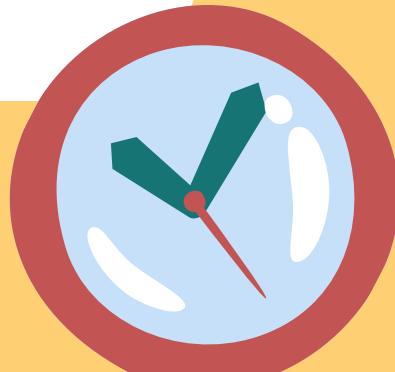
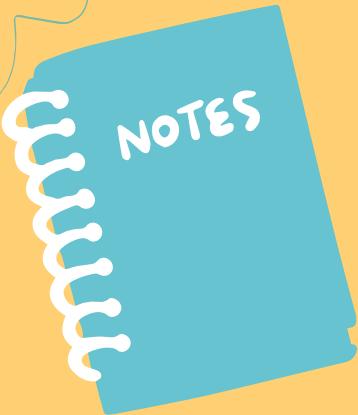


PROVE IT OR LOSE IT!


UNDERSTANDING THE ROLE OF

MATHEMATICAL REASONING

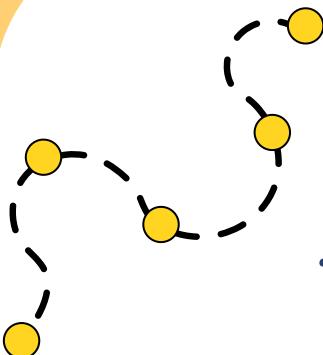

ACROSS GRADE LEVELS

With Dr. Keith and
Ms. Robinson

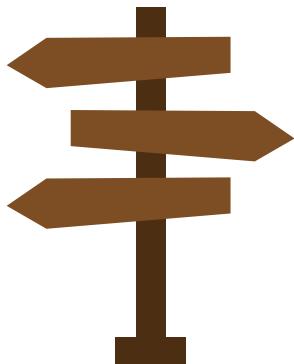
MS. ROBINSON

DR. KEITH

LET'S START WITH ONE TYPE OF PROOF


Given: $2x + 3 = 7$

Prove: $x = 2$


What are **three** different ways that you can prove that $x = 2$?

Discuss with a friend near you.

SO WHAT DO YOU THINK A PROOF IS?

A STEP-BY STEP EXPLANATION OF HOW THE GIVEN STATEMENT TRANSFORMS INTO THE PROVE STATEMENT

ALLOWS US TO EXPLORE DIFFERENT PATHWAYS TO THE PROVE STATEMENT

IT'S LIKE BEING A DETECTIVE IN MATH!

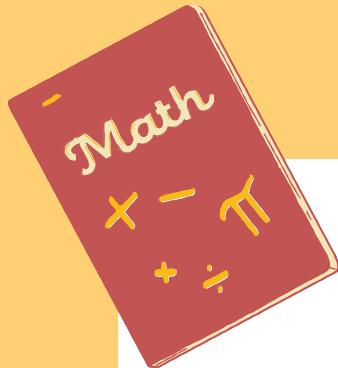
SHOWS WHY SOMETHING IS ALWAYS TRUE

LET'S PRACTICE

Statement:

All numbers that we multiply by 12 are whole numbers.

Always True



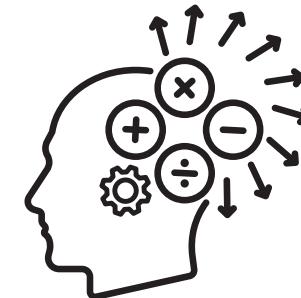
Sometimes True

Never True

Discuss with a friend nearby.

Math

$x - \pi$
 $+ \div$


WHY ARE PROOFS IMPORTANT?

Proofs help us discover real mathematical truths.

Proofs help us to develop our ideas more clearly.

Proofs help us develop our critical thinking skills.

We use proofs in nearly every math class, but especially Algebra and Geometry.

LET'S PRACTICE

Statement: Every odd number is Prime.

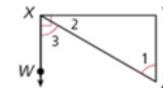
Always True

Sometimes True

Never True

Hint: What is the definition of a prime number?

DIFFERENT TYPES OF PROOFS


TWO COLUMN PROOFS THE “CLASSIC”

Statement	Reasons
1. \overline{AB} is the perpendicular bisector of \overline{PQ}	1. Given
2. $m \angle AMQ = 90^\circ$	2. Definition of perpendicular
3. $m \angle AMP = 90^\circ$	3. Definition of perpendicular
4. $m \angle AMQ = m \angle AMP$	4. Transitive Property

Image from: Study.com

PARAGRAPH PROOFS THE “NARRATIVE”

Given: $\angle WXY$ is a right angle. $\angle 1 \cong \angle 3$
Prove: $\angle 1$ and $\angle 2$ are complementary.

Since $\angle WXY$ is a right angle, $\angle WXY = 90^\circ$ by the definition of a right angle. By the Angle Addition Postulate, $\angle WXY = \angle 2 + \angle 3$. By substitution, $\angle 2 + \angle 3 = 90^\circ$. Since $\angle 1 \cong \angle 3$, $\angle 1 = \angle 3$ by the definition of congruent angles. Using substitution, $\angle 2 + \angle 1 = 90^\circ$. Thus by the definition of complementary angles, $\angle 1$ and $\angle 2$ are complementary.

Image from: tutorportland.com

COUNTEREXAMPLE PROOFS THE “DISPROVER”

Every odd number is Prime
15 is a composite number
because it has more than two
factors (1, 3, 5, and 15).

VISUAL PROOFS THE “PICTURE”

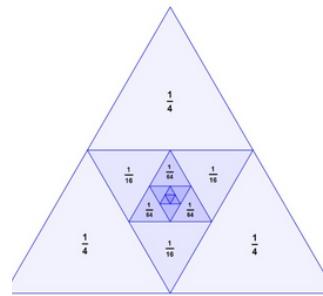
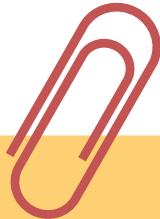


Image from: mrhonner.com

ACTIVITY #1: TWO COLUMN PROOFS

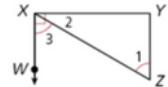

Around the room you currently have examples of two column proofs by Grade Level. There are two posters per grade level, so spread out!

Statement	Reasons
1. AB is the perpendicular bisector of PQ	1. Given
2. $m \angle AMQ = 90^\circ$	2. Definition of perpendicular
3. $m \angle AMP = 90^\circ$	3. Definition of perpendicular
4. $m \angle AMQ = m \angle AMP$	4. Transitive Property

Image from: Study.com

Work with others in your grade level to read the statement and confirm the proof statement.

You have 7 minutes for this two-column proof.


ACTIVITY #2: PARAGRAPH PROOF

Around the room you currently have examples of paragraph proofs by Grade Level. There are two posters per grade level, so spread out!

Work with others in your grade level to read the statement and confirm the proof statement.

You have 10 minutes for this paragraph proof.

Given: $\angle WXY$ is a right angle. $\angle 1 \cong \angle 3$
Prove: $\angle 1$ and $\angle 2$ are complementary.

Since $\angle WXY$ is a right angle, $\angle WXY = 90^\circ$ by the definition of a right angle. By the Angle Addition Postulate, $\angle WXY = \angle 2 + \angle 3$. By substitution, $\angle 2 + \angle 3 = 90^\circ$. Since $\angle 1 \cong \angle 3$, $\angle 1 = \angle 3$ by the definition of congruent angles. Using substitution, $\angle 2 + \angle 1 = 90^\circ$. Thus by the definition of complementary angles, $\angle 1$ and $\angle 2$ are complementary.

Image from: tutorportland.com

ACTIVITY #3: COUNTEREXAMPLE PROOF

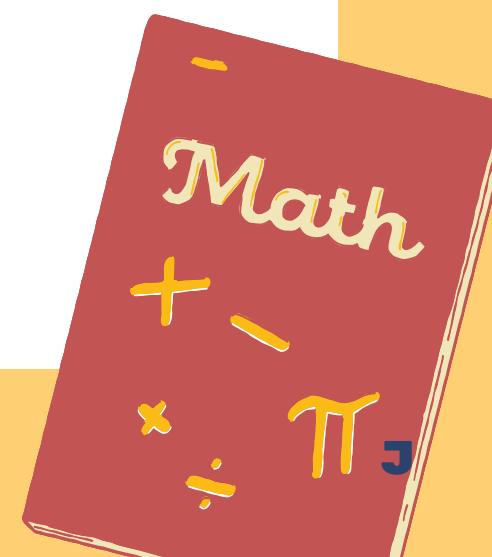
Every odd number is Prime
15 is a composite number
because it has more than two
factors (1, 3, 5, and 15).

Around the room you
currently have examples of
counterexample proofs by
Grade Level. There are two
posters per grade level, so
spread out!

Work with others in your grade level to read the
statement and confirm the proof statement.

You have 7 minutes for
this counterexample proof.

LET'S REVISIT: WHY ARE PROOFS IMPORTANT



Proofs help us discover real mathematical truths.

Proofs help us develop our critical thinking skills.

Proofs help us to develop our ideas more clearly.

We use proofs in nearly every math class, but especially Algebra and Geometry.

