assume that the net reproductive value $R_0 < 1$ The first row/column of P each contain 1 nonzero entry $R_0 = \mathcal{T}_{1*} = \mathcal{T}_{14} = \mathcal{T}_{21} = \frac{t_1 t_2 t_3 b_4}{(1-s_3)(1-s_4)}$

To protect endangered salmonoids increase number of eggs per adult b_4 to $> b_4/R_0$ or the proportion of eggs that hatch to the fry stage t_1 to $> t_1/R_0$

From the second row/column $T_{2*} = T_{21} = T_{32} = R_0$ Increase t_2 proportion of fry that survive to juveniles to t_2/R_0

Reduce the harvest of adult salmonoids, increase s_4 to s_4/\mathcal{T}_{44} where $\mathcal{T}_{44} = s_4(1-s_3)/(1-s_3-t_1t_2t_3b_4)$

Population of Resident Killer Whales

[Brault, Caswell, 1993] Bronwyn Hobson report, istockphoto.com

Four life stages for female resident killer whales: calf (1), juvenile (2), reproductive adult (3), and post reproductive adult (4)

$$P_{BC} = \begin{bmatrix} 0 & F_2 & F_3 & 0 \\ G_1 & P_2 & 0 & 0 \\ 0 & G_2 & P_3 & 0 \\ 0 & 0 & G_3 & P_4 \end{bmatrix}$$

 σ_i = stage specific survival, γ_i = transition probability m_i = mean reproductive output

 G_i gives the probability of survival and transfer into stage i + 1 F_i gives the number of offspring at t + 1 from a female at t

$$P_1 = 0, P_2 = (1 - \gamma_2)\sigma_2, P_3 = (1 - \gamma_3)\sigma_3, P_4 = \sigma_4, G_1 = \sigma_1^{1/2}, G_2 = \gamma_2\sigma_2, G_3 = \gamma_3\sigma_3, F_2 = \sigma_1^{1/2}G_2m_3/2, F_3 = \sigma_1^{1/2}(1 + P_3)m_3/2$$

Using data for BC Resident killer whales from 1973-1987 provided by Brault and Caswell

$$1 < \lambda_{BC} = T_{\mathcal{P}} = 1.03 < \mathcal{R}_{0BC} = T_F = 2.01$$

Using data for BC Resident killer whales from 1973-1987 provided by Brault and Caswell

$$1 < \lambda_{BC} = T_P = 1.03 < \mathcal{R}_{0BC} = T_F = 2.01$$

Both λ_{BC} and \mathcal{R}_{0BC} are most sensitive to γ_3 and σ_3 , that is transition from and survival in the reproductive stage

[Lewis, Shuai, vdD, JMB2019]

Photo Credit: Daniel Laubhann

A weed in north America that invades agricultural farmland

One plant can produce up to 1 million seeds that remain viable for up to 15 years in the soil

It has 3 stages: (1) seed bank (in the ground), (2) rosettes, and (3) flowering plants

[de-Camino-Beck & Lewis, Bull Math Biol 2007]

The projection matrix for the growth of scentless chamomile with stages of seeds, rosettes and flowers is

$$P = \begin{bmatrix} a_{11} & 0 & a_{13} \\ a_{21} & 0 & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

In a year seeds remain in the seed bank with probability a_{11} , germinate into a rosette with probability a_{21} , into a flower with probability a_{31} , die with probability $1 - a_{11} - a_{21} - a_{31}$ Rosettes transform into flowers with probability a_{32} Flowers contribute to all fecundities in each of the stages

Target matrix *S* has nonzero entries $s_{i3} = a_{i3}$ for i = 1, 2, 3 the fecundity matrix with rank 1, so assuming $a_{11} < 1$

$$\mathcal{T}_{*3} = \frac{a_{33} + a_{13}a_{31} + a_{23}a_{32} + a_{13}a_{21}a_{32} - a_{11}a_{33} - a_{11}a_{23}a_{32}}{1 - a_{11}}$$

Here $T_{*3} = R_0$ the net reproductive value

Control of growth, e.g., by gall midges

Target matrix *S* has nonzero entries $s_{21} = a_{21}, s_{31} = a_{31}, s_{32} = a_{32}$ so T_S has rank 2 (harder!)

Take controlled matrix Let
$$\tilde{A} = \begin{bmatrix} a_{11} & 0 & a_{13} \\ a_{21}/\sigma & 0 & a_{23} \\ a_{31}/\sigma & a_{32}/\sigma & a_{33} \end{bmatrix}$$

 T_S is the value of σ such that $\rho(\tilde{A}) = 1$

Control of growth, e.g., by gall midges

Target matrix *S* has nonzero entries $s_{21} = a_{21}, s_{31} = a_{31}, s_{32} = a_{32}$ so T_S has rank 2 (harder!)

Take controlled matrix Let
$$\tilde{A} = \begin{bmatrix} a_{11} & 0 & a_{13} \\ a_{21}/\sigma & 0 & a_{23} \\ a_{31}/\sigma & a_{32}/\sigma & a_{33} \end{bmatrix}$$

 $\mathcal{T}_{\mathcal{S}}$ is the value of σ such that $\rho(\tilde{\textit{A}})=1$

Solving this gives a quadratic equation in σ^{-1}

$$u(\sigma^{-1})^2 + v\sigma^{-1} + w = 0$$

 $w = -1 + a_{11} + a_{33} - a_{11}a_{33}$ is weight of cycle unions in $D(\tilde{A})$ containing no target entries

 $v = a_{13}a_{31} + a_{23}a_{32} - a_{11}a_{23}a_{32}$ containing 1 target entry $u = a_{13}a_{21}a_{32}$ containing 2 target entries, starts with flowers goes to seed bank a_{13} , to rosettes a_{21} then back to flowers a_{32} of victorial of v

Combination of 2 strategies, control of fecundity and growth

To determine the minimum cost control effort take the controlled matrix $\tilde{A} = \begin{bmatrix} a_{11} & 0 & a_{13}/\tau \\ a_{21}/\sigma & 0 & a_{23}/\tau \\ a_{31}/\sigma & a_{32}/\sigma & a_{33}/\tau \end{bmatrix}$ with $\tau, \sigma > 1$ Setting $\rho(\tilde{A}) = 1$ gives $\tau = f(\sigma)$

$$\tau = \frac{a_{13}a_{21}a_{32}}{1 - a_{11}}\sigma^{-2} + \left(a_{23}a_{32} + \frac{a_{13}a_{31}}{1 - a_{11}}\right)\sigma^{-1} + a_{33} = f(\sigma)$$

Combination of 2 strategies, control of fecundity and growth

To determine the minimum cost control effort take the controlled matrix $\tilde{A} = \begin{bmatrix} a_{11} & 0 & a_{13}/\tau \\ a_{21}/\sigma & 0 & a_{23}/\tau \\ a_{31}/\sigma & a_{32}/\sigma & a_{33}/\tau \end{bmatrix}$ with $\tau, \sigma > 1$ Setting $\rho(\tilde{A}) = 1$ gives $\tau = f(\sigma)$

$$\tau = \frac{a_{13}a_{21}a_{32}}{1 - a_{11}}\sigma^{-2} + \left(a_{23}a_{32} + \frac{a_{13}a_{31}}{1 - a_{11}}\right)\sigma^{-1} + a_{33} = f(\sigma)$$

Assume the costs per unit effort for fecundity, growth control strategy are d_1 , d_2 and that the total cost function

$$D = d_1(\tau - 1) + d_2(\sigma - 1)$$

Minimum cost $D(\sigma^*)$ achieved where σ^* is the unique positive root of $D'(\sigma) = 0$ giving a cubic for σ^* in terms of d_1/d_2 and a_{ij}

Combination of 2 strategies, control of fecundity and growth

To determine the minimum cost control effort take the controlled matrix $\tilde{A} = \begin{bmatrix} a_{11} & 0 & a_{13}/\tau \\ a_{21}/\sigma & 0 & a_{23}/\tau \\ a_{31}/\sigma & a_{32}/\sigma & a_{33}/\tau \end{bmatrix}$ with $\tau, \sigma > 1$ Setting $\rho(\tilde{A}) = 1$ gives $\tau = f(\sigma)$

$$\tau = \frac{a_{13}a_{21}a_{32}}{1 - a_{11}}\sigma^{-2} + \left(a_{23}a_{32} + \frac{a_{13}a_{31}}{1 - a_{11}}\right)\sigma^{-1} + a_{33} = f(\sigma)$$

Assume the costs per unit effort for fecundity, growth control strategy are d_1 , d_2 and that the total cost function

$$D = d_1(\tau - 1) + d_2(\sigma - 1)$$

Minimum cost $D(\sigma^*)$ achieved where σ^* is the unique positive root of $D'(\sigma) = 0$ giving a cubic for σ^* in terms of d_1/d_2 and a_{ij} E.g. Coefficients for each power in $f(\sigma)$ equal 1 and $d_2/d_1 = \bigoplus_{\sigma \text{ victorial}} \sigma^{\text{university}}$

 An infection of the small intestine caused by the bacterium Vibrio cholerae that can persist for extended time outside the human host

- An infection of the small intestine caused by the bacterium Vibrio cholerae that can persist for extended time outside the human host
- SIR model with a second route of infection from contaminated water

- An infection of the small intestine caused by the bacterium *Vibrio cholerae* that can persist for extended time outside the human host
- SIR model with a second route of infection from contaminated water
- Infection causes mild diarrhea in most cases

- An infection of the small intestine caused by the bacterium *Vibrio cholerae* that can persist for extended time outside the human host
- SIR model with a second route of infection from contaminated water
- Infection causes mild diarrhea in most cases
- But some cases develop severe diarrhea and vomiting which if untreated may lead to death within a few hours due to dehydration and electrolyte imbalance

Cholera outbreak in Haiti as of November 2010

Piarroux et al., Emerging Infectious Diseases 2011

Application to cholera modeling: One patch ODE model

Application to cholera modeling: One patch ODE model

Taking shedding as a new infection

the Jacobian matrix at the disease-free equilibrium $(S_0, 0, 0)$ is

$$J = \left[egin{array}{cc} eta S_0 - (d+lpha+\gamma) & \lambda S_0 \ \xi & -\delta \end{array}
ight]$$

Taking shedding as a new infection

the Jacobian matrix at the disease-free equilibrium $(S_0, 0, 0)$ is

$$J = \left[\begin{array}{cc} \beta S_0 - (d + \alpha + \gamma) & \lambda S_0 \\ \xi & -\delta \end{array} \right]$$

The next-generation matrix method decomposition gives

$$F = \begin{bmatrix} \beta S_0 & \lambda S_0 \\ \xi & 0 \end{bmatrix} \qquad V = \begin{bmatrix} d + \alpha + \gamma & 0 \\ 0 & \delta \end{bmatrix}$$

Taking shedding as a new infection

the Jacobian matrix at the disease-free equilibrium $(S_0, 0, 0)$ is

$$J = \left[egin{array}{cc} eta S_0 - (d+lpha+\gamma) & \lambda S_0 \ \xi & -\delta \end{array}
ight]$$

The next-generation matrix method decomposition gives

$$F = \begin{bmatrix} \beta S_0 & \lambda S_0 \\ \xi & 0 \end{bmatrix} \qquad V = \begin{bmatrix} d + \alpha + \gamma & 0 \\ 0 & \delta \end{bmatrix}$$

The next-generation matrix and basic reproduction number

$$egin{aligned} \mathcal{A} = \mathcal{F} \mathcal{V}^{-1} = \left[egin{array}{cc} rac{eta S_0}{d+lpha+\gamma} & rac{\lambda \mathcal{S}_0}{\delta} \ rac{\xi}{d+lpha+\gamma} & 0 \end{array}
ight], & \mathcal{R}_0 =
ho(\mathcal{A}) \end{aligned}$$

$$\widetilde{F} = \begin{bmatrix} \beta S_0 & \lambda S_0 \\ 0 & 0 \end{bmatrix} \qquad \widetilde{V} = \begin{bmatrix} d + \alpha + \gamma & 0 \\ -\xi & \delta \end{bmatrix}$$

$$\widetilde{\mathcal{F}} = \begin{bmatrix} \beta S_0 & \lambda S_0 \\ 0 & 0 \end{bmatrix} \qquad \widetilde{\mathcal{V}} = \begin{bmatrix} d + \alpha + \gamma & 0 \\ -\xi & \delta \end{bmatrix}$$
$$\widetilde{\mathcal{R}_0} = \rho(\widetilde{\mathcal{F}} \widetilde{\mathcal{V}}^{-1}) = \frac{\beta S_0}{d + \alpha + \gamma} + \frac{\lambda S_0 \xi}{\delta(d + \alpha + \gamma)} \qquad \text{with } S_0 = \Lambda/d$$
direct indirect

$$\widetilde{F} = \begin{bmatrix} \beta S_0 & \lambda S_0 \\ 0 & 0 \end{bmatrix} \qquad \widetilde{V} = \begin{bmatrix} d + \alpha + \gamma & 0 \\ -\xi & \delta \end{bmatrix}$$

 $\widetilde{\mathscr{R}_{0}} = \rho(\widetilde{F}\widetilde{V}^{-1}) = \frac{\beta S_{0}}{d + \alpha + \gamma} + \frac{\lambda S_{0}\xi}{\delta(d + \alpha + \gamma)} \qquad \text{with } S_{0} = \Lambda/d$ direct indirect

If $\widetilde{\mathcal{R}_0} < 1$ (> 1) then cholera dies out (persists) Both routes of infection must be controlled for $\widetilde{\mathcal{R}_0} < 1$ Note that $\mathcal{R}_0 = 1 \Leftrightarrow \widetilde{\mathcal{R}_0} = 1$, giving the same threshold

$$\widetilde{F} = \begin{bmatrix} \beta S_0 & \lambda S_0 \\ 0 & 0 \end{bmatrix} \qquad \widetilde{V} = \begin{bmatrix} d + \alpha + \gamma & 0 \\ -\xi & \delta \end{bmatrix}$$

 $\widetilde{\mathscr{R}_{0}} = \rho(\widetilde{F}\widetilde{V}^{-1}) = \frac{\beta S_{0}}{d + \alpha + \gamma} + \frac{\lambda S_{0}\xi}{\delta(d + \alpha + \gamma)} \qquad \text{with } S_{0} = \Lambda/d$ direct indirect

If $\widetilde{\mathcal{R}_0} < 1 \ (> 1)$ then cholera dies out (persists) Both routes of infection must be controlled for $\widetilde{\mathcal{R}_0} < 1$ Note that $\mathcal{R}_0 = 1 \Leftrightarrow \widetilde{\mathcal{R}_0} = 1$, giving the same threshold

Aside: A simple model for COVID-19 includes asymptomatic and symptomatic transmission, to control the virus both routes of infection must be controlled

In general different decompositions of the Jacobian matrix lead to different \mathcal{R}_0 , and they are target reproduction numbers with different target matrices

In general different decompositions of the Jacobian matrix lead to different \mathcal{R}_0 , and they are target reproduction numbers with different target matrices

Theorem [Lewis, Shuai, vdD, *J* Math Biol 2019] Let $J = F - V = \tilde{F} - \tilde{V}$ with $F, \tilde{F}, V^{-1}, \tilde{V}^{-1} \ge 0$ If $F > \tilde{F} \ge 0$ and $\rho((F - \tilde{F})V^{-1}) < 1$, then $\rho(\tilde{F}\tilde{V}^{-1})$ is a target reproduction number of $A = FV^{-1}$ with target matrix $\tilde{F}V^{-1}$

In general different decompositions of the Jacobian matrix lead to different \mathcal{R}_0 , and they are target reproduction numbers with different target matrices

Theorem [Lewis, Shuai, vdD, *J* Math Biol 2019] Let $J = F - V = \tilde{F} - \tilde{V}$ with $F, \tilde{F}, V^{-1}, \tilde{V}^{-1} \ge 0$ If $F > \tilde{F} \ge 0$ and $\rho((F - \tilde{F})V^{-1}) < 1$, then $\rho(\tilde{F}\tilde{V}^{-1})$ is a target reproduction number of $A = FV^{-1}$ with target matrix $\tilde{F}V^{-1}$

One of the following holds:

$$\begin{split} 1 < \rho(FV^{-1}) < \rho(\widetilde{F}\widetilde{V}^{-1}) \\ \rho(FV^{-1}) = \rho(\widetilde{F}\widetilde{V}^{-1}) = 1 \\ \rho(\widetilde{F}\widetilde{V}^{-1}) < \rho(FV^{-1}) < 1 \end{split}$$

Other authors have noticed this, for example: [Cushing & Diekmann, *J Theor Biol* 2016 The many guises of R_0 , a didactic note]

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} \frac{\beta S_0}{d + \alpha + \gamma} & \frac{\lambda S_0}{\delta} \\ \frac{\xi}{d + \alpha + \gamma} & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} \frac{\beta S_0}{d + \alpha + \gamma} & \frac{\lambda S_0}{\delta} \\ \frac{\xi}{d + \alpha + \gamma} & 0 \end{bmatrix}$$

• Isolation reduces effective human-human contact (decreasing β) $T_{11} = \frac{a_{11}-a_{11}a_{22}}{1-a_{22}-a_{12}a_{21}} = \frac{\beta S_0 \delta}{\delta(d+\alpha+\gamma)-\lambda S_0 \xi}$ If a fraction at least $1 - \frac{1}{T_{11}}$ can be isolated then cholera can be eradicated

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} \frac{\beta S_0}{d + \alpha + \gamma} & \frac{\lambda S_0}{\delta} \\ \frac{\xi}{d + \alpha + \gamma} & 0 \end{bmatrix}$$

- Isolation reduces effective human-human contact (decreasing β) $T_{11} = \frac{a_{11}-a_{11}a_{22}}{1-a_{22}-a_{12}a_{21}} = \frac{\beta S_0 \delta}{\delta(d+\alpha+\gamma)-\lambda S_0 \xi}$ If a fraction at least $1 - \frac{1}{T_{11}}$ can be isolated then cholera can be eradicated
- Providing clean water reduces water-human transmission (decreasing λ) $T_{12} = \frac{a_{12}a_{21}}{1-a_{11}-a_{22}+a_{11}a_{22}} = \frac{\lambda S_0\xi}{\delta(d+\alpha+\gamma)-\beta S_0\delta}$

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} \frac{\beta S_0}{d + \alpha + \gamma} & \frac{\lambda S_0}{\delta} \\ \frac{\xi}{d + \alpha + \gamma} & 0 \end{bmatrix}$$

- Isolation reduces effective human-human contact (decreasing β) $T_{11} = \frac{a_{11}-a_{11}a_{22}}{1-a_{22}-a_{12}a_{21}} = \frac{\beta S_0 \delta}{\delta(d+\alpha+\gamma)-\lambda S_0 \xi}$ If a fraction at least $1 - \frac{1}{T_{11}}$ can be isolated then cholera can be eradicated
- Providing clean water reduces water-human transmission (decreasing λ) $T_{12} = \frac{a_{12}a_{21}}{1-a_{11}-a_{22}+a_{11}a_{22}} = \frac{\lambda S_0\xi}{\delta(d+\alpha+\gamma)-\beta S_0\delta}$

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} \frac{\beta S_0}{d + \alpha + \gamma} & \frac{\lambda S_0}{\delta} \\ \frac{\xi}{d + \alpha + \gamma} & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} \frac{\beta S_0}{d + \alpha + \gamma} & \frac{\lambda S_0}{\delta} \\ \frac{\xi}{d + \alpha + \gamma} & 0 \end{bmatrix}$$

• Vaccine reduces both direct and indirect transmission (decreasing S_0) $\mathcal{T}_{1*} = \frac{a_{11}+a_{12}a_{21}-a_{11}a_{22}}{1-a_{22}} = \frac{\beta S_0}{d+\alpha+\gamma} + \frac{\lambda S_0\xi}{\delta(d+\alpha+\gamma)} = \rho(\widetilde{F}\widetilde{V}^{-1})$ If a proportion more than $1 - 1/\mathcal{T}_{1*}$ is successfully vaccinated then cholera can be eradicated

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} \frac{\beta S_0}{d + \alpha + \gamma} & \frac{\lambda S_0}{\delta} \\ \frac{\xi}{d + \alpha + \gamma} & 0 \end{bmatrix}$$

- Vaccine reduces both direct and indirect transmission (decreasing S_0) $\mathcal{T}_{1*} = \frac{a_{11}+a_{12}a_{21}-a_{11}a_{22}}{1-a_{22}} = \frac{\beta S_0}{d+\alpha+\gamma} + \frac{\lambda S_0\xi}{\delta(d+\alpha+\gamma)} = \rho(\widetilde{F}\widetilde{V}^{-1})$ If a proportion more than $1 - 1/\mathcal{T}_{1*}$ is successfully vaccinated then cholera can be eradicated
- Sanitation reduces the shedding of pathogen into water (decreasing ξ) $T_{21} = T_{12}$

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} \frac{\beta S_0}{d + \alpha + \gamma} & \frac{\lambda S_0}{\delta} \\ \frac{\xi}{d + \alpha + \gamma} & 0 \end{bmatrix}$$

- Vaccine reduces both direct and indirect transmission (decreasing S_0) $\mathcal{T}_{1*} = \frac{a_{11}+a_{12}a_{21}-a_{11}a_{22}}{1-a_{22}} = \frac{\beta S_0}{d+\alpha+\gamma} + \frac{\lambda S_0\xi}{\delta(d+\alpha+\gamma)} = \rho(\widetilde{F}\widetilde{V}^{-1})$ If a proportion more than $1 - 1/\mathcal{T}_{1*}$ is successfully vaccinated then cholera can be eradicated
- Sanitation reduces the shedding of pathogen into water (decreasing ξ) $T_{21} = T_{12}$

We have also used target reproduction numbers in a network model of cholera [Li, Ma, vdD, *JMB* 2015]

Need estimates of parameter values from data to evaluate different control strategies

In some biological models it may be appropriate to target part of a term in the projection matrix, and the target reproduction can be adapted to such situations For example consider a 4-stage Lefkovitch model with projection matrix

$$P=\left[egin{array}{cccccccc} s_1+b_1 & b_2 & b_3 & b_4\ t_1 & s_2 & 0 & 0\ 0 & t_2 & s_3 & 0\ 0 & 0 & t_3 & s_4 \end{array}
ight]$$

where $s_i = p_i q_i$ is the probability of staying in stage *i* $t_i = p_i(1 - q_i)$ is the probability of leaving stage *i* and b_i is the fertility of stage *i* with $b_4 > 0$

Controlling the survival probability in stage 1, p_1 means that the target matrix has nonzero entries s_1 and t_1

 Target reproduction numbers unify several threshold quantities used in biological models

- Target reproduction numbers unify several threshold quantities used in biological models
- Target reproduction numbers can give guidance for control or enhancement of biological populations modeled with either continuous or discrete time

- Target reproduction numbers unify several threshold quantities used in biological models
- Target reproduction numbers can give guidance for control or enhancement of biological populations modeled with either continuous or discrete time
- They can include multiple controls and can be combined with economic factors

- Target reproduction numbers unify several threshold quantities used in biological models
- Target reproduction numbers can give guidance for control or enhancement of biological populations modeled with either continuous or discrete time
- They can include multiple controls and can be combined with economic factors
- Examples considered are simple biological models but we hope to apply the methods to more realistic biological models, and to incorporate data

THANK YOU

QUESTIONS and COMMENTS???

Pauline van den Driessche University of Victoria BC Canada Threshold Parameters

43/43