## Welcome! <br> Today's topic: Modular Operators

We use modular arithmetic every day when we talk about time.

Example: If it is 11am, what time will it be in 5 hours? It will be 4 pm rather than 16am.

4 is the remainder when we divide 16 by 12

## Notation

$$
x(\bmod n)=r
$$

This means when $x$ is divided by $n$, there is a remainder of $r$. We say: " $x$ modulo $n$ is equal to $r$."

## Examples

$7(\bmod 4)=$

## Exercises

$7(\bmod 5)=$
$8(\bmod 3)=$
$37(\bmod 6)=$
$8(\bmod 4)=$
$17(\bmod 8)=$
$124(\bmod 60)=$

## Word Problem!

Using a regular deck of 52 cards, I dealt all the cards in the deck to 3 people (including myself). Were the cards dealt evenly?

## Modular Addition

We will look at two methods for modular addition!

Let's consider $(1824+326)(\bmod 2)$

## Method 1

For method 1, we compute the addition first, then mod our answer

$$
\begin{gathered}
1824+326=2150 . \text { Since } 2150(\bmod 2)=0 \\
(1824+326)(\bmod 2)=0
\end{gathered}
$$

## Method 2

For method 2, we compute each mod first, then add our answers.

We know $1824(\bmod 2)=326(\bmod 2)=0$.
Thus, $(1824+326)(\bmod 2)=1824(\bmod 2)+326(\bmod 2)=0+0=0$

In general, $(x+y)(\bmod n)=x(\bmod n)+y(\bmod n)$

## Examples

$(7+6)(\bmod 5)=$
$(19+28)(\bmod 5)=$

## Exercises

## $5+9(\bmod 4)=$

$$
43+37(\bmod 3)=
$$

$124+199(\bmod 5)=$

$$
34+121(\bmod 11)=
$$

## Word Problem!

If my birthday was on Tuesday, March 5, 2019, what day of the week will my birthday be on in 2020? (Note the year 2020 is a leap year with 366 days.)

## Modular Multiplication

Modular multiplication is very similar to modular addition.

We define it as: $(x \times y)(\bmod n)=[x(\bmod n) \times y(\bmod n)](\bmod n)$

## Exercises

$(5 \times 9)(\bmod 8)=$
$(7 \times 15)(\bmod 7)=$
$(5782 \times 2579)(\bmod 10)=$ $(603 \times 123)(\bmod 60)=$
$(16 \times 25)(\bmod 12)=$ $(34 \times 122)(\bmod 11)=$

## Word Problem!

A liter of milk is 4 cups, and one cake recipe uses 3 cups. If I have 8 liters of milk, how many cakes can I make? And how many cups of milk will be leftover, if any?

## Common Bases

| Base | Application | Example |
| :--- | :--- | :--- |
| 2 | Even/odd numbers | A number $n$ is even if $n(\bmod 2)=0$, and odd otherwise. |
| Binary codes | We also use base 2 when converting from binary to decimal form, as we <br> will see later. |  |
| 4 | Years between 2 <br> consecutive leap years | If any given year n is either $[\mathrm{n}(\bmod 400)=0]$ or [ $\mathrm{n}(\bmod 4)=0$ and $\mathrm{n}(\mathrm{mod}$ <br> lhen it is a leap year, otherwise it is not. |
| 7 | Days in a week | If today is Sunday, then in 16 days it is Tuesday (since $16(\bmod 7)=2)$. |
| 10 | Metric measurements | We use base 10 when converting between metric measurements, such as <br> meters to millimeters. |
| 12 | Hours on an analog clock | If it's 7 pm now, it will be 2 am in 7 hours (since $(7+7)$ <br> $(\bmod 12)=14(\bmod 12)=2)$. |
| 24 | Hours in a day | If its 2 pm now, in 54 hours it will be 8 am (since $(54+2)$ <br> $(\bmod 24)=8)$. |

## Common Bases (continued)

| Base | Application | Example |
| :--- | :--- | :--- |
| 28,29, | Days in a month | If today is the 4th of April, then it will be the 8th of May in <br> 30,31 |
| 52 | Weeks in a year | If today is the 6th week of the year, then it will be the 16th <br> week of next year in 62 weeks. |
| 60 | Seconds in a minute and <br> minutes in an hour | 155 seconds is equivalent to 2 minutes and 35 seconds. <br> 100Years in a century |
| 360 | Degrees in a full circle | In 344 years, it will be the 60 th year of that century, since <br> $(344+2016)($ mod 100$)=60$. |
| 360$)=60$. |  |  |

## Word Problem!

(a) Was the year 1900 a leap year?
(b) What about 2000?

## Binary Numbers and Codes

- A binary code is any system that only uses 2 states: $1 / 0$, on/off, true/false etc.
- A binary number is any number containing only 1's and 0's. Examples: 101, 000000, 1111111, 10001001010010, 10001111101010, 0101010101010
- Binary numbers have all sorts of applications, such as
- Computers
- Barcodes
- Calculators
- CD's and DVD's
- TV's
- Braille Binary codes


## Binary Numbers and Codes

- There are multiple ways to express a binary code, the two most common forms of writing a binary code using numbers are 'Decimal form' and 'Binary form'.
- For example: 1101 in binary form becomes 13 in decimal form. And 1001 becomes 9 .
- We can do these conversions ourselves! Let's do a quick review


## Review of Exponents

$$
\begin{gathered}
x^{0}=1 \\
x^{1}=x \\
x^{2}=x \times x \\
x^{3}=x \times x \times x \\
x^{4}=x \times x \times x \times x \\
x^{5}=x \times x \times x \times x \times x
\end{gathered}
$$

and so on... (for any $x$ ). Also, fill out this table, it will be very useful for the rest of the lesson.

| $n$ | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| $2^{n}$ | $2^{0}=$ | $2^{1}=$ | $2^{2}=$ | $2^{3}=$ |
| $n$ | 4 | 5 | 6 | 7 |
| $2^{n}$ | $2^{4}=$ | $2^{5}=$ | $2^{6}=$ | $2^{7}=$ |

## Converting Binary to Decimal

To convert a binary number to its decimal form, follow 3 simple steps. Let's go through these steps and convert 1001 to decimal form.

Step 1:
Write out the number - but leave lots of space between your digits, like this: 10000

## Converting Binary to Decimal

## Step 2:

Multiply each number by a 2, and starting with an exponent of 0 on the very last 2 , and increase the exponent by 1 each time, like this:

$$
\left[1 \times\left(2^{3}\right)\right] \quad\left[0 \times\left(2^{2}\right)\right] \quad\left[0 \times\left(2^{1}\right)\right] \quad\left[1 \times\left(2^{0}\right)\right]
$$

## Converting Binary to Decimal

Step 3:
Sum them up and calculate:

$$
\begin{gathered}
{\left[1 \times\left(2^{3}\right)\right]+\left[0 \times\left(2^{2}\right)\right]+\left[0 \times\left(2^{1}\right)\right]+\left[1 \times\left(2^{0}\right)\right]} \\
=[1 \times(8)]+[0 \times(4)]+[0 \times(2)]+[1 \times(1)] \\
=8+0+0+1=9
\end{gathered}
$$

## Exercise 1

Convert each of the following binary numbers to decimal form. $110 \rightarrow$ $101 \rightarrow$
$00111 \rightarrow$
$100001 \rightarrow$

## Word Problem!

(a) How many different 5-digit binary numbers are there?
(b) How many of those end in a 1?

## Converting Decimal to Binary

Now, this is the part where modular arithmetic comes in handy! We know that if we compute any number (mod 2$)$, it will either be 0 or 1 , and so that's exactly what we use for converting decimal numbers to binary. Here's what we need to do:

1. Compute our number $(\bmod 2)$ and that will be our last digit.
2. Compute our quotient $(\bmod 2)$ and place that as our 2 nd last digit.
3. Repeat until our quotient is 0 .

## Example: Convert 13 to Binary



Now reading from the bottom up, 13 in decimal form is 1101 in binary form.

## Exercise 2

Convert each of the following numbers to binary form.
a) 76
b) 193

## Exercise 2

Convert each of the following numbers to binary form.
c) 97
d) 255

