The Extremal Function for K_{10} Minors

Robin Thomas, Dantong Zhu*, Georgia Institute of Technology

For positive integers t and n, the maximum number of edges that an n-vertex graph with no K_t minor can have is known as the extremal function for K_t minors. In 1968, Mader proved that for every integer $t = 1, 2, \ldots, 7$, a graph on $n \geq t$ vertices and at least $(t - 2)n - \binom{t - 1}{2} + 1$ edges has a K_t minor. Jørgensen showed that a graph on $n \geq 8$ vertices and at least $6n - 20$ edges either has a K_8 minor or is isomorphic to a graph obtained from disjoint copies of $K_2,2,2,2,2$ by identifying cliques of size 5. Song and Thomas further generalized the results for K_9 minors. The extremal functions for K_t minors where $t \leq 9$ have been important for proving several results related to Hadwiger’s conjecture. In this talk, I will discuss our work-in-progress on the extremal function for K_{10} minors.