Group Inverse: Theory, Computation, and Applications in Mathematical Biology

Steve Kirkland

Department of Mathematics University of Manitoba We have already seen how eigenvalues/eigenvectors play a key role in age/stage classified population models.

E.g. For the desert tortoise, we have the projection matrix

	[0	0	0	0	0	1.300	1.980	2.570		
<i>A</i> =	0.716	0.567	0	0	0	0	0	0		
	0	0.149	0.567	0	0	0	0	0		
	0	0	0.149	0.604	0	0	0	0		
	0	0	0	0.235	0.560	0	0	0		
	0	0	0	0	0.225	0.678	0	0		
	0	0	0	0	0	0.249	0.851	0		
	0	0	0	0	0	0	0.016	0.860		
with Perron value $r = 0.9581$, right Perron vector $x =$										
$\begin{bmatrix} 0.2217 & 0.4058 & 0.1546 & 0.0651 & 0.0384 & 0.0309 & 0.0718 & 0.0117 \\ \end{bmatrix}$										

What happens if one or more of the demographic rates change? That question might arise in considering species management approaches, for example.

Reframe the question more mathematically: If $A \hookrightarrow A + \epsilon E$ where $\epsilon > 0$ is small and E is some fixed matrix, how do r and x behave as a function of ϵ ?

Want to find the derivative of r wrt ϵ , evaluated at $\epsilon = 0$, and similarly for the derivative of x.

Setup:

Suppose that A is an irreducible nonnegative matrix with Perron value r, right Perron vector x, and left Perron vector y^{\top} , normalized so that $y^{\top}x = 1$.

Fix a matrix *E* such that $A + \epsilon E$ is also irreducible and nonnegative for all ϵ such that $|\epsilon|$ is sufficiently small. Thinking of the corresponding Perron value as $r(\epsilon)$ and right Perron vector $x(\epsilon)$, we want $\frac{dr}{d\epsilon}\Big|_{\epsilon=0}, \frac{dx}{d\epsilon}\Big|_{\epsilon=0}$.

Do these 'derivatives' even make sense? For r, recall that it's a simple root of the characteristic polynomial, whose coefficients are linear in ϵ , so differentiability of r follows from the implicit function theorem.

For differentiability of x, we need to be careful about how x is normalized.

Cautionary example: Consider t > -1, $A = \begin{bmatrix} 1+t & 1+t \\ 1 & 1 \end{bmatrix}, r = 2+t.$ Here's the Perron vector *x*, normalized so that $||x||_{\infty} = 1: x = \begin{bmatrix} 1+t\\1 \end{bmatrix}$, if 0 > t > -1, and $x = \begin{bmatrix} 1 \\ \frac{1}{1+t} \end{bmatrix}$, if $t \ge 0$. Observe that this x is not differentiable at t = 0.However, writing $A = \left| \frac{a_{11} | u^{\top}}{v | A_{(1)}} \right|$, we find that x can be written as $x_1 \frac{1}{(rl - A_{(1)})^{-1}v}$ so there are (lots of) normalizations so that x is differentiable. E.g. $x_1 = 1, ||x||_1 = 1, ||x||_2 = 1.$

Choose a good normalization for x, so that $x(\epsilon), r(\epsilon)$ are differentiable at $\epsilon = 0$ for $A + \epsilon E$.

$$Ax = rx \implies A'x + Ax' = r'x + rx' \implies Ex + Ax' = r'x + rx' \implies y^{\top}Ex + y^{\top}Ax' = r'y^{\top}x + ry^{\top}x'.$$

Deduce that

$$r' \equiv \frac{dr}{dE} = y^{\top} E x.$$

(Side note: yet another reason to care about Perron vectors!)

E.g. Derivatives for the desert tortoise.

*	*	*	*	*	0.0060	0.0140	0.0023
0.0580	0.1062	*	*	*	*	*	*
*	0.2786	0.1062	*	*	*	*	*
*	*	0.2786	0.1173	*	*	*	*
*	*	*	0.1767	0.1043	*	*	*
*	*	*	*	0.1845	0.1482	*	*
*	*	*	*	*	0.1352	0.3145	*
*	*	*	*	*	*	0.3678	0.0600

Small entry: birth rate for subadults (first stage capable of reproducing).

Large entry: rate of movement from adult 1 to adult 2 (latter has the highest birth rate).

Derivative of the eigenvector? Recall that we had Ex + Ax' = r'x + rx' which rearranges to

$$(rI - A)x' = Ex - r'x = Ex - (y^{\top}Ex)x.$$

The issue here is that rI - A is singular (with nullity 1).

The inverse of rI - A is not available for finding x', so we look for the next best thing.

Suppose that M is a real square matrix of order n. Suppose further that M is singular, with 0 as a semi-simple eigenvalue (i.e. the algebraic and geometric multiplicities of 0 coincide). Of course M is not invertible, but it has a group inverse, which we now define.

The group inverse of M is the unique matrix X satisfying the following three properties: i) MX = XM, ii) MXM = M and iii) XMX = X. We denote this group X by $M^{\#}$. One way of computing $M^{\#}$ is to work with a full rank factorisation of M: if M has rank k, then there is an $n \times k$ matrix U and a $k \times n$ matrix V such that M = UV. In that case, $M^{\#}$ can be written as $M^{\#} = U(VU)^{-2}V$. (Note that M = UV has n - k nonzero eigenvalues; since UV and VU have the same nonzero eigenvalues, VU is invertible.)

Uniqueness: MXMX = MX, so MX is a projection matrix. We have $col(MX) \subseteq col(M)$ and $rank(M) = rank(MXM) \leq rank(MX) \leq rank(M)$, so rank(MX)=rank(M). Deduce that col(MX) = col(M). Similarly we deduce N(MX) = N(M) (here $N(\bullet)$ is the null space). Deduce that MX is the projection matrix with range col(M) and null space N(M). Suppose that X_1 and X_2 are two solutions to i)–iii). Then $MX_1 = MX_2$. But then we have

$$X_1 = X_1 M X_1 = X_1 (M X_2) = (X_1 M) X_2 = (X_2 M) X_2 = X_2.$$

Hence there is a unique matrix satisfying i)-iii).

Consider the special case that 0 is a simple eigenvalue of M, say with u and v^{\top} as right and left null vectors, normalised so that $v^{\top}u = 1$. In this case, X is the group inverse iff $MX = XM = I - uv^{\top}, Xu = 0$ and $v^{\top}X = 0^{\top}$. Sketch: Evidently if $MX = XM = I - uv^{\top}$, Xu = 0 and $v^{\top}X = 0^{\top}$, then X satisfies i)-iii). Suppose now that X satisfies i)-iii). Since M(XM - I) = 0, each column of XM - I is a scalar multiple of u. Also, (MX - I)M = 0, so each row of MX - I is a scalar multiple of v^{\top} . Hence, $XM = I + uw^{\top}$ for some w and $MX = I + zv^{\top}$ for some z. But XM = MX, so it must be the case that $XM = MX = I + tuv^{\top}$ for some scalar t. Since det(XM) = 0. it follows that t = -1.

Back to the issue at hand: $(rI - A)x' = Ex - (y^{\top}Ex)x$. Multiply by $(rI - A)^{\#}$ to get

$$(rI - A)^{\#}(rI - A)x' = (rI - A)^{\#}Ex - (y^{\top}Ex)(rI - A)^{\#}x.$$

In our setting, $(rI - A)^{\#}(rI - A) = I - xy^{\top}$ and $(rI - A)^{\#}x = 0$, so we get $(I - xy^{\top})x' = (rI - A)^{\#}Ex$ so

$$x' \equiv \frac{dx}{dE} = (y^{\top}x')x + (rI - A)^{\#}Ex = \operatorname{const} \times x + (rI - A)^{\#}Ex.$$

How to find the constant? Depends on the normalization of x that we started with.

Suppose that there is a fixed vector z, and that x has been normalized so that $z^{\top}x = 1$. Then $z^{\top}x' = 0$, and we find that $0 = \text{const} + z^{\top}(rI - A)^{\#}Ex$. Deduce that

$$x' = rac{dx}{dE} = (-z^{ op}(rI - A)^{\#}Ex)x + (rI - A)^{\#}Ex.$$

Observe that this covers the case z = 1, which corresponds to $||x||_1 = 1$.

Fix p > 0, and suppose that we normalize x so that $||x||_p = 1$. Set $z_j = x_j^{p-1}, j = 1, ..., n$ and notice that $z^{\top}x' = 0$. As above, we have

$$x' = \frac{dx}{dE} = \left(- \begin{bmatrix} x_1^{p-1} & \dots & x_n^{p-1} \end{bmatrix} (rI - A)^{\#} Ex \right) x + (rI - A)^{\#} Ex.$$

E.g. Desert tortoise, right Perron vector x with $||x||_1 = 1$ is:

			0.0070		0.2657]	
x =	[0.2217]		0.0066		0.1048	
	0.4058		0.0001		-0.1055	
	0.1546		-0.0011		-0.1120	
	0.0651	Darivatives of ve	-0.0012	,	-0.1016	
	0.0384	. Derivatives of X.	-0.0016		-0.1222	
	0.0309		-0.0078		-0.5308	
	0.0718		0.0020_		0.6015	
	[0.0117]		\uparrow	\uparrow		
			wrt(1, 6)		wrt(8,7)	

•

Suppose that A is an irreducible $n \times n$ nonnegative matrix with Perron value r, and left and right Perron vectors y^{\top}, x , normalized so that $y^{\top}x = 1$. Write A, x, y^{\top} as $\left[\begin{array}{c|c} A_{(n)} & * \\ \hline & * & * \end{array}\right]$, $\begin{bmatrix} \overline{x} \\ x_n \end{bmatrix}, \begin{bmatrix} \overline{y}^\top \\ y_n \end{bmatrix}. \text{ Then } (rI - A)^\# =$ $\left(\overline{y}^{\top}(rI - A_{(n)})^{-1}\overline{x}\right)xy^{\top} +$ $\begin{bmatrix} (rl - A_{(n)})^{-1} - (rl - A_{(n)})^{-1} \overline{xy}^{\top} - \overline{xy}^{\top} (rl - A_{(n)})^{-1} & | -y_n (rl - A_{(n)})^{-1} \overline{x} \\ -x_n \overline{y}^{\top} (rl - A_{(n)})^{-1} & | 0 \end{bmatrix}.$

The formula can be deduced from the eigenequations Ax = rx, $y^{\top}A = ry^{\top}$, which yield a full rank factorization for rI - A. In particular, we can find the group inverse in roughly $2n^3$ flops.

Suppose that we have the Jordan form available for rI - A, say

$$rI - A = S \begin{bmatrix} 0 & & & \\ & J(\lambda_2)_{k_2} & & \\ & & \ddots & \\ & & & J(\lambda_q)_{k_q} \end{bmatrix} S^{-1}$$

for some invertible matrix S. Then

$$(rI - A)^{\#} = S \begin{bmatrix} 0 & & & \\ & J(\lambda_2)_{k_2}^{-1} & & \\ & & \ddots & \\ & & & J(\lambda_q)_{k_q}^{-1} \end{bmatrix} S^{-1}.$$

In particular the spectral properties of $(rI - A)^{\#}$ are closely related to those of rI - A.

Suppose that A is an irreducible stochastic matrix with stationary vector w^{\top} . Now perturb A to get $\tilde{A} = A + E$, where \tilde{A} is also irreducible and stochastic. What is the new stationary distribution vector \tilde{w}^{\top} ?

We have
$$\tilde{w}^{\top}(A+E) = \tilde{w}^{\top}$$
, so $\tilde{w}^{\top}(I-A) = \tilde{w}^{\top}E$. Hence
 $\tilde{w}^{\top}(I-A)(I-A)^{\#} = \tilde{w}^{\top}E(I-A)^{\#}$ so that
 $\tilde{w}^{\top}(I-\mathbf{1}w^{\top}) = \tilde{w}^{\top}E(I-A)^{\#}$.

Deduce that $\tilde{w}^{\top}(I - E(I - A)^{\#}) = w^{\top}$. It turns out that $(I - E(I - A)^{\#})$ is nonsingular, and hence

$$\tilde{w}^{\top} = w^{\top} (I - E(I - A)^{\#})^{-1}.$$

Species succession transition matrix A:

.7725	.1022	.0170	.0040	.0150	.0010	.0180	.0120	.0020	.0140	.0030	.0020	.0050	.0030	.0291
.1450	.6090	.0310	.0110	.0280	.0050	.0220	.0250	.0110	.0150	.0120	.0080	.0050	.0040	.0690
.0519	.0609	.7093	.0040	.0200	.0040	.0080	.0080	.0250	.0030	.0050	.0070	.0020	.0080	.0839
.0170	.0541	.0060	.8398	.0050	0	.0040	.0060	.0080	.0040	.0060	.0110	0	.0030	.0360
.1169	.2178	.0350	.0040	. 4036	.0080	.0330	.0320	.0130	.0070	.0060	.0050	.0060	.0050	.1079
.0090	.0240	.0120	0	.0160	.8647	.0010	.0070	.0160	.0030	.0040	.0070	0	0	.0361
.2412	.2232	.0511	.0160	.0801	.0240	.1051	.0410	.0140	.0330	.0250	.0050	.0140	.0120	.1151
.1986	.2345	.0379	.0180	.0888	.0070	.0439	.1537	.0150	.0269	.0160	.0200	.0090	.0090	.1218
.0559	.1469	.0260	.0110	.0200	.0060	.0110	.0260	.5854	.0210	.0060	.0050	.0010	.0050	.0739
.3084	.2275	.0309	.0100	.0269	.0060	.0419	.0309	.0100	.1647	.0130	.0080	.0120	.0060	.1038
.0559	.2216	.0279	.0080	.0359	0	.0250	.0200	.0070	.0070	.5060	.0020	.0050	.0030	.0758
.0250	.0680	.0180	.0300	.0160	0	.0100	.0160	.0040	.0030	.0010	.5370	.0030	.0030	.2660
. 3210	.1790	.0230	0	.0630	0	.0300	.0200	.0030	.0200	.0170	0	.2480	0	.0760
.1583	.4489	.0180	.0180	.0852	.0060	.0301	.0180	.0180	.0301	.0060	.0060	0	.0301	.1273
.1010	.3200	.0250	.0090	.0620	.0050	.0480	.0340	.0130	.0310	.0170	.0170	.0110	.0130	.2940

Perturbation: $a_{11} \rightarrow a_{11} - .0517, \ a_{12} \rightarrow a_{12} + .0517.$

Stationary distribution plots, before and after the perturbation.

Other uses in the Markov chain context:

For an irreducible stochastic matrix A with stationary vector w^{\top} , the mean first passage matrix is given by

$$M = \left(I - (I - A)^{\#} + J(I - A)^{\#}_{\mathrm{dg}}\right) W^{-1},$$

where $W = \operatorname{diag}(w)$.

Then $Mw = (1 + \operatorname{trace}((I - A)^{\#}))\mathbf{1}$, so Kemeny's constant $\kappa(A)$ is equal to $\operatorname{trace}((I - A)^{\#})$.

Imagine we have an outbreak of a disease – the outbreak occurs heterogeneously in several different geographic locations ("patches"), and there is the possibility of movement between different locations.

Cholera, with communities located along a river, and the pathogen carried between patches by contaminated water.

The disease has characteristics that are patch-dependent: indirect transmission rate from pathogen to host, pathogen decay rate, pathogen shedding rate, and decay rate of infectious host individuals.

Movement is possible between the patches, with parameters $m_{ij} \ge 0$ representing the representing rate of the pathogen/host dispersal from patch *j* to patch *i*.

If there are *n* patches, then we may construct the corresponding movement matrix $M = [m_{ij}]_{i,j=1,...,n}$, as well as the associated Laplacian matrix $L = diag(\mathbf{1}^T M) - M$.

For each patch we keep track of the number of susceptible, infected and recovered individuals, and the water, with patch-dependent rates.

We model these as a system of ODEs.

Will the disease persist or not? The answer is determined by the network basic reproduction number, \mathcal{R}_0 ; if $\mathcal{R}_0 < 1$ the disease dies out, while if $\mathcal{R}_0 > 1$ the disease persists.

 \mathcal{R}_0 can also be interpreted as the expected number of infections directly generated by one infected individual.

Each patch has its own basic reproductive number $\mathcal{R}_0^{(k)}$, based on the patch–specific parameters. If the dispersal between patches is much faster than the disease dynamics, it turns out that we have $\mathcal{R}_0 \approx \sum_{k=1}^n u_k \mathcal{R}_0^{(k)}$, where $u^T = \begin{bmatrix} u_1 & u_2 & \dots & u_n \end{bmatrix}$ is the right null vector of the Laplacian matrix *L*, normalised so that $u^T \mathbf{1} = 1$.

Notice that u depends only on the network, not on the disease dynamics. Hence, we can study the influence of that network structure on \mathcal{R}_0 .

Suppose that we perturb the movement matrix so that $m_{ij} \rightarrow m_{ij} + \epsilon$. This yields $\tilde{L} = L + \epsilon(e_j - e_i)e_j^T \equiv L + E$. Similar to the Markov chain perturbation setting, $\tilde{u} = (I + L^{\#}E)^{-1}u$. Since $E = \epsilon(e_j - e_i)e_j^T$, $(I + L^{\#}E)^{-1} = I - \frac{\epsilon}{1 + \epsilon(L_{jj}^{\#} - L_{ji}^{\#})}L^{\#}(e_j - e_i)e_j^T$. Upshot:

$$\tilde{\mathcal{R}}_0 = \mathcal{R}_0 - \frac{\epsilon u_j}{1 + \epsilon (L_{jj}^{\#} - L_{ji}^{\#})} \sum_{k=1}^n (L_{kj}^{\#} - L_{ki}^{\#}) \mathcal{R}_0^{(k)}.$$

Knowledge of $L^{\#}$ gives insight into how changes in the network affect $\tilde{\mathcal{R}}_0$.

References:

Kirkland and Neumann, *Group Inverses for M-matrices and their Applications*, CRC, 2013.

Myer, The role of the group generalized inverse in the theory of finite Markov chains, *SIAM Review* 17, 1975.

Kirkland, Shuai, van den Driessche and Wang, Impact of varying community networks on disease invasion, *SIAM Journal on Applied Mathematics* 81, 2021.