

6th Grade Group - Two Column Proof

Instructions: Work with others in your grade level group to read the *Given* statement and create a two column proof that leads to the *Prove* statement.

Given: $3(x + 9) = 54$

Prove: $x = 9$

Statement	Reasons
$3(x + 9) = 54$	Given
$x = 9$	

7th & 8th Grade Group - Two Column Proof

Instructions: Work with others in your grade level group to read the *Given* statement and create a two column proof that leads to the *Prove* statement.

Given: $3(x + 9) = 2(x - 4)$

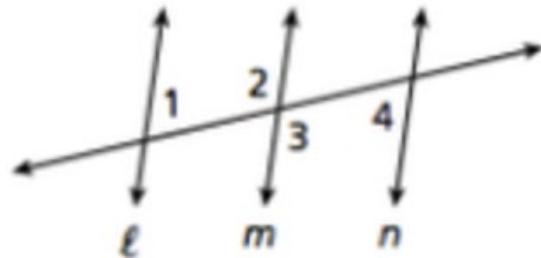
Prove: $x = -35$

Statement	Reasons
$3(x + 9) = 2(x - 4)$	Given
$x = -35$	

Algebra 1 Group - Two Column Proof

Instructions: Work with others in your grade level group to read the *Given* statement and create a two column proof that leads to the *Prove* statement.

Given: $\frac{1}{3}(6x + 3) - 7 = \frac{1}{2}(2x + 4) + 5$

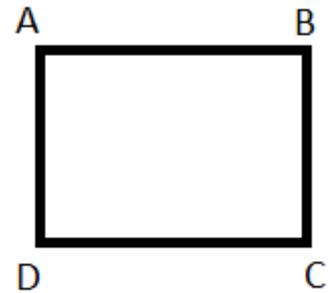

Prove: $x = 13$

Statement	Reasons
$\frac{1}{3}(6x + 3) - 7 = \frac{1}{2}(2x + 4) + 5$	Given
$x = 13$	

Geometry & Higher Maths Group - Two Column Proof

Instructions: Work with others in your grade level group to read the *Given* statement and create a two column proof that leads to the *Prove* statement.

Given: $\angle 1 \cong \angle 4$, $\angle 3$ and $\angle 4$ are supplementary.

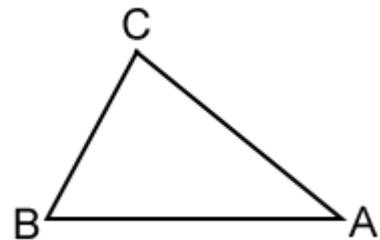


Prove: $l \parallel m$

6th Grade Group - Paragraph Proof

Instructions: Work with others in your grade level group to read the *Given* statement and create a paragraph proof that leads to the *Prove* statement.

Given: ABCD is a rectangle.



Prove: The formula for the Area of a Triangle.

7th & 8th Grade Group - Paragraph Proof

Instructions: Work with others in your grade level group to read the *Given* statement and create a paragraph proof that leads to the *Prove* statement.

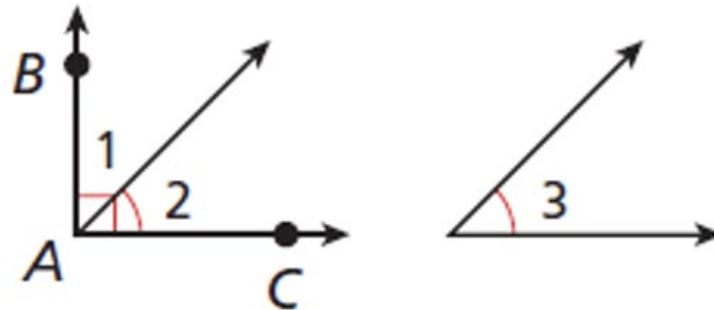
Given: ABC is a triangle.

Prove: The sum of the angles add to 180 degrees.

Algebra 1 Group - Paragraph Proof

Instructions: Work with others in your grade level group to read the *Given* statement and create a paragraph proof that leads to the *Prove* statement.

Given: $3(x - 4) = -4x + 10$.


Prove: $x = \frac{22}{7}$.

Geometry and Higher Group - Paragraph Proof

Instructions: Work with others in your grade level group to read the *Given* statement and create a paragraph proof that leads to the *Prove* statement.

Given: $\angle BAC$ is a right angle. $\angle 2 \cong \angle 3$

Prove: $\angle 1$ and $\angle 3$ are complementary.

6th Grade Group - Counterexample Proof

Instructions: Determine if the following statement is always true, sometimes true, never true. Provide 2 examples and 2 counterexamples.

“If two figures have the same perimeter, they have the same shape.”

7th & 8th Grade Group - Counterexample Proof

Instructions: Determine if the following statement is always true, sometimes true, never true. Provide 2 examples and 2 counterexamples.

“If $x \cdot y = 12$, then x and y must be whole numbers.”

Algebra 1 Group - Counterexample Proof

Instructions: Determine if the following statement is always true, sometimes true, never true. Provide 2 examples and 2 counterexamples.

“If $(a+b)^2$, then $a^2 + b^2$.”

Geometry Group - Counterexample Proof

Instructions: Determine if the following statement is always true, sometimes true, never true. Provide 2 examples and 2 counterexamples.

“If two triangles have two pairs of sides and one pair of non-included angles that are congruent (SSA), then the triangles must be congruent.”

