Mathematics of Infectious Diseases

Zhisheng Shuai

Department of Mathematics
University of Central Florida
Orlando, Florida, USA

shuai@ucf.edu
Happy St. Patrick’s Day!
Who Am I?

2001: B.Sc. in Mathematics, Northeast Normal University, China
Hopf bifurcations of differential equations

2004: M.Sc. in Mathematics, Northeast Normal University, China
Optimal impulsive harvesting policy for biological resources

2010: Ph.D. in Applied Mathematics, University of Alberta, Canada
Dynamical systems and their applications to biological processes

2010-12: NSERC Postdoctoral Fellow, University of Victoria, Canada
Mathematical modeling of infectious diseases

2012-present: Assistant Professor of Mathematics, UCF
Mathematical biology, ecology and epidemiology
Who Am I?

- 2001: B.Sc. in Mathematics, Northeast Normal University, China
 Hopf bifurcations of differential equations

- 2004: M.Sc. in Mathematics, Northeast Normal University, China
 Optimal impulsive harvesting policy for biological resources

- 2010: Ph.D. in Applied Mathematics, University of Alberta, Canada
 Dynamical systems and their applications to biological processes

- 2010-12: NSERC Postdoctoral Fellow, University of Victoria, Canada
 Mathematical modeling of infectious diseases

- 2012-present: Assistant Professor of Mathematics, UCF
 Mathematical biology, ecology and epidemiology
Who Am I?

- 2001: B.Sc. in Mathematics, Northeast Normal University, China
 Hopf bifurcations of differential equations

- 2004: M.Sc. in Mathematics, Northeast Normal University, China
 Optimal impulsive harvesting policy for biological resources
Who Am I?

- 2001: B.Sc. in Mathematics, Northeast Normal University, China
 Hopf bifurcations of differential equations

- 2004: M.Sc. in Mathematics, Northeast Normal University, China
 Optimal impulsive harvesting policy for biological resources

- 2010: Ph.D. in Applied Mathematics, University of Alberta, Canada
 Dynamical systems and their applications to biological processes
Who Am I?

- 2001: B.Sc. in Mathematics, Northeast Normal University, China
 Hopf bifurcations of differential equations

- 2004: M.Sc. in Mathematics, Northeast Normal University, China
 Optimal impulsive harvesting policy for biological resources

- 2010: Ph.D. in Applied Mathematics, University of Alberta, Canada
 Dynamical systems and their applications to biological processes

- 2010-12: NSERC Postdoctoral Fellow, University of Victoria, Canada
 Mathematical modeling of infectious diseases
Who Am I?

- 2001: B.Sc. in Mathematics, Northeast Normal University, China
 Hopf bifurcations of differential equations

- 2004: M.Sc. in Mathematics, Northeast Normal University, China
 Optimal impulsive harvesting policy for biological resources

- 2010: Ph.D. in Applied Mathematics, University of Alberta, Canada
 Dynamical systems and their applications to biological processes

- 2010-12: NSERC Postdoctoral Fellow, University of Victoria, Canada
 Mathematical modeling of infectious diseases

- 2012-present: Assistant Professor of Mathematics, UCF
 Mathematical biology, ecology and epidemiology
Core Research

- New models, new approaches, new results, and new applications to complex biological systems
- Developed new graph-theoretic approaches to investigate dynamics of coupled systems on networks
- Established sharp threshold results for many heterogeneous infectious disease models
- Formulated and analyzed new mathematical models for waterborne diseases such as cholera
- Defined a new concept target reproduction number to mathematically measure intervention and control strategies in order to eradicate infectious diseases in heterogeneous host populations
Paper Passing Game

Once you receive the paper, you have choices to
▶ hold the paper, or
▶ pass the paper to one person with whom you shake hands, or
▶ rip it into two or more pieces and pass them to different persons with whom you shake hands

Repeat whenever hearing “NEXT”

Now consider the paper that you have passed after handshaking (effective contact) is an infectious disease

How many persons have been infected by the “paper” disease?

Zhisheng Shuai (U Central Florida)
Mathematics of Infectious Diseases
Central Florida Math Circle
Paper Passing Game

- Once you receive the paper, you have choices to
 - hold the paper, or
 - pass the paper to one person with whom you shake hands, or
 - rip it into two or more pieces and pass them to different persons with whom you shake hands

- Repeat whenever hearing ”NEXT”
Paper Passing Game

- Once you receive the paper, you have choices to
 - hold the paper, or
 - pass the paper to one person with whom you shake hands, or
 - rip it into two or more pieces and pass them to different persons with whom you shake hands

- Repeat whenever hearing "NEXT"

- Now consider the paper that you have passed after *handshaking* (effective contact) is an *infectious disease*
Paper Passing Game

- Once you receive the paper, you have choices to
 - hold the paper, or
 - pass the paper to one person with whom you shake hands, or
 - rip it into two or more pieces and pass them to different persons with whom you shake hands

- Repeat whenever hearing ”NEXT”

- Now consider the paper that you have passed after handshaking (effective contact) is an infectious disease

- How many persons have been infected by the “paper” disease?
Infectious Diseases

- An infectious disease or communicable disease is caused by a biological agent (called pathogen) such as a virus, bacterium or parasite.
Infectious Diseases

- An infectious disease or communicable disease is caused by a biological agent (called pathogen) such as a virus, bacterium or parasite.

- Infectious diseases are the invasion of a host organism (animal, human, plant, or vector) by the pathogen.
Infectious Diseases

- An infectious disease or communicable disease is caused by a biological agent (called pathogen) such as a virus, bacterium or parasite.

- Infectious diseases are the invasion of a host organism (animal, human, plant, or vector) by the pathogen.

- The invasion of the pathogen can cause disease in the host individual by either disrupting a vital body process or stimulating the immune system to mount a defensive reaction.
Infectious Diseases

- An infectious disease or communicable disease is caused by a biological agent (called pathogen) such as a virus, bacterium or parasite.

- Infectious diseases are the invasion of a host organism (animal, human, plant, or vector) by the pathogen.

- The invasion of the pathogen can cause disease in the host individual by either disrupting a vital body process or stimulating the immune system to mount a defensive reaction.

- An immune response against a pathogen, which can include a high fever, inflammation, and other damaging symptoms, can be more devastating than the direct damage caused by the pathogen.
Infectious Diseases

- An infectious disease or communicable disease is caused by a biological agent (called pathogen) such as a virus, bacterium or parasite.

- Infectious diseases are the invasion of a host organism (animal, human, plant, or vector) by the pathogen.

- The invasion of the pathogen can cause disease in the host individual by either disrupting a vital body process or stimulating the immune system to mount a defensive reaction.

- An immune response against a pathogen, which can include a high fever, inflammation, and other damaging symptoms, can be more devastating than the direct damage caused by the pathogen.

- Infectious diseases require a mode of transmission (direct or indirect transmission, waterborne, airborne, vector-borne, food-borne, etc.) to be transmitted to other individuals (infectious).
How to Model Infectious Diseases

George E.P. Box:

All models are wrong,
How to Model Infectious Diseases

George E.P. Box:

All models are wrong, but some are useful.
How to Model Infectious Diseases

George E.P. Box:

All models are wrong, but some are useful.

Albert Einstein:

A scientific theory should be as simple as possible,
How to Model Infectious Diseases

George E.P. Box:

All models are wrong, but some are useful.

Albert Einstein:

A scientific theory should be as simple as possible, but no simpler.
How to Model Infectious Diseases

George E.P. Box:

All models are wrong, but some are useful.

Albert Einstein:

A scientific theory should be as simple as possible, but no simpler.

- the invasion of a host individual (within-host model)
How to Model Infectious Diseases

George E.P. Box:

All models are wrong, but some are useful.

Albert Einstein:

A scientific theory should be as simple as possible, but no simpler.

- the invasion of a host individual (within-host model)
- the invasion/spread among a group of host individuals (between-host/population-level model)
How to Model Infectious Diseases

George E.P. Box:

All models are wrong, but some are useful.

Albert Einstein:

A scientific theory should be as simple as possible, but no simpler.

- the invasion of a host individual (within-host model)
- the invasion/spread among a group of host individuals (between-host/population-level model)
 - stochastic/network/agent-based model for the beginning of the disease outbreak
How to Model Infectious Diseases

George E.P. Box:

All models are wrong, but some are useful.

Albert Einstein:

A scientific theory should be as simple as possible, but no simpler.

- the invasion of a host individual (within-host model)
- the invasion/spread among a group of host individuals (between-host/population-level model)
 - stochastic/network/agent-based model for the beginning of the disease outbreak
 - deterministic compartmental model (epidemic/endemic model) after the initial outbreak
How to Model Infectious Diseases

George E.P. Box:

All models are wrong, but some are useful.

Albert Einstein:

A scientific theory should be as simple as possible, but no simpler.

- the invasion of a host individual (within-host model)
- the invasion/spread among a group of host individuals (between-host/population-level model)
 - stochastic/network/agent-based model for the beginning of the disease outbreak
 - deterministic compartmental model (epidemic/endemic model) after the initial outbreak
- spread among heterogeneous host groups (heterogeneous model)
Some Success Stories of Mathematical Modeling in Disease Control

Malaria

A parasitic disease carried by mosquitoes (vector)
Some Success Stories of Mathematical Modeling in Disease Control

Malaria

A parasitic disease carried by mosquitoes (vector)

- Ross [1911]
 - developed a mosquito-human model and showed that malaria could be controlled without total destruction of the mosquito population
 - idea of a “threshold”
Some Success Stories of Mathematical Modeling in Disease Control

Malaria

A parasitic disease carried by mosquitoes (vector)

- Ross [1911]
 - developed a mosquito-human model and showed that malaria could be controlled without total destruction of the mosquito population
 - idea of a “threshold”

- MacDonald [1957]
 - included adult and larval mosquitoes
 - showed that control of adult mosquitoes is more effective than control of larvae
Gonorrhea

A sexually transmitted bacterial disease
Gonorrhea

A sexually transmitted bacterial disease

- Hethcote and Yorke [1984]
 - found that a core group of very highly active individuals maintains the disease at an epidemic level
 - contact tracing is more efficient for control than routine screening
Measles

A viral childhood disease
Measles

A viral childhood disease

- Anderson and May [1992]
 Infectious Diseases of Humans: Dynamics and Control

 - guided design of vaccination programs
 (two dose strategy in UK)
 - two dose vaccination strategy started in US in 1989
Measles cases in the United States, 1944-2007

- Vaccine licensed
- Second dose recommended
- Second dose recommended

Cases (thousands)

Why Should We Do Mathematical Modeling of Infectious Diseases?

- Mathematical models and computer simulations can be used as experimental tools for testing control measures and determining sensitivities to changes in parameter values e.g.,
 - design of a vaccination strategy for rubella
Why Should We Do Mathematical Modeling of Infectious Diseases?

- Mathematical models and computer simulations can be used as experimental tools for testing control measures and determining sensitivities to changes in parameter values e.g.,
 - design of a vaccination strategy for rubella

- Mathematical models can be used to compare and optimize control programs e.g.,
 - isolation and quarantine of infectives with SARS
Why Should We Do Mathematical Modeling of Infectious Diseases?

- Mathematical models and computer simulations can be used as experimental tools for testing control measures and determining sensitivities to changes in parameter values e.g.,
 - design of a vaccination strategy for rubella

- Mathematical models can be used to compare and optimize control programs e.g.,
 - isolation and quarantine of infectives with SARS

- The modeling process can contribute to the design of public health surveys especially by suggesting data that should be collected e.g.,
 - contact tracing for gonorrhea
Why Should We Do Mathematical Modeling of Infectious Diseases?

- Mathematical models and computer simulations can be used as experimental tools for testing control measures and determining sensitivities to changes in parameter values e.g.,
 - design of a vaccination strategy for rubella

- Mathematical models can be used to compare and optimize control programs e.g.,
 - isolation and quarantine of infectives with SARS

- The modeling process can contribute to the design of public health surveys especially by suggesting data that should be collected e.g.,
 - contact tracing for gonorrhea

- Mathematical modeling of epidemics can lead to and motivate new results in mathematics e.g.,
 - ruling out periodic orbits in higher dimensional ODE systems
Disease Modeling Approach

Mathematical modeling is a trade off between

- simple models: highlight qualitative behavior
- detailed models: specific quantitative predictions
Disease Modeling Approach

Mathematical modeling is a trade off between
- simple models: highlight qualitative behavior
- detailed models: specific quantitative predictions

“A model should be as simple as possible but no simpler”
Disease Modeling Approach

Mathematical modeling is a trade off between

- simple models: highlight qualitative behavior
- detailed models: specific quantitative predictions

“A model should be as simple as possible but no simpler”

Compartmental models in epidemiology were started by public health physicians, 1900-1935:

Mathematical modeling is a trade off between

- simple models: highlight qualitative behavior
- detailed models: specific quantitative predictions

“A model should be as simple as possible but no simpler”

Compartmental models in epidemiology were started by public health physicians, 1900-1935:

In 1902 Sir Ronald Ross was awarded the Noble prize for medicine for proving that malaria is transmitted by mosquitoes
The Kermack-McKendrick Epidemic Model [1927]

Constant population divided into 3 compartments:

- $S(t) = \text{number of individuals susceptible to disease}$
- $I(t) = \text{number of individuals infected by disease}$
- $R(t) = \text{number of individuals recovered from disease}$

$N = S + I + R$ is total population number
The Kermack-McKendrick Epidemic Model [1927]

Constant population divided into 3 compartments:
- \(S(t) = \) number of individuals \textit{susceptible} to disease
- \(I(t) = \) number of individuals \textit{infected} by disease
- \(R(t) = \) number of individuals \textit{recovered} from disease

\(N = S + I + R \) is total population number

\[
\begin{align*}
S' &= -\beta SI \\
I' &= \beta SI - \gamma I \\
R' &= \gamma I
\end{align*}
\]

- \(\beta \) = effective contact coefficient
- \(1/\gamma \) = average time of infection (depends on disease)

Length of the infective period is exponentially distributed
Dynamics of Kermack-McKendrick Model

- Asymptotic analysis for \(I' = \beta SI - \gamma I \)
 - If \(\beta S(0) < \gamma \) then \(I(t) \) decreases monotonically to 0
 - If \(\beta S(0) > \gamma \) then \(I(t) \to I_{\text{max}} \to 0 \) as \(t \to \infty \)
 leaving a positive number of susceptibles \(S(\infty) > 0 \)

\[
I_{\text{max}} = I(0) + S(0) - \frac{\gamma}{\beta} \left(1 + \ln \frac{\beta S(0)}{\gamma} \right)
\]

- Basic reproduction number (threshold): \(R_0 = \frac{\beta S(0)}{\gamma} \)
 - \(R_0 < 1 \): disease dies out
 - \(R_0 > 1 \): there is a disease epidemic

The final size relation

\[
1 - R_0(\infty) = \exp(-R_0(\infty))
\]
Dynamics of Kermack-McKendrick Model

- **Asymptotic analysis for** $I' = \beta SI - \gamma I$
 - If $\beta S(0) < \gamma$ then $I(t)$ decreases monotonically to 0
 - If $\beta S(0) > \gamma$ then $I(t) \to I_{max} \to 0$ as $t \to \infty$
 leaving a positive number of susceptibles $S(\infty) > 0$

 $$I_{max} = I(0) + S(0) - \frac{\gamma}{\beta} \left(1 + \ln \frac{\beta S(0)}{\gamma} \right)$$

- **Basic reproduction number** (threshold):
 $R_0 = \beta S(0) \frac{1}{\gamma}$ is the average number infected when one infective enters a susceptible population
 - $R_0 < 1$: disease dies out
 - $R_0 > 1$: there is a disease epidemic
Dynamics of Kermack-McKendrick Model

- Asymptotic analysis for $I' = \beta SI - \gamma I$
 - If $\beta S(0) < \gamma$ then $I(t)$ decreases monotonically to 0
 - If $\beta S(0) > \gamma$ then $I(t) \to I_{\text{max}} \to 0$ as $t \to \infty$
 leaving a positive number of susceptibles $S(\infty) > 0$

 $I_{\text{max}} = I(0) + S(0) - \frac{\gamma}{\beta} \left(1 + \ln \frac{\beta S(0)}{\gamma}\right)$

- Basic reproduction number (threshold):
 $R_0 = \frac{\beta S(0) \frac{1}{\gamma}}$ is the average number infected when one infective enters a susceptible population
 - $R_0 < 1$: disease dies out
 - $R_0 > 1$: there is a disease epidemic

- The final size relation

 $1 - R(\infty) = \exp(-R_0 R(\infty))$
Simulations with $R_0 = 2.7$
Simulations with Other R_0 Values

<table>
<thead>
<tr>
<th>R_0</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>
Simulations with Other R_0 Values

$R_0 = 0.9$

$R_0 = 1.8$

$R_0 = 2.7$
Simulations with Other R_0 Values

$R_0 = 0.9$

$R_0 = 1.8$

$R_0 = 2.7$

$R_0 = 3.6$

$R_0 = 9$

$R_0 = 18$
Disease Control

- To control the disease (no epidemic) need to decrease \mathcal{R}_0 by decreasing β

 - For smallpox $\mathcal{R}_0 \approx 5$ vaccination of about 80% provided herd immunity (now eradicated !)
 - For measles in urban areas $\mathcal{R}_0 \approx 10^{-16}$ need to vaccinate over 90%
 - For ebola $\mathcal{R}_0 \approx 2$ need to vaccinate over only 50% (hypothetically)
Disease Control

- To control the disease (no epidemic) need to decrease R_0 by decreasing β.

- For some diseases this can be done by vaccination.
 Vaccinate a fraction p of population so that

 $$\beta(1 - p)S(0)\frac{1}{\gamma} < 1 \iff p > 1 - \frac{1}{R_0}$$
Disease Control

- To control the disease (no epidemic) need to decrease R_0 by decreasing β

- For some diseases this can be done by vaccination
 Vaccinate a fraction p of population so that
 $$\beta(1 - p)S(0)\frac{1}{\gamma} < 1 \iff p > 1 - \frac{1}{R_0}$$

- Vaccinate a fraction $p > 1 - \frac{1}{R_0}$ for herd immunity
 - For smallpox $R_0 \approx 5$
 vaccination of about 80% provided herd immunity (now eradicated !)
Disease Control

- To control the disease (no epidemic) need to decrease R_0 by decreasing β

- For some diseases this can be done by vaccination
 Vaccinate a fraction p of population so that

 $$\beta(1 - p)S(0)\frac{1}{\gamma} < 1 \iff p > 1 - \frac{1}{R_0}$$

- Vaccinate a fraction $p > 1 - \frac{1}{R_0}$ for herd immunity
 - For smallpox $R_0 \approx 5$
 vaccination of about 80% provided herd immunity (now eradicated !)
 - For measles in urban areas $R_0 \approx 10-16$
 need to vaccinate over 90%
Disease Control

- To control the disease (no epidemic) need to decrease R_0 by decreasing β

- For some diseases this can be done by vaccination
 Vaccinate a fraction p of population so that
 \[\beta (1 - p) S(0) \frac{1}{\gamma} < 1 \iff p > 1 - \frac{1}{R_0} \]

- Vaccinate a fraction $p > 1 - \frac{1}{R_0}$ for herd immunity
 - For smallpox $R_0 \approx 5$
 vaccination of about 80% provided herd immunity (now eradicated !)
 - For measles in urban areas $R_0 \approx 10-16$
 need to vaccinate over 90%
 - For ebola $R_0 \approx 2$
 need to vaccinate over only 50% (hypothetically)
Thanks!