Target Reproduction Numbers and Applications to Biological Models

Pauline van den Driessche University of Victoria BC Canada
Department of Mathematics and Statistics vandendr@uvic.ca

CBMS Conference, UCF, May 2022
Thanks to NSF, NSERC, UCF, Collaborators

In population dynamics Threshold Parameters determine population persistence, give insight into control and protection strategies
Examples: net reproductive value (rate) basic reproduction number...

AIM
To give a general framework for threshold parameters using Target Reproduction Numbers

Key reference: [Lewis, Shuai, vdD, J Math Biol 2019]

AGENDA

- Algebraic and graphical theories for target reproduction numbers

AGENDA
\checkmark Algebraic and graphical theories for target reproduction numbers

- Protecting salmonoids (ray-finned fish)

AGENDA
\checkmark Algebraic and graphical theories for target reproduction numbers

- Protecting salmonoids (ray-finned fish)
- Resident killer whales

AGENDA

- Algebraic and graphical theories for target reproduction numbers
- Protecting salmonoids (ray-finned fish)
- Resident killer whales
- Controlling scentless chamomile (an invasive weed)

AGENDA

- Algebraic and graphical theories for target reproduction numbers
- Protecting salmonoids (ray-finned fish)
- Resident killer whales
- Controlling scentless chamomile (an invasive weed)
- Modeling cholera control (a bacterial disease)

Target Reproduction Number

- Let $A=\left[a_{i j}\right]$ be a nonnegative irreducible $n \times n$ matrix and $S=\left[s_{i j}\right]$ be the $n \times n$ target matrix of A i.e., $s_{i j}=a_{i j}$ whenever the entry is targeted, and zero otherwise
- Let $A=\left[a_{i j}\right]$ be a nonnegative irreducible $n \times n$ matrix and $S=\left[s_{i j}\right]$ be the $n \times n$ target matrix of A i.e., $s_{i j}=a_{i j}$ whenever the entry is targeted, and zero otherwise
- Define the Target Reproduction Number \mathcal{I}_{S} as

$$
\mathcal{T}_{S}=\rho\left(S(I d-A+S)^{-1}\right) \quad \text { provided } \quad \rho(A-S)<1
$$

where $\rho($.) denotes the spectral radius and $I d$ denotes an identity matrix

Theorem

If $\rho(A-S)<1$, then the controlled matrix A_{c}, obtained from A by replacing all targeted entries $a_{i j}$ by $a_{i j} / \mathcal{T}_{S}$, satisfies $\rho\left(A_{c}\right)=1$

Theorem

If $\rho(A-S)<1$, then the controlled matrix A_{C}, obtained from A by replacing all targeted entries $a_{i j}$ by $a_{i j} / \mathcal{T}_{s}$, satisfies $\rho\left(A_{c}\right)=1$

Idea of Proof:
By Perron-Frobenius there exists an eigenvector $x^{T} \geq 0$ so that

$$
x^{T} S(I d-A+S)^{-1}=\mathcal{T}_{S} x^{T}
$$

giving

$$
x^{T}\left(A-S+\frac{S}{\mathcal{T}_{S}}\right)=1 x^{T}
$$

$$
\mathcal{T}_{S}=\rho\left(S(I d-A+S)^{-1}\right) \quad \text { provided } \quad \rho(A-S)<1
$$

An interpretation: A is the next generation matrix of a disease model with basic reproduction number \mathcal{R}_{0}

- Target all entries (i.e., $S=A$): $\mathcal{T}_{S}=\mathcal{R}_{0}=\rho(A)$ Herd immunity: vaccinate more than $1-1 / \mathcal{R}_{0}$ of population

$$
\mathcal{T}_{S}=\rho\left(S(I d-A+S)^{-1}\right) \quad \text { provided } \quad \rho(A-S)<1
$$

An interpretation: A is the next generation matrix of a disease model with basic reproduction number \mathcal{R}_{0}

- Target all entries (i.e., $S=A$): $\mathcal{T}_{S}=\mathcal{R}_{0}=\rho(A)$

Herd immunity: vaccinate more than $1-1 / \mathcal{R}_{0}$ of population

- Target only one entry $a_{i j}: \mathcal{T}_{i j}=a_{i j}(I d-A+S)_{j i}^{-1}$

$$
\mathcal{T}_{S}=\rho\left(S(I d-A+S)^{-1}\right) \quad \text { provided } \quad \rho(A-S)<1
$$

An interpretation: A is the next generation matrix of a disease model with basic reproduction number \mathcal{R}_{0}

- Target all entries (i.e., $S=A$): $\mathcal{T}_{S}=\mathcal{R}_{0}=\rho(A)$

Herd immunity: vaccinate more than $1-1 / \mathcal{R}_{0}$ of population

- Target only one entry $a_{i j}: \mathcal{I}_{i j}=a_{i j}(l d-A+S)_{j i}^{-1}$
- Target the i-th row: $\mathcal{I}_{i *}=\sum_{j=1}^{n} a_{i j}(I d-A+S)_{j i}^{-1}$

Type reproduction number [Heesterbeek, Roberts, 2003, 2007] Herd immunity: vaccinate more than $1-1 / \mathcal{T}_{i *}$ of city i

$$
\mathcal{T}_{S}=\rho\left(S(I d-A+S)^{-1}\right) \quad \text { provided } \quad \rho(A-S)<1
$$

An interpretation: A is the next generation matrix of a disease model with basic reproduction number \mathcal{R}_{0}

- Target all entries (i.e., $S=A$): $\mathcal{T}_{S}=\mathcal{R}_{0}=\rho(A)$ Herd immunity: vaccinate more than $1-1 / \mathcal{R}_{0}$ of population
- Target only one entry $a_{i j}: \mathcal{T}_{i j}=a_{i j}(I d-A+S)_{j i}^{-1}$
- Target the i-th row: $\mathcal{I}_{i *}=\sum_{j=1}^{n} a_{i j}(I d-A+S)_{j i}^{-1}$

Type reproduction number [Heesterbeek, Roberts, 2003, 2007] Herd immunity: vaccinate more than $1-1 / \mathcal{T}_{i *}$ of city i

- Target the i-th column: $\mathcal{I}_{* i}=\sum_{j=1}^{n} \mathrm{a}_{j i}(I d-A+S)_{i j}^{-1}$ In fact, $\mathcal{T}_{* i}=\mathcal{T}_{i *}$ [Moon, Shuai, vdD, Lin Algebra Appl 2014]

$$
\mathcal{T}_{S}=\rho\left(S(I d-A+S)^{-1}\right) \quad \text { provided } \quad \rho(A-S)<1
$$

An interpretation: A is the next generation matrix of a disease model with basic reproduction number \mathcal{R}_{0}

- Target all entries (i.e., $S=A$): $\mathcal{T}_{S}=\mathcal{R}_{0}=\rho(A)$ Herd immunity: vaccinate more than $1-1 / \mathcal{R}_{0}$ of population
- Target only one entry $a_{i j}: \mathcal{T}_{i j}=a_{i j}(I d-A+S)_{j i}^{-1}$
- Target the i-th row: $\mathcal{I}_{i *}=\sum_{j=1}^{n} a_{i j}(I d-A+S)_{j i}^{-1}$

Type reproduction number [Heesterbeek, Roberts, 2003, 2007] Herd immunity: vaccinate more than $1-1 / \mathcal{T}_{i *}$ of city i

- Target the i-th column: $\mathcal{I}_{* i}=\sum_{j=1}^{n} \mathrm{a}_{j i}(I d-A+S)_{i j}^{-1}$ In fact, $\mathcal{T}_{* i}=\mathcal{T}_{i *}$ [Moon, Shuai, vdD, Lin Algebra Appl 2014]

Theorem [Moon, Shuai, vdD, Lin Alg Appl 2014]
Let A be an $n \times n$ nonnegative irreducible matrix with weighted digraph $D(A)$
A cycle union \mathcal{U} of $D(A)$ is a union of disjoint cycles of $D(A)$ $w(\mathcal{U})$ is the product of weights of arcs of \mathcal{U} and $c(\mathcal{U})$ is the number of cycles

Theorem [Moon, Shuai, vdD, Lin Alg Appl 2014]
Let A be an $n \times n$ nonnegative irreducible matrix with weighted digraph $D(A)$
A cycle union \mathcal{U} of $D(A)$ is a union of disjoint cycles of $D(A)$ $w(\mathcal{U})$ is the product of weights of arcs of \mathcal{U} and $c(\mathcal{U})$ is the number of cycles

For $1 \leq i, j \leq n$

$$
\mathcal{T}_{i j}=\frac{\sum_{\mathcal{U}_{i j}}(-1)^{1+c\left(\mathcal{U}_{i j}\right)} w\left(\mathcal{U}_{i j}\right)}{\sum_{\mathcal{V}_{i j}}(-1)^{c\left(\mathcal{V}_{i j}\right)} w\left(\mathcal{V}_{i j}\right)}
$$

where the sums are over all cycle-unions $\mathcal{U}_{i j}$ and $\mathcal{V}_{i j}$ of $D(A)$ that do and do not contain the arc ji, respectively

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \begin{gathered}
\text { with weights of cycle unions in } D(A) \text { being } \\
1, a_{11}, a_{22}, a_{11} a_{22}, a_{12} a_{21}
\end{gathered}
$$

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \begin{gathered}
\text { with weights of cycle unions in } D(A) \text { being } \\
1, a_{11}, a_{22}, a_{11} a_{22}, a_{12} a_{21}
\end{gathered}
$$

- Take $s_{11}=a_{11}$ as targeted entry

$$
\mathcal{I}_{11}=\left[\begin{array}{cc}
a_{11} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & -a_{12} \\
-a_{21} & 1-a_{22}
\end{array}\right]^{-1}=\frac{a_{11}-a_{11} a_{22}}{1-a_{22}-a_{12} a_{21}}
$$

- If

$$
A=\left[\begin{array}{ll}
0.5 & 0.7 \\
0.7 & 0.5
\end{array}\right]
$$

then $\mathcal{I}_{11}=25$, so replacing a_{11} by $0.5 / 25$ gives $\rho\left(A_{c}\right)=1$

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \begin{gathered}
\text { with weights of cycle unions in } D(A) \text { being } \\
1, a_{11}, a_{22}, a_{11} a_{22}, a_{12} a_{21}
\end{gathered}
$$

- Take $s_{11}=a_{11}$ as targeted entry

$$
\mathcal{I}_{11}=\left[\begin{array}{cc}
a_{11} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & -a_{12} \\
-a_{21} & 1-a_{22}
\end{array}\right]^{-1}=\frac{a_{11}-a_{11} a_{22}}{1-a_{22}-a_{12} a_{21}}
$$

- If

$$
A=\left[\begin{array}{ll}
0.5 & 0.7 \\
0.7 & 0.5
\end{array}\right]
$$

then $\mathcal{I}_{11}=25$, so replacing a_{11} by $0.5 / 25$ gives $\rho\left(A_{c}\right)=1$

- Both first row entries are targeted (type reproduction number)

$$
\mathcal{I}_{1 *}=\frac{a_{11}+a_{12} a_{21}-a_{11} a_{22}}{1-a_{22}}
$$

Note that $\mathcal{I}_{1 *}=1 \Leftrightarrow \mathcal{I}_{11}=1$

Age structured population for x_{t} population vector of ages/stages at time t, and P the population projection matrix

$$
x_{t+1}=P x_{t}
$$

$\lambda=\rho(P)$ the population growth rate, population grows iff $\lambda>1$

Age structured population for x_{t} population vector of ages/stages at time t, and P the population projection matrix

$$
x_{t+1}=P x_{t}
$$

$\lambda=\rho(P)$ the population growth rate, population grows iff $\lambda>1$
Let $P=T+F$: transition matrix $T \geq 0$, fecundity matrix $F \geq 0$
The next generation matrix is $F(I d-T)^{-1}$
The net reproductive value $R_{0}=\rho\left(F(I d-T)^{-1}\right)$
[Allen \& vdD, 2008, Cushing \& Zhou, 1994, Li \& Schnieder, 2002]

Age structured population for x_{t} population vector of ages/stages at time t, and P the population projection matrix

$$
x_{t+1}=P x_{t}
$$

$\lambda=\rho(P)$ the population growth rate, population grows iff $\lambda>1$
Let $P=T+F$: transition matrix $T \geq 0$, fecundity matrix $F \geq 0$
The next generation matrix is $F(I d-T)^{-1}$
The net reproductive value $R_{0}=\rho\left(F(I d-T)^{-1}\right)$
[Allen \& vdD, 2008, Cushing \& Zhou, 1994, Li \& Schnieder, 2002]
If $\rho(T)<1$ then R_{0} is the target reproduction number for $A=P$ corresponding to the target matrix $S=F$
If the target matrix is $S=P$ then $\mathcal{T}_{P}=\rho(P)=\lambda$

Pacific Salmon Life Cycle

Credit: http://kingcd.org/wp-content/uploads/2014/12/pacific-salmon-life-cycle

Lefkovitch matrix with 4 life stages: egg, fry, juvenile, adult [Huang \& Lewis, Theor Ecol 2015]

$$
P=\left[\begin{array}{cccc}
0 & 0 & 0 & b_{4} \\
t_{1} & 0 & 0 & 0 \\
0 & t_{2} & s_{3} & 0 \\
0 & 0 & t_{3} & s_{4}
\end{array}\right]
$$

The order of events: production of b_{4} offspring per survivor, survival probability p_{i}, proportion $1-q_{i}$ moving to the next class
$s_{i}=p_{i} q_{i} \geq 0$ is the probability of staying
$t_{i}=p_{i}\left(1-q_{i}\right)$ is the probability of transition
[Lewis, Shuai, vdD,JMB 2019] $\left[\begin{array}{cccc}0 & 0 & 0 & b_{4} \\ t_{1} & 0 & 0 & 0 \\ 0 & t_{2} & s_{3} & 0 \\ 0 & 0 & t_{3} & s_{4}\end{array}\right]$
Assume that the net reproductive value $R_{0}<1$
The first row/column of P each contain 1 nonzero entry
$R_{0}=\mathcal{I}_{1 *}=\mathcal{I}_{14}=\mathcal{T}_{21}=\frac{t_{1} t_{2} t_{3} b_{4}}{\left(1-s_{3}\right)\left(1-s_{4}\right)}$
To protect endangered salmonoids increase number of eggs per adult b_{4} to $>b_{4} / R_{0}$ or the proportion of eggs that hatch to the fry stage t_{1} to $>t_{1} / R_{0}$
[Lewis, Shuai, vdD, JMB 2019] $\left[\begin{array}{cccc}0 & 0 & 0 & b_{4} \\ t_{1} & 0 & 0 & 0 \\ 0 & t_{2} & s_{3} & 0 \\ 0 & 0 & t_{3} & s_{4}\end{array}\right]$
Assume that the net reproductive value $R_{0}<1$
The first row/column of P each contain 1 nonzero entry
$R_{0}=\mathcal{I}_{1 *}=\mathcal{I}_{14}=\mathcal{T}_{21}=\frac{t_{1} t_{2} t_{3} b_{4}}{\left(1-s_{3}\right)\left(1-s_{4}\right)}$
To protect endangered salmonoids increase number of eggs per adult b_{4} to $>b_{4} / R_{0}$ or the proportion of eggs that hatch to the fry stage t_{1} to $>t_{1} / R_{0}$

From the second row/column $\mathcal{T}_{2 *}=\mathcal{T}_{21}=\mathcal{I}_{32}=R_{0}$ Increase t_{2} proportion of fry that survive to juveniles to t_{2} / R_{0}
[Lewis, Shuai, vdD, JMB 2019] $\left[\begin{array}{cccc}0 & 0 & 0 & b_{4} \\ t_{1} & 0 & 0 & 0 \\ 0 & t_{2} & s_{3} & 0 \\ 0 & 0 & t_{3} & s_{4}\end{array}\right]$
Assume that the net reproductive value $R_{0}<1$
The first row/column of P each contain 1 nonzero entry
$R_{0}=\mathcal{I}_{1 *}=\mathcal{T}_{14}=\mathcal{T}_{21}=\frac{t_{1} t_{2} t_{3} b_{4}}{\left(1-s_{3}\right)\left(1-s_{4}\right)}$
To protect endangered salmonoids increase number of eggs per adult b_{4} to $>b_{4} / R_{0}$ or the proportion of eggs that hatch to the fry stage t_{1} to $>t_{1} / R_{0}$

From the second row/column $\mathcal{T}_{2 *}=\mathcal{T}_{21}=\mathcal{T}_{32}=R_{0}$ Increase t_{2} proportion of fry that survive to juveniles to t_{2} / R_{0} Reduce the harvest of adult salmonoids, increase s_{4} to s_{4} / \mathcal{T}_{44} where $\tau_{44}=s_{4}\left(1-s_{3}\right) /\left(1-s_{3}-t_{1} t_{2} t_{3} b_{4}\right)$
[Brault, Caswell, 1993] Bronwyn Hobson report, istockphoto.com

Four life stages for female resident killer whales: calf (1), juvenile (2), reproductive adult (3), and post reproductive adult (4)

$$
P_{B C}=\left[\begin{array}{cccc}
0 & F_{2} & F_{3} & 0 \\
G_{1} & P_{2} & 0 & 0 \\
0 & G_{2} & P_{3} & 0 \\
0 & 0 & G_{3} & P_{4}
\end{array}\right]
$$

$\sigma_{i}=$ stage specific survival, $\gamma_{i}=$ transition probability $m_{i}=$ mean reproductive output
G_{i} gives the probability of survival and transfer into stage $i+1$ F_{i} gives the number of offspring at $t+1$ from a female at t

$$
\begin{aligned}
& P_{1}=0, P_{2}=\left(1-\gamma_{2}\right) \sigma_{2}, P_{3}=\left(1-\gamma_{3}\right) \sigma_{3}, P_{4}=\sigma_{4}, G_{1}=\sigma_{1}^{1 / 2} \\
& G_{2}=\gamma_{2} \sigma_{2}, G_{3}=\gamma_{3} \sigma_{3}, F_{2}=\sigma_{1}^{1 / 2} G_{2} m_{3} / 2, F_{3}=\sigma_{1}^{1 / 2}\left(1+P_{3}\right) m_{3} / 2
\end{aligned}
$$

Using data for BC Resident killer whales from 1973-1987 provided by Brault and Caswell

$$
1<\lambda_{B C}=\mathcal{I}_{\mathcal{P}}=1.03<\mathcal{R}_{O B C}=\mathcal{T}_{F}=2.01
$$

Using data for BC Resident killer whales from 1973-1987 provided by Brault and Caswell

$$
1<\lambda_{B C}=\mathcal{I}_{\mathcal{P}}=1.03<\mathcal{R}_{0 B C}=\mathcal{T}_{F}=2.01
$$

Both $\lambda_{B C}$ and $\mathcal{R}_{0 B C}$ are most sensitive to γ_{3} and σ_{3}, that is transition from and survival in the reproductive stage
[Lewis, Shuai, vdD, JMB2019]

Photo Credit: Daniel Laubhann

A weed in north America that invades agricultural farmland
One plant can produce up to 1 million seeds that remain viable for up to 15 years in the soil

It has 3 stages: (1) seed bank (in the ground), (2) rosettes, and
(3) flowering plants
[de-Camino-Beck \& Lewis, Bull Math Biol 2007]
The projection matrix for the growth of scentless chamomile with stages of seeds, rosettes and flowers is

$$
P=\left[\begin{array}{ccc}
a_{11} & 0 & a_{13} \\
a_{21} & 0 & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

In a year seeds remain in the seed bank with probability a_{11}, germinate into a rosette with probability a_{21}, into a flower with probability a_{31}, die with probability $1-a_{11}-a_{21}-a_{31}$
Rosettes transform into flowers with probability a_{32}
Flowers contribute to all fecundities in each of the stages

Target matrix S has nonzero entries $s_{i 3}=a_{i 3}$ for $i=1,2,3$ the fecundity matrix with rank 1 , so assuming $a_{11}<1$

$$
\mathcal{T}_{* 3}=\frac{a_{33}+a_{13} a_{31}+a_{23} a_{32}+a_{13} a_{21} a_{32}-a_{11} a_{33}-a_{11} a_{23} a_{32}}{1-a_{11}}
$$

Here $\mathcal{I}_{* 3}=R_{0}$ the net reproductive value

Target matrix S has nonzero entries
$s_{21}=a_{21}, s_{31}=a_{31}, s_{32}=a_{32}$ so \mathcal{T}_{S} has rank 2 (harder!)
Take controlled matrix Let $\tilde{A}=\left[\begin{array}{ccc}a_{11} & 0 & a_{13} \\ a_{21} / \sigma & 0 & a_{23} \\ a_{31} / \sigma & a_{32} / \sigma & a_{33}\end{array}\right]$
\mathcal{T}_{S} is the value of σ such that $\rho(\tilde{A})=1$

Target matrix S has nonzero entries
$s_{21}=a_{21}, s_{31}=a_{31}, s_{32}=a_{32}$ so \mathcal{T}_{s} has rank 2 (harder!)
Take controlled matrix Let $\tilde{A}=\left[\begin{array}{ccc}a_{11} & 0 & a_{13} \\ a_{21} / \sigma & 0 & a_{23} \\ a_{31} / \sigma & a_{32} / \sigma & a_{33}\end{array}\right]$
\mathcal{T}_{S} is the value of σ such that $\rho(\tilde{A})=1$
Solving this gives a quadratic equation in σ^{-1}

$$
u\left(\sigma^{-1}\right)^{2}+v \sigma^{-1}+w=0
$$

$w=-1+a_{11}+a_{33}-a_{11} a_{33}$ is weight of cycle unions in $D(\tilde{A})$ containing no target entries
$v=a_{13} a_{31}+a_{23} a_{32}-a_{11} a_{23} a_{32}$ containing 1 target entry
$u=a_{13} a_{21} a_{32}$ containing 2 target entries, starts with flowers goes to seed bank a_{13}, to rosettes a_{21} then back to flowers a_{3} 选 $\begin{aligned} & \text { univesity } \\ & \text { ofvitoria }\end{aligned}$

Combination of 2 strategies, control of fecundity and growth

To determine the minimum cost control effort take the controlled matrix $\tilde{A}=\left[\begin{array}{ccc}a_{11} & 0 & a_{13} / \tau \\ a_{21} / \sigma & 0 & a_{23} / \tau \\ a_{31} / \sigma & a_{32} / \sigma & a_{33} / \tau\end{array}\right]$ with $\tau, \sigma>1$
Setting $\rho(\tilde{A})=1$ gives $\tau=f(\sigma)$

$$
\tau=\frac{a_{13} a_{21} a_{32}}{1-a_{11}} \sigma^{-2}+\left(a_{23} a_{32}+\frac{a_{13} a_{31}}{1-a_{11}}\right) \sigma^{-1}+a_{33}=f(\sigma)
$$

Combination of 2 strategies, control of fecundity and growth

To determine the minimum cost control effort take the controlled matrix $\tilde{A}=\left[\begin{array}{ccc}a_{11} & 0 & a_{13} / \tau \\ a_{21} / \sigma & 0 & a_{23} / \tau \\ a_{31} / \sigma & a_{32} / \sigma & a_{33} / \tau\end{array}\right]$ with $\tau, \sigma>1$
Setting $\rho(\tilde{A})=1$ gives $\tau=f(\sigma)$

$$
\tau=\frac{a_{13} a_{21} a_{32}}{1-a_{11}} \sigma^{-2}+\left(a_{23} a_{32}+\frac{a_{13} a_{31}}{1-a_{11}}\right) \sigma^{-1}+a_{33}=f(\sigma)
$$

Assume the costs per unit effort for fecundity, growth control strategy are d_{1}, d_{2} and that the total cost function

$$
D=d_{1}(\tau-1)+d_{2}(\sigma-1)
$$

Minimum cost $D\left(\sigma^{*}\right)$ achieved where σ^{*} is the unique positive root of $D^{\prime}(\sigma)=0$ giving a cubic for σ^{*} in terms of d_{1} / d_{2} and $a_{i j}$

Combination of 2 strategies, control of fecundity and growth

To determine the minimum cost control effort take the controlled matrix $\tilde{A}=\left[\begin{array}{ccc}a_{11} & 0 & a_{13} / \tau \\ a_{21} / \sigma & 0 & a_{23} / \tau \\ a_{31} / \sigma & a_{32} / \sigma & a_{33} / \tau\end{array}\right]$ with $\tau, \sigma>1$
Setting $\rho(\tilde{A})=1$ gives $\tau=f(\sigma)$

$$
\tau=\frac{a_{13} a_{21} a_{32}}{1-a_{11}} \sigma^{-2}+\left(a_{23} a_{32}+\frac{a_{13} a_{31}}{1-a_{11}}\right) \sigma^{-1}+a_{33}=f(\sigma)
$$

Assume the costs per unit effort for fecundity, growth control strategy are d_{1}, d_{2} and that the total cost function

$$
D=d_{1}(\tau-1)+d_{2}(\sigma-1)
$$

Minimum cost $D\left(\sigma^{*}\right)$ achieved where σ^{*} is the unique positive root of $D^{\prime}(\sigma)=0$ giving a cubic for σ^{*} in terms of d_{1} / d_{2} and $a_{i j}$

Control for points (σ, τ) lying above curve $\tau=f(\sigma)$
Dashed line $D=1.6 d_{1}$ shows cost function for min cost at (σ^{*}, τ^{*}) given by the dot
Lower (higher) dotted line $D=1.3 d_{1}\left(1.9 d_{1}\right)$ of Victoria

- An infection of the small intestine caused by the bacterium Vibrio cholerae that can persist for extended time outside the human host
- An infection of the small intestine caused by the bacterium Vibrio cholerae that can persist for extended time outside the human host
- SIR model with a second route of infection from contaminated water
- An infection of the small intestine caused by the bacterium Vibrio cholerae that can persist for extended time outside the human host
- SIR model with a second route of infection from contaminated water
- Infection causes mild diarrhea in most cases
- An infection of the small intestine caused by the bacterium Vibrio cholerae that can persist for extended time outside the human host
- SIR model with a second route of infection from contaminated water
- Infection causes mild diarrhea in most cases
- But some cases develop severe diarrhea and vomiting which if untreated may lead to death within a few hours due to dehydration and electrolyte imbalance
(2) Oct 20-28
(3A) Nov 11-29
(3B) Nov 14-30
(3C) Nov 21-30

Department border Commune border

Piarroux et al., Emerging Infectious Diseases 2011 of Victoria

Taking shedding as a new infection the Jacobian matrix at the disease-free equilibrium $\left(S_{0}, 0,0\right)$ is

$$
J=\left[\begin{array}{cc}
\beta S_{0}-(d+\alpha+\gamma) & \lambda S_{0} \\
\xi & -\delta
\end{array}\right]
$$

Taking shedding as a new infection the Jacobian matrix at the disease-free equilibrium $\left(S_{0}, 0,0\right)$ is

$$
J=\left[\begin{array}{cc}
\beta S_{0}-(d+\alpha+\gamma) & \lambda S_{0} \\
\xi & -\delta
\end{array}\right]
$$

The next-generation matrix method decomposition gives

$$
F=\left[\begin{array}{cc}
\beta S_{0} & \lambda S_{0} \\
\xi & 0
\end{array}\right] \quad V=\left[\begin{array}{cc}
d+\alpha+\gamma & 0 \\
0 & \delta
\end{array}\right]
$$

Taking shedding as a new infection the Jacobian matrix at the disease-free equilibrium $\left(S_{0}, 0,0\right)$ is

$$
J=\left[\begin{array}{cc}
\beta S_{0}-(d+\alpha+\gamma) & \lambda S_{0} \\
\xi & -\delta
\end{array}\right]
$$

The next-generation matrix method decomposition gives

$$
F=\left[\begin{array}{cc}
\beta S_{0} & \lambda S_{0} \\
\xi & 0
\end{array}\right] \quad V=\left[\begin{array}{cc}
d+\alpha+\gamma & 0 \\
0 & \delta
\end{array}\right]
$$

The next-generation matrix and basic reproduction number

$$
A=F V^{-1}=\left[\begin{array}{cc}
\frac{\beta S_{0}}{d+\alpha+\gamma} & \frac{\lambda S_{0}}{\delta} \\
\frac{\xi}{d+\alpha+\gamma} & 0
\end{array}\right], \quad \mathcal{R}_{0}=\rho(A)
$$

Taking shedding as a transition, a different decomposition gives

$$
\widetilde{F}=\left[\begin{array}{cc}
\beta S_{0} & \lambda S_{0} \\
0 & 0
\end{array}\right] \quad \widetilde{V}=\left[\begin{array}{cc}
d+\alpha+\gamma & 0 \\
-\xi & \delta
\end{array}\right]
$$

Taking shedding as a transition, a different decomposition gives

$$
\begin{gathered}
\widetilde{F}=\left[\begin{array}{cc}
\beta S_{0} & \lambda S_{0} \\
0 & 0
\end{array}\right] \quad \widetilde{V}=\left[\begin{array}{cc}
d+\alpha+\gamma & 0 \\
-\xi & \delta
\end{array}\right] \\
\widetilde{\mathcal{R}_{0}}=\rho\left(\widetilde{F} \widetilde{V}^{-1}\right)=\frac{\beta S_{0}}{d+\alpha+\gamma}+\frac{\lambda S_{0} \xi}{\delta(d+\alpha+\gamma)} \\
\text { direct } \begin{array}{c}
\text { indirect }
\end{array} \quad \text { with } S_{0}=\Lambda / d
\end{gathered}
$$

Taking shedding as a transition, a different decomposition gives

$$
\widetilde{F}=\left[\begin{array}{cc}
\beta S_{0} & \lambda S_{0} \\
0 & 0
\end{array}\right] \quad \widetilde{V}=\left[\begin{array}{cc}
d+\alpha+\gamma & 0 \\
-\xi & \delta
\end{array}\right]
$$

$\widetilde{\mathcal{R}_{0}}=\rho\left(\widetilde{F} \widetilde{V}^{-1}\right)=\frac{\beta S_{0}}{d+\alpha+\gamma}+\frac{\lambda S_{0} \xi}{\text { direct }}+\frac{\delta(d+\alpha+\gamma)}{\text { indirect }}$
with $S_{0}=\Lambda / d$

If $\widetilde{\mathcal{R}_{0}}<1(>1)$ then cholera dies out (persists)
Both routes of infection must be controlled for $\widetilde{\mathcal{R}}_{0}<1$
Note that $\mathcal{R}_{0}=1 \Leftrightarrow \widetilde{\mathcal{R}_{0}}=1$, giving the same threshold

Taking shedding as a transition, a different decomposition gives

$$
\begin{array}{r}
\widetilde{F}=\left[\begin{array}{cc}
\beta S_{0} & \lambda S_{0} \\
0 & 0
\end{array}\right] \quad \widetilde{V}=\left[\begin{array}{cc}
d+\alpha+\gamma & 0 \\
-\xi & \delta
\end{array}\right] \\
\widetilde{\mathcal{R}_{0}}=\rho\left(\widetilde{F} \widetilde{V}^{-1}\right)=\frac{\beta S_{0}}{d+\alpha+\gamma}+\frac{\lambda S_{0} \xi}{\text { direct }} \begin{array}{c}
\begin{array}{c}
(d+\alpha+\gamma) \\
\text { indirect }
\end{array}
\end{array} \quad \text { with } S_{0}=\Lambda / d
\end{array}
$$

If $\widetilde{\mathcal{R}_{0}}<1$ (>1) then cholera dies out (persists)
Both routes of infection must be controlled for ${\widetilde{\mathcal{R}_{0}}}<1$
Note that $\mathcal{R}_{0}=1 \Leftrightarrow \widetilde{\mathcal{R}_{0}}=1$, giving the same threshold
Aside: A simple model for COVID-19 includes asymptomatic and symptomatic transmission, to control the virus both routes of infection must be controlled

In general different decompositions of the Jacobian matrix lead to different \mathcal{R}_{0}, and they are target reproduction numbers with different target matrices

In general different decompositions of the Jacobian matrix lead to different \mathcal{R}_{0}, and they are target reproduction numbers with different target matrices

Theorem [Lewis, Shuai, vdD, J Math Biol 2019] Let $J=F-V=\widetilde{F}-\widetilde{V}$ with $F, \widetilde{F}, V^{-1}, \widetilde{V}^{-1} \geq 0$
If $F>\widetilde{F} \geq 0$ and $\rho\left((F-\widetilde{F}) V^{-1}\right)<1$, then $\rho\left(\widetilde{F} \widetilde{V}^{-1}\right)$ is a target reproduction number of $A=F V^{-1}$ with target matrix $\widetilde{F} V^{-1}$

In general different decompositions of the Jacobian matrix lead to different \mathcal{R}_{0}, and they are target reproduction numbers with different target matrices

Theorem [Lewis, Shuai, vdD, J Math Biol 2019]
Let $J=F-V=\widetilde{F}-\widetilde{V}$ with $F, \widetilde{F}, V^{-1}, \widetilde{V}^{-1} \geq 0$
If $F>\widetilde{F} \geq 0$ and $\rho\left((F-\widetilde{F}) V^{-1}\right)<1$, then $\rho\left(\widetilde{F} \widetilde{V}^{-1}\right)$ is a target reproduction number of $A=F V^{-1}$ with target matrix $\widetilde{F} V^{-1}$

One of the following holds:

$$
\begin{aligned}
& 1<\rho\left(F V^{-1}\right)<\rho\left(\widetilde{F} \widetilde{V}^{-1}\right) \\
& \rho\left(F V^{-1}\right)=\rho\left(\widetilde{F} \widetilde{V}^{-1}\right)=1 \\
& \rho\left(\widetilde{F} \widetilde{V}^{-1}\right)<\rho\left(F V^{-1}\right)<1
\end{aligned}
$$

Other authors have noticed this, for example:
[Cushing \& Diekmann, J Theor Biol 2016
The many guises of R_{0}, a didactic note]

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\beta S_{0}}{d+\alpha+\gamma} & \frac{\lambda S_{0}}{\delta} \\
\frac{\xi}{d+\alpha+\gamma} & 0
\end{array}\right]
$$

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\beta S_{0}}{d+\alpha+\gamma} & \frac{\lambda S_{0}}{\delta} \\
\frac{\xi}{d+\alpha+\gamma} & 0
\end{array}\right]
$$

- Isolation reduces effective human-human contact (decreasing β) $\mathcal{I}_{11}=\frac{a_{11}-a_{11} a_{22}}{1-a_{22}-a_{12} a_{21}}=\frac{\beta S_{0} \delta}{\delta(d+\alpha+\gamma)-\lambda S_{0} \xi}$ If a fraction at least $1-\frac{1}{\mathcal{T}_{11}}$ can be isolated then cholera can be eradicated

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\beta S_{0}}{d+\alpha+\gamma} & \frac{\lambda S_{0}}{\delta} \\
\frac{\xi}{d+\alpha+\gamma} & 0
\end{array}\right]
$$

- Isolation reduces effective human-human contact (decreasing β) $\mathcal{T}_{11}=\frac{a_{11}-a_{11} a_{22}}{1-a_{22}-a_{12} a_{21}}=\frac{\beta S_{0} \delta}{\delta(d+\alpha+\gamma)-\lambda S_{0} \xi}$ If a fraction at least $1-\frac{1}{\mathcal{T}_{11}}$ can be isolated then cholera can be eradicated
- Providing clean water reduces water-human transmission (decreasing λ) $\mathcal{I}_{12}=\frac{a_{12} a_{21}}{1-a_{11}-a_{22}+a_{11} a_{22}}=\frac{\lambda S_{0} \xi}{\delta(d+\alpha+\gamma)-\beta S_{0} \delta}$

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\beta S_{0}}{d+\alpha+\gamma} & \frac{\lambda S_{0}}{\delta} \\
\frac{\xi}{d+\alpha+\gamma} & 0
\end{array}\right]
$$

- Isolation reduces effective human-human contact (decreasing β) $\mathcal{T}_{11}=\frac{a_{11}-a_{11} a_{22}}{1-a_{22}-a_{12} a_{21}}=\frac{\beta S_{0} \delta}{\delta(d+\alpha+\gamma)-\lambda S_{0} \xi}$ If a fraction at least $1-\frac{1}{\mathcal{T}_{11}}$ can be isolated then cholera can be eradicated
- Providing clean water reduces water-human transmission (decreasing λ) $\mathcal{I}_{12}=\frac{a_{12} a_{21}}{1-a_{11}-a_{22}+a_{11} a_{22}}=\frac{\lambda S_{0} \xi}{\delta(d+\alpha+\gamma)-\beta S_{0} \delta}$

Calculating target reproduction numbers for ODE cholera model

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\beta S_{0}}{d+\alpha+\gamma} & \frac{\lambda S_{0}}{\delta} \\
\frac{\xi}{d+\alpha+\gamma} & 0
\end{array}\right]
$$

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\beta S_{0}}{d+\alpha+\gamma} & \frac{\lambda S_{0}}{\delta} \\
\frac{\xi}{d+\alpha+\gamma} & 0
\end{array}\right]
$$

- Vaccine reduces both direct and indirect transmission (decreasing S_{0}) $\mathcal{I}_{1 *}=\frac{a_{11}+a_{12} a_{21}-a_{11} a_{22}}{1-a_{22}}=\frac{\beta S_{0}}{d+\alpha+\gamma}+\frac{\lambda S_{0} \xi}{\delta(d+\alpha+\gamma)}=\rho\left(\widetilde{F} \widetilde{V}^{-1}\right)$ If a proportion more than $1-1 / \mathcal{I}_{1 *}$ is successfully vaccinated then cholera can be eradicated

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\beta S_{0}}{d+\alpha+\gamma} & \frac{\lambda S_{0}}{\delta} \\
\frac{\xi}{d+\alpha+\gamma} & 0
\end{array}\right]
$$

- Vaccine reduces both direct and indirect transmission (decreasing S_{0}) $\mathcal{T}_{1 *}=\frac{a_{11}+a_{12} a_{21}-a_{11} a_{22}}{1-a_{22}}=\frac{\beta S_{0}}{d+\alpha+\gamma}+\frac{\lambda S_{0} \xi}{\delta(d+\alpha+\gamma)}=\rho\left(\widetilde{F} \widetilde{V}^{-1}\right)$
If a proportion more than $1-1 / \mathcal{T}_{1 *}$ is successfully
vaccinated then cholera can be eradicated
- Sanitation reduces the shedding of pathogen into water (decreasing ξ) $\mathcal{T}_{21}=\mathcal{I}_{12}$

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\beta S_{0}}{d+\alpha+\gamma} & \frac{\lambda S_{0}}{\delta} \\
\frac{\xi}{d+\alpha+\gamma} & 0
\end{array}\right]
$$

- Vaccine reduces both direct and indirect transmission (decreasing S_{0})
$\mathcal{T}_{1 *}=\frac{a_{11}+a_{12} a_{21}-a_{11} a_{22}}{1-a_{22}}=\frac{\beta S_{0}}{d+\alpha+\gamma}+\frac{\lambda S_{0} \xi}{\delta(d+\alpha+\gamma)}=\rho\left(\widetilde{F} \widetilde{V}^{-1}\right)$
If a proportion more than $1-1 / \mathcal{I}_{1 *}$ is successfully
vaccinated then cholera can be eradicated
- Sanitation reduces the shedding of pathogen into water (decreasing ξ) $\mathcal{T}_{21}=\mathcal{T}_{12}$

We have also used target reproduction numbers in a network model of cholera [Li, Ma, vdD, JMB 2015]

Need estimates of parameter values from data to evaluate different control strategies

In some biological models it may be appropriate to target part of a term in the projection matrix, and the target reproduction can be adapted to such situations
For example consider a 4 -stage Lefkovitch model with projection matrix

$$
P=\left[\begin{array}{cccc}
s_{1}+b_{1} & b_{2} & b_{3} & b_{4} \\
t_{1} & s_{2} & 0 & 0 \\
0 & t_{2} & s_{3} & 0 \\
0 & 0 & t_{3} & s_{4}
\end{array}\right]
$$

where $s_{i}=p_{i} q_{i}$ is the probability of staying in stage i
$t_{i}=p_{i}\left(1-q_{i}\right)$ is the probability of leaving stage i
and b_{i} is the fertility of stage i with $b_{4}>0$
Controlling the survival probability in stage $1, p_{1}$ means that the target matrix has nonzero entries s_{1} and t_{1}

- Target reproduction numbers unify several threshold quantities used in biological models
- Target reproduction numbers unify several threshold quantities used in biological models
- Target reproduction numbers can give guidance for control or enhancement of biological populations modeled with either continuous or discrete time
- Target reproduction numbers unify several threshold quantities used in biological models
- Target reproduction numbers can give guidance for control or enhancement of biological populations modeled with either continuous or discrete time
- They can include multiple controls and can be combined with economic factors
- Target reproduction numbers unify several threshold quantities used in biological models
- Target reproduction numbers can give guidance for control or enhancement of biological populations modeled with either continuous or discrete time
- They can include multiple controls and can be combined with economic factors
- Examples considered are simple biological models but we hope to apply the methods to more realistic biological models, and to incorporate data

THANK YOU

QUESTIONS and COMMENTS???

