
Motivation
The Group Inverse

Applications

Group Inverse: Theory, Computation, and
Applications in Mathematical Biology

Steve Kirkland

Department of Mathematics
University of Manitoba

Steve Kirkland Lecture 9 – Group inverse



Motivation
The Group Inverse

Applications

We have already seen how eigenvalues/eigenvectors play a key role
in age/stage classified population models.
E.g. For the desert tortoise, we have the projection matrix

A =



0 0 0 0 0 1.300 1.980 2.570
0.716 0.567 0 0 0 0 0 0

0 0.149 0.567 0 0 0 0 0
0 0 0.149 0.604 0 0 0 0
0 0 0 0.235 0.560 0 0 0
0 0 0 0 0.225 0.678 0 0
0 0 0 0 0 0.249 0.851 0
0 0 0 0 0 0 0.016 0.860


with Perron value r = 0.9581, right Perron vector x =[
0.2217 0.4058 0.1546 0.0651 0.0384 0.0309 0.0718 0.0117

]>
.
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What happens if one or more of the demographic rates change?
That question might arise in considering species management
approaches, for example.

Reframe the question more mathematically: If A ↪→ A + εE where
ε > 0 is small and E is some fixed matrix, how do r and x behave
as a function of ε?

Want to find the derivative of r wrt ε, evaluated at ε = 0, and
similarly for the derivative of x .
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Setup:
Suppose that A is an irreducible nonnegative matrix with Perron
value r , right Perron vector x , and left Perron vector y>,
normalized so that y>x = 1.

Fix a matrix E such that A + εE is also irreducible and
nonnegative for all ε such that |ε| is sufficiently small. Thinking of
the corresponding Perron value as r(ε) and right Perron vector
x(ε), we want dr

dε

∣∣∣
ε=0

, dx
dε

∣∣∣
ε=0

.

Do these ‘derivatives’ even make sense? For r , recall that it’s a
simple root of the characteristic polynomial, whose coefficients are
linear in ε, so differentiability of r follows from the implicit function
theorem.

Steve Kirkland Lecture 9 – Group inverse



Motivation
The Group Inverse

Applications

For differentiability of x , we need to be careful about how x is
normalized.

Cautionary example: Consider t > −1,

A =
[

1 + t 1 + t
1 1

]
, r = 2 + t. Here’s the Perron vector x ,

normalized so that ||x ||∞ = 1 : x =
[

1 + t
1

]
, if 0 > t > −1, and

x =
[

1
1

1+t

]
, if t ≥ 0. Observe that this x is not differentiable at

t = 0.
However, writing A =

[
a11 u>
v A(1)

]
, we find that x can be

written as x1

[
1

(rI − A(1))−1v

]
so there are (lots of) normalizations

so that x is differentiable. E.g. x1 = 1, ||x ||1 = 1, ||x ||2 = 1.
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Choose a good normalization for x , so that x(ε), r(ε) are
differentiable at ε = 0 for A + εE .

Ax = rx =⇒ A′x + Ax ′ = r ′x + rx ′ =⇒ Ex + Ax ′ =
r ′x + rx ′ =⇒ y>Ex + y>Ax ′ = r ′y>x + ry>x ′.

Deduce that
r ′ ≡ dr

dE = y>Ex .

(Side note: yet another reason to care about Perron vectors!)
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E.g. Derivatives for the desert tortoise.

∗ ∗ ∗ ∗ ∗ 0.0060 0.0140 0.0023
0.0580 0.1062 ∗ ∗ ∗ ∗ ∗ ∗
∗ 0.2786 0.1062 ∗ ∗ ∗ ∗ ∗
∗ ∗ 0.2786 0.1173 ∗ ∗ ∗ ∗
∗ ∗ ∗ 0.1767 0.1043 ∗ ∗ ∗
∗ ∗ ∗ ∗ 0.1845 0.1482 ∗ ∗
∗ ∗ ∗ ∗ ∗ 0.1352 0.3145 ∗
∗ ∗ ∗ ∗ ∗ ∗ 0.3678 0.0600


Small entry: birth rate for subadults (first stage capable of
reproducing).

Large entry: rate of movement from adult 1 to adult 2 (latter has
the highest birth rate).
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Derivative of the eigenvector? Recall that we had
Ex + Ax ′ = r ′x + rx ′ which rearranges to

(rI − A)x ′ = Ex − r ′x = Ex − (y>Ex)x .

The issue here is that rI − A is singular (with nullity 1).

The inverse of rI − A is not available for finding x ′, so we look for
the next best thing.
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Suppose that M is a real square matrix of order n. Suppose further
that M is singular, with 0 as a semi–simple eigenvalue (i.e. the
algebraic and geometric multiplicities of 0 coincide). Of course M
is not invertible, but it has a group inverse, which we now define.

The group inverse of M is the unique matrix X satisfying the
following three properties: i) MX = XM, ii) MXM = M and iii)
XMX = X . We denote this group X by M#. One way of
computing M# is to work with a full rank factorisation of M: if M
has rank k, then there is an n × k matrix U and a k × n matrix V
such that M = UV . In that case, M# can be written as
M# = U(VU)−2V . (Note that M = UV has n − k nonzero
eigenvalues; since UV and VU have the same nonzero eigenvalues,
VU is invertible.)
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Uniqueness: MXMX = MX , so MX is a projection matrix. We
have col(MX ) ⊆ col(M) and
rank(M) = rank(MXM) ≤ rank(MX ) ≤ rank(M), so
rank(MX)=rank(M). Deduce that col(MX ) = col(M). Similarly we
deduce N(MX ) = N(M) (here N(•) is the null space). Deduce
that MX is the projection matrix with range col(M) and null space
N(M). Suppose that X1 and X2 are two solutions to i)–iii). Then
MX1 = MX2. But then we have

X1 = X1MX1 = X1(MX2) = (X1M)X2 = (X2M)X2 = X2.

Hence there is a unique matrix satisfying i)–iii).
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Consider the special case that 0 is a simple eigenvalue of M, say
with u and v> as right and left null vectors, normalised so that
v>u = 1. In this case, X is the group inverse iff
MX = XM = I − uv>,Xu = 0 and v>X = 0>.
Sketch: Evidently if MX = XM = I − uv>,Xu = 0 and
v>X = 0>, then X satisfies i)–iii). Suppose now that X satisfies
i)–iii). Since M(XM − I) = 0, each column of XM − I is a scalar
multiple of u. Also, (MX − I)M = 0, so each row of MX − I is a
scalar multiple of v>. Hence, XM = I + uw> for some w and
MX = I + zv> for some z . But XM = MX , so it must be the case
that XM = MX = I + tuv> for some scalar t. Since det(XM) = 0,
it follows that t = −1.
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Back to the issue at hand: (rI − A)x ′ = Ex − (y>Ex)x . Multiply
by (rI − A)# to get

(rI − A)#(rI − A)x ′ = (rI − A)#Ex − (y>Ex)(rI − A)#x .

In our setting, (rI −A)#(rI −A) = I − xy> and (rI −A)#x = 0, so
we get (I − xy>)x ′ = (rI − A)#Ex so

x ′ ≡ dx
dE = (y>x ′)x + (rI − A)#Ex = const× x + (rI − A)#Ex .

How to find the constant? Depends on the normalization of x that
we started with.
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Suppose that there is a fixed vector z , and that x has been
normalized so that z>x = 1. Then z>x ′ = 0, and we find that
0 = const + z>(rI − A)#Ex . Deduce that

x ′ = dx
dE = (−z>(rI − A)#Ex)x + (rI − A)#Ex .

Observe that this covers the case z = 1, which corresponds to
||x ||1 = 1.

Fix p > 0, and suppose that we normalize x so that ||x ||p = 1. Set
zj = xp−1

j , j = 1, . . . , n and notice that z>x ′ = 0. As above, we
have

x ′ = dx
dE =

(
−
[
xp−1

1 . . . xp−1
n

]
(rI − A)#Ex

)
x + (rI − A)#Ex .
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E.g. Desert tortoise, right Perron vector x with ||x ||1 = 1 is:

x =



0.2217
0.4058
0.1546
0.0651
0.0384
0.0309
0.0718
0.0117


. Derivatives of x :



0.0070
0.0066
0.0001
−0.0011
−0.0012
−0.0016
−0.0078
−0.0020


,

↑
wrt(1, 6)



0.2657
0.1048
−0.1055
−0.1120
−0.1016
−0.1222
−0.5308
0.6015


.

↑
wrt(8, 7)
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Suppose that A is an irreducible n × n nonnegative matrix with
Perron value r , and left and right Perron vectors y>, x , normalized

so that y>x = 1. Write A, x , y> as
[

A(n) ∗
∗ ∗

]
,[

x
xn

]
,
[
y>

∣∣∣ yn
]
. Then (rI − A)# =

(
y>(rI − A(n))−1x

)
xy>+[

(rI − A(n))−1 − (rI − A(n))−1xy> − xy>(rI − A(n))−1 −yn(rI − A(n))−1x
−xny>(rI − A(n))−1 0

]
.

The formula can be deduced from the eigenequations
Ax = rx , y>A = ry>, which yield a full rank factorization for
rI − A. In particular, we can find the group inverse in roughly 2n3

flops.
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Suppose that we have the Jordan form available for rI − A, say

rI − A = S


0

J(λ2)k2
. . .

J(λq)kq

S−1

for some invertible matrix S. Then

(rI − A)# = S


0

J(λ2)−1
k2

. . .
J(λq)−1

kq

S−1.

In particular the spectral properties of (rI − A)# are closely related
to those of rI − A.
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Suppose that A is an irreducible stochastic matrix with stationary
vector w>. Now perturb A to get Ã = A + E , where Ã is also
irreducible and stochastic. What is the new stationary distribution
vector w̃>?

We have w̃>(A + E ) = w̃>, so w̃>(I − A) = w̃>E . Hence
w̃>(I − A)(I − A)# = w̃>E (I − A)# so that
w̃>(I − 1w>) = w̃>E (I − A)#.

Deduce that w̃>(I − E (I − A)#) = w>. It turns out that
(I − E (I − A)#) is nonsingular, and hence

w̃> = w>(I − E (I − A)#)−1.
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Species succession transition matrix A:

.7725 .1022 .0170 .0040 .0150 .0010 .0180 .0120 .0020 .0140 .0030 .0020 .0050 .0030 .0291

.1450 .6090 .0310 .0110 .0280 .0050 .0220 .0250 .0110 .0150 .0120 .0080 .0050 .0040 .0690

.0519 .0609 .7093 .0040 .0200 .0040 .0080 .0080 .0250 .0030 .0050 .0070 .0020 .0080 .0839

.0170 .0541 .0060 .8398 .0050 0 .0040 .0060 .0080 .0040 .0060 .0110 0 .0030 .0360

.1169 .2178 .0350 .0040 .4036 .0080 .0330 .0320 .0130 .0070 .0060 .0050 .0060 .0050 .1079

.0090 .0240 .0120 0 .0160 .8647 .0010 .0070 .0160 .0030 .0040 .0070 0 0 .0361

.2412 .2232 .0511 .0160 .0801 .0240 .1051 .0410 .0140 .0330 .0250 .0050 .0140 .0120 .1151

.1986 .2345 .0379 .0180 .0888 .0070 .0439 .1537 .0150 .0269 .0160 .0200 .0090 .0090 .1218

.0559 .1469 .0260 .0110 .0200 .0060 .0110 .0260 .5854 .0210 .0060 .0050 .0010 .0050 .0739

.3084 .2275 .0309 .0100 .0269 .0060 .0419 .0309 .0100 .1647 .0130 .0080 .0120 .0060 .1038

.0559 .2216 .0279 .0080 .0359 0 .0250 .0200 .0070 .0070 .5060 .0020 .0050 .0030 .0758

.0250 .0680 .0180 .0300 .0160 0 .0100 .0160 .0040 .0030 .0010 .5370 .0030 .0030 .2660

.3210 .1790 .0230 0 .0630 0 .0300 .0200 .0030 .0200 .0170 0 .2480 0 .0760

.1583 .4489 .0180 .0180 .0852 .0060 .0301 .0180 .0180 .0301 .0060 .0060 0 .0301 .1273

.1010 .3200 .0250 .0090 .0620 .0050 .0480 .0340 .0130 .0310 .0170 .0170 .0110 .0130 .2940


Perturbation: a11 → a11 − .0517, a12 → a12 + .0517.
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Stationary distribution plots, before and after the perturbation.
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Other uses in the Markov chain context:

For an irreducible stochastic matrix A with stationary vector w>,
the mean first passage matrix is given by

M =
(
I − (I − A)# + J(I − A)#

dg

)
W−1,

where W = diag(w).

Then Mw = (1 + trace((I −A)#))1, so Kemeny’s constant κ(A) is
equal to trace((I − A)#).
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Imagine we have an outbreak of a disease – the outbreak occurs
heterogeneously in several different geographic locations
(“patches”), and there is the possibility of movement between
different locations.
Cholera, with communities located along a river, and the pathogen
carried between patches by contaminated water.
The disease has characteristics that are patch–dependent: indirect
transmission rate from pathogen to host, pathogen decay rate,
pathogen shedding rate, and decay rate of infectious host
individuals.
Movement is possible between the patches, with parameters
mij ≥ 0 representing the representing rate of the pathogen/host
dispersal from patch j to patch i .
If there are n patches, then we may construct the corresponding
movement matrix M = [mij ]i ,j=1,...,n , as well as the associated
Laplacian matrix L = diag(1T M)−M.
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For each patch we keep track of the number of susceptible,
infected and recovered individuals, and the water, with
patch–dependent rates.
We model these as a system of ODEs.
Will the disease persist or not? The answer is determined by the
network basic reproduction number, R0; if R0 < 1 the disease dies
out, while if R0 > 1 the disease persists.
R0 can also be interpreted as the expected number of infections
directly generated by one infected individual.
Each patch has its own basic reproductive number R(k)

0 , based on
the patch–specific parameters. If the dispersal between patches is
much faster than the disease dynamics, it turns out that we have
R0 ≈

∑n
k=1 ukR(k)

0 , where uT =
[

u1 u2 . . . un
]

is the right
null vector of the Laplacian matrix L, normalised so that uT 1 = 1.
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Notice that u depends only on the network, not on the disease
dynamics. Hence, we can study the influence of that network
structure on R0.
Suppose that we perturb the movement matrix so that
mij → mij + ε. This yields L̃ = L + ε(ej − ei )eT

j ≡ L + E .
Similar to the Markov chain perturbation setting,
ũ = (I + L#E )−1u. Since E = ε(ej − ei )eT

j ,

(I + L#E )−1 = I − ε

1+ε(L#
jj −L#

ji )
L#(ej − ei )e>j .

Upshot:

R̃0 = R0 −
εuj

1 + ε(L#
jj − L#

ji )

n∑
k=1

(L#
kj − L#

ki )R
(k)
0 .

Knowledge of L# gives insight into how changes in the network
affect R̃0.
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