The Extremal Function for K_{10} Minors

Dantong Zhu
joint work with Robin Thomas

Georgia Institute of Technology

May 18, 2019
Roadmap

1. The Four Color Theorem and Hadwiger’s Conjecture
2. The Extremal Function for K_t Minors
3. Proof Outline of Our Conjecture
4. Future Work
For $t \in \mathbb{Z}^+$, a graph G is t-colorable if there exists a mapping $c : V(G) \rightarrow \{1, 2, ..., t\}$ such that $c(u) \neq c(v)$ for every edge $uv \in E(G)$.
Preliminaries

For $t \in \mathbb{Z}^+$, a graph G is t-colorable if there exists a mapping $c : V(G) \rightarrow \{1, 2, \ldots, t\}$ such that $c(u) \neq c(v)$ for every edge $uv \in E(G)$.

For graphs H and G, say G has an H-minor if a graph isomorphic to H can be obtained from a subgraph of G by contracting edges, denoted as $G > H$.
The Four Color Theorem (FCT)

The Four Color Theorem (Appel and Haken’76)

Every planar graph is 4-colorable.
The Four Color Theorem (FCT)

The Four Color Theorem (Appel and Haken’76)
Every planar graph is 4-colorable.

Theorem (Kuratowski’30; Wagner’37)
A graph is planar if and only if it has no K_5 or $K_{3,3}$ minor.
The Four Color Theorem (FCT)

The Four Color Theorem (Appel and Haken’76)
Every planar graph is 4-colorable.

<table>
<thead>
<tr>
<th>Theorem (Kuratowski’30; Wagner’37)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A graph is planar if and only if it has no K_5 or $K_{3,3}$ minor.</td>
</tr>
</tbody>
</table>

Restatement: Every graph with no K_5 or $K_{3,3}$ minor is 4-colorable.
The Four Color Theorem (FCT)

The Four Color Theorem (Appel and Haken’76)

Every planar graph is 4-colorable.

Theorem (Kuratowski’30; Wagner’37)

A graph is planar if and only if it has no K_5 or $K_{3,3}$ minor.

Restatement: Every graph with no K_5 or $K_{3,3}$ minor is 4-colorable.

Is every graph with no K_5 minor 4-colorable?
For every integer \(t \geq 0 \), every graph with no \(K_{t+1} \) minor is \(t \)-colorable.
Hadwiger’s Conjecture

For every integer $t \geq 0$, every graph with no K_{t+1} minor is t-colorable.

- $t \leq 3$: Easy
- $t = 4$: HC (\iff FCT) Wagner (1937)
- $t = 5$: HC (\iff FCT) Robertson, Seymour, and Thomas (1993)
- $t \geq 6$: OPEN

Dirac (1952); Hadwiger (1943)
Hadwiger’s Conjecture

For every integer $t \geq 0$, every graph with no K_{t+1} minor is t-colorable.

- $t \leq 3$: Easy
 - Dirac (1952); Hadwiger (1943)
- $t = 4$: HC \iff FCT
 - Wagner (1937)
Hadwiger’s Conjecture

For every integer $t \geq 0$, every graph with no K_{t+1} minor is t-colorable.

- $t \leq 3$: Easy
 - Dirac (1952); Hadwiger (1943)

- $t = 4$: HC \Leftrightarrow FCT
 - Wagner (1937)

- $t = 5$: HC \Leftrightarrow FCT
 - Robertson, Seymour, and Thomas (1993)
Hadwiger’s Conjecture

For every integer $t \geq 0$, every graph with no K_{t+1} minor is t-colorable.

- $t \leq 3$: Easy
 - Dirac (1952); Hadwiger (1943)
- $t = 4$: HC \Leftrightarrow FCT
 - Wagner (1937)
- $t = 5$: HC \Leftrightarrow FCT
 - Robertson, Seymour, and Thomas (1993)
- $t \geq 6$: OPEN
Roadmap

1. The Four Color Theorem and Hadwiger’s Conjecture
2. The Extremal Function for K_t Minors
3. Proof Outline of Our Conjecture
4. Future Work
The Extremal Function for K_t minors

Theorem (Mader’68)

For every integer $t = 1, 2, ..., 7$, a graph on $n \geq t$ vertices and at least $(t - 2)n - \binom{t-1}{2} + 1$ edges has a K_t minor.
The Extremal Function for K_t minors

Theorem (Mader’68)

For every integer $t = 1, 2, \ldots, 7$, a graph on $n \geq t$ vertices and at least $(t - 2)n - \binom{t-1}{2} + 1$ edges has a K_t minor.

- Counter-example for $t = 8$: $K_{2,2,2,2,2}$
The Extremal Function for K_t minors

Theorem (Mader’68)

For every integer $t = 1, 2, ..., 7$, a graph on $n \geq t$ vertices and at least $(t - 2)n - \binom{t-1}{2} + 1$ edges has a K_t minor.

- **Counter-example for** $t = 8$: $K_{2,2,2,2,2}$

- **More counter-examples:** $(K_{2,2,2,2,2,5})$-cockades! - graphs obtained from disjoint copies of $K_{2,2,2,2,2}$ by identifying cliques of size 5
The Extremal Function for K_t minors

For positive integers t and n, let

$$M(t, n) = (t - 2)n - \binom{t - 1}{2} + 1.$$
The Extremal Function for K_t minors

For positive integers t and n, let

$$M(t, n) = (t - 2)n - \binom{t - 1}{2} + 1.$$

Theorem for K_8 Minors (Jørgensen’94)

Every graph on $n \geq 8$ vertices and at least $M(8, n) = 6n - 20$ edges either has a K_8 minor or is a $(K_{2,2,2,2,2,5})$-cockade.

Theorem for K_9 Minors (Song and Thomas’06)

Every graph on $n \geq 9$ vertices and at least $M(9, n) = 7n - 27$ edges either has a K_9 minor or is a $(K_{1,2,2,2,2,2,6})$-cockade, or is isomorphic to $K_{2,2,2,3,3}$.

Can we prove a similar statement for K_{10} minors?
The Extremal Function for K_t minors

For positive integers t and n, let

$$M(t, n) = (t - 2)n - \left(\frac{t - 1}{2}\right) + 1.$$

Theorem for K_8 Minors (Jørgensen’94)

Every graph on $n \geq 8$ vertices and at least $M(8, n) = 6n - 20$ edges either has a K_8 minor or is a $(K_{2,2,2,2,2,5})$-cockade.

Theorem for K_9 Minors (Song and Thomas’06)

Every graph on $n \geq 9$ vertices and at least $M(9, n) = 7n - 27$ edges either has a K_9 minor or is a $(K_{1,2,2,2,2,2,6})$-cockade, or is isomorphic to $K_{2,2,2,3,3}$.

Can we prove a similar statement for K_{10} minors?
The Extremal Function for K_t minors

For positive integers t and n, let

$$M(t, n) = (t - 2)n - \binom{t - 1}{2} + 1.$$

Theorem for K_8 Minors (Jørgensen’94)

Every graph on $n \geq 8$ vertices and at least $M(8, n) = 6n - 20$ edges either has a K_8 minor or is a $(K_{2,2,2,2,2}, 5)$-cockade.

Theorem for K_9 Minors (Song and Thomas’06)

Every graph on $n \geq 9$ vertices and at least $M(9, n) = 7n - 27$ edges either has a K_9 minor or is a $(K_{1,2,2,2,2,2}, 6)$-cockade, or is isomorphic to $K_{2,2,2,3,3}$.

Can we prove a similar statement for K_{10} minors?
The Extremal Function for K_t minors

Our Conjecture for K_{10} Minors

Every graph on $n \geq 8$ vertices and at least $M(10, n) = 8n - 35$ edges either has a K_{10} minor or is isomorphic to one of the following: a $(K_{1,1,2,2,2,2,2,7})$-cockade, $K_{1,2,2,2,3,3}$, $K_{2,2,2,2} + C_5$, $K_{2,2,3,3,4}$, $K_{3,3,3} + C_5$, $K_{2,2,2,2,2,3}$, $K_{2,3,3,3,3}$, and $J - e$ where $J \in \{K_{2,2,2,2,2,3}, K_{2,3,3,3,3}\}$ and $e \in E(J)$.

Notation: $H + G$ denotes the graph obtained from $H \cup G$ by adding edges xy for all $x \in V(H)$ and $y \in V(G)$.
Current Status of Related Works

HC for $t = 5$ (Roberson, Seymour, and Thomas'93): Every graph with no K_6 minor is 5-colorable.

HC for $t = 6$ is open: Every graph with no K_7 minor is 6-colorable.
HC for $t = 5$ *(Roberson, Seymour, and Thomas’93):*

Every graph with no K_6 minor is 5-colorable.
Current Status of Related Works

- **HC for $t = 5$ (Roberson, Seymour, and Thomas’93):**
 Every graph with no K_6 minor is 5-colorable.

- **HC for $t = 6$ is open:**
 Every graph with no K_7 minor is 6-colorable.
Current Status of Related Works

- **Weaker Versions of HC when** $t \geq 6$:
 - Kawarabayashi and Toft'05: Every graph with no K_7 minor is either 6-colorable or has a $K_4, 4$ minor.
 - Albar and Gonçalves'13; Rolek and Song'17: For $t = 7, 8, 9$, every graph with no K_t minor is $(2t - 6)$-colorable.
 - Rolek and Song'18: For $t \geq 6$, if every graph on $n \geq t$ vertices and at least $M(t, n)$ edges either contains a K_t minor or is $(t - 1)$-colorable, then every graph with no K_t minor is $(2t - 6)$-colorable.
 - Rolek and Song'18: For $t \leq 9$, every doubly-critical t-chromatic graph contains a K_t minor.
 - Thomas and Yoo'18: For $t = 2, 3, \ldots, 9$, a triangle-free graph G on $n \geq 2t - 5$ vertices and at least $(t - 2)n - (t - 2)^2 + 1$ edges has a K_t minor.
 - Jakobsen'73, Jakobsen'83, Song'05: The extremal function for K_t minors for $t \leq 8$.
Current Status of Related Works

- **Weaker Versions of HC when \(t \geq 6 \):**
 - **Kawarabayashi and Toft’05:** Every graph with no \(K_7 \) minor is either 6-colorable or has a \(K_{4,4} \) minor.
 - **Albar and Gonçalves’13; Rolek and Song’17:** For \(t = 7, 8, 9 \), every graph with no \(K_t \) minor is \((2t - 6)\)-colorable.
 - **Rolek and Song’18:** For \(t \geq 6 \), if every graph on \(n \geq t \) vertices and at least \(M(t, n) \) edges either contains a \(K_t \) minor or is \((t - 1)\)-colorable, then every graph with no \(K_t \) minor is \((2t - 6)\)-colorable.
 - **Rolek and Song’18:** For \(t \leq 9 \), every doubly-critical \(t \)-chromatic graph contains a \(K_t \) minor.
Current Status of Related Works

- **Weaker Versions of HC when** $t \geq 6$:

 - **Kawarabayashi and Toft’05**: Every graph with no K_7 minor is either 6-colorable or has a $K_{4,4}$ minor.

 - **Albar and Gonçalves’13; Rolek and Song’17**: For $t = 7, 8, 9$, every graph with no K_t minor is $(2t - 6)$-colorable.

 - **Rolek and Song’18**: For $t \geq 6$, if every graph on $n \geq t$ vertices and at least $M(t, n)$ edges either contains a K_t minor or is $(t - 1)$-colorable, then every graph with no K_t minor is $(2t - 6)$-colorable.

 - **Rolek and Song’18**: For $t \leq 9$, every doubly-critical t-chromatic graph contains a K_t minor.

- **Thomas and Yoo’18**: For $t = 2, 3, \ldots, 9$, a triangle-free graph G on $n \geq 2t - 5$ vertices and at least $(t - 2)n - (t - 2)^2 + 1$ edges has a K_t minor.

- **Jakobsen’73, Jakobsen’83, Song’05**: The extremal function for K_t^- minors for $t \leq 8$.
Roadmap

1. The Four Color Theorem and Hadwiger’s Conjecture
2. The Extremal Function for K_t Minors
3. **Proof Outline of Our Conjecture**
4. Future Work
Outline of the proof of the K_{10} Minor Conjecture

Conjecture (Thomas, Z.)

Every graph on $n \geq 8$ vertices and at least $8n - 35$ edges either has a K_{10} minor or is isomorphic to one of the following: a $(K_{1,1,2,2,2,2,2,7})$-cockades, $K_{1,2,2,2,3,3}$, $K_{2,2,2,2} + C_5$, $K_{2,2,3,3,4}$, $K_{3,3,3} + C_5$, $K_{2,2,2,2,2,3}$, $K_{2,3,3,3,3}$, and $J - e$ where $J \in \{K_{2,2,2,2,2,3}, K_{2,3,3,3,3}\}$ and $e \in E(J)$.

Notation: $H + G$ denotes the graph obtained from $H \cup G$ by adding edges xy for all $x \in V(H)$ and $y \in V(G)$.
Outline of the proof of the K_{10} Minor Conjecture

Conjecture (Thomas, Z.)

Every graph on $n \geq 8$ vertices and at least $8n - 35$ edges either has a K_{10} minor or is isomorphic to one of the following: a $(K_{1,1,2,2,2,2,2,7})$-cockades, $K_{1,2,2,2,3,3}$, $K_{2,2,2,2} + C_5$, $K_{2,2,3,3,4}$, $K_{3,3,3} + C_5$, $K_{2,2,2,2,2,3}$, $K_{2,3,3,3,3}$, and $J - e$ where $J \in \{K_{2,2,2,2,2,3}, K_{2,3,3,3,3}\}$ and $e \in E(J)$.

Notation: $H + G$ denotes the graph obtained from $H \cup G$ by adding edges xy for all $x \in V(H)$ and $y \in V(G)$.

Definition

A graph H be called an exceptional graph if H is isomorphic one of the K_{10} minor-free graphs in the above conjecture.
Minimal Counter-Example to the Conjecture

- **Exceptional graphs:** $(K_{1,1,2,2,2,2,2}, 7)$-cockade, $K_{1,2,2,2,3,3}$, $K_{2,2,2,2} + C_5$, $K_{2,2,3,3,4}$, $K_{3,3,3} + C_5$, $K_{2,2,2,2,2,3}$, $K_{2,3,3,3,3}$, and $J - e$ where $J \in \{K_{2,2,2,2,2,3}, K_{2,3,3,3,3}\}$ and $e \in E(J)$.
Minimal Counter-Example to the Conjecture

- **Exceptional graphs:** \((K_{1,1,2,2,2,2,2,7})\)-cockade, \(K_{1,2,2,2,3,3}\), \(K_{2,2,2,2} + C_5\), \(K_{2,2,3,3,4}\), \(K_{3,3,3} + C_5\), \(K_{2,2,2,2,2,3}\), \(K_{2,3,3,3,3}\), and \(J - e\) where \(J \in \{K_{2,2,2,2,2,3}, K_{2,3,3,3,3}\}\) and \(e \in E(J)\).

- Let \(G\) denote a **minimal counter-example** to the conjecture, i.e.

 1. \(e(G) \geq 8|G| - 35\)
 2. \(G \not\supseteq K_{10}\)
 3. \(G\) is not an exceptional graph
 4. subject to (1)-(3), \(|G|\) is minimum
 5. subject to (1)-(4), \(e(G)\) is minimum
Mineral Counter-Example to the Conjecture

Notation: For a graph G and a vertex $x \in V(G)$, use $N(x)$ to denote the set of vertices adjacent to x in G as well as the induced subgraph of G on the set $N(x)$.

Lemma 1

$$e(G) = 8n - 35 \geq 11/\delta(G) \geq 8$$ for every $x \in V(G)$

4. Every proper minor G' of G satisfies that $e(G') \leq 8|G'|-35$.

G is 7-connected $e(G) = 8|G|-35, \delta(G) \geq 11 \Rightarrow \exists x \in V(G)$ such that $11 \leq d(x) \leq 15$

Case 1:

\exists a component K of $G - N[x]$ such that $N(K) = N(x)$

Case 2:

$\forall x \in V(G)$ with $11 \leq d(x) \leq 15, \forall$ component K of $G - N[x], N(K) \subset N(x)$.
Minimal Counter-Example to the Conjecture

Notation: For a graph G and a vertex $x \in V(G)$, use $N(x)$ to denote the set of vertices adjacent to x in G as well as the induced subgraph of G on the set $N(x)$.

Lemma

1. $e(G) = 8n - 35$
2. $\delta(G) \geq 11$
3. $\delta(N(x)) \geq 8$ for every $x \in V(G)$
4. every proper minor G' of G satisfies that $e(G') \leq 8|G'| - 35$
5. G is 7-connected
Minimal Counter-Example to the Conjecture

Notation: For a graph G and a vertex $x \in V(G)$, use $N(x)$ to denote the set of vertices adjacent to x in G as well as the induced subgraph of G on the set $N(x)$.

Lemma

1. $e(G) = 8n - 35$
2. $\delta(G) \geq 11$
3. $\delta(N(x)) \geq 8$ for every $x \in V(G)$
4. every proper minor G' of G satisfies that $e(G') \leq 8|G'| - 35$
5. G is 7-connected

\[e(G) = 8|G| - 35, \quad \delta(G) \geq 11 \]
Minimal Counter-Example to the Conjecture

Notation: For a graph G and a vertex $x \in V(G)$, use $N(x)$ to denote the set of vertices adjacent to x in G as well as the induced subgraph of G on the set $N(x)$.

Lemma

1. $e(G) = 8n - 35$
2. $\delta(G) \geq 11$
3. $\delta(N(x)) \geq 8$ for every $x \in V(G)$
4. every proper minor G' of G satisfies that $e(G') \leq 8|G'| - 35$
5. G is 7-connected

\[e(G) = 8|G| - 35, \ \delta(G) \geq 11 \Rightarrow \exists x \in V(G) \text{ such that } 11 \leq d(x) \leq 15\]
Minimal Counter-Example to the Conjecture

Notation: For a graph G and a vertex $x \in V(G)$, use $N(x)$ to denote the set of vertices adjacent to x in G as well as the induced subgraph of G on the set $N(x)$.

Lemma

1. $e(G) = 8n - 35$
2. $\delta(G) \geq 11$
3. $\delta(N(x)) \geq 8$ for every $x \in V(G)$
4. every proper minor G' of G satisfies that $e(G') \leq 8|G'| - 35$
5. G is 7-connected

$$e(G) = 8|G| - 35, \quad \delta(G) \geq 11 \Rightarrow \exists x \in V(G) \text{ such that } 11 \leq d(x) \leq 15$$

- **Case 1:** \exists a component K of $G - N[x]$ such that $N(K) = N(x)$
- **Case 2:** $\forall x \in V(G)$ with $11 \leq d(x) \leq 15$, \forall component K of $G - N[x]$, $N(K) \subset N(x)$.
Case 1: \(\exists x \in V(G) \) with \(11 \leq d(x) \leq 15 \) and a component \(K \) of \(G - N[x] \) such that \(N(K) = N(x) \)

- If \(N(x) > K_8 \cup K_1 \Rightarrow G > K_{10}, \) a contradiction.
Case 1: \(\exists x \in V(G) \) with \(11 \leq d(x) \leq 15 \) and a component \(K \) of \(G - N[x] \) such that \(N(K) = N(x) \)

- If \(N(x) > K_8 \cup K_1 \Rightarrow G > K_{10} \), a contradiction.

- The induced subgraph \(N(x) \) has the following properties:

 (i) \(11 \leq |N(x)| \leq 15 \)
 (ii) \(\delta(N(x)) \geq 8 \)
 (iii) \(N(x) \not\sim K_8 \cup K_1 \)
Case 1: \(\exists x \in V(G) \) with \(11 \leq d(x) \leq 15 \) and a component \(K \) of \(G - N[x] \) such that \(N(K) = N(x) \)

- If \(N(x) > K_8 \cup K_1 \Rightarrow G > K_{10} \), a contradiction.
- The induced subgraph \(N(x) \) has the following properties:
 (i) \(11 \leq |N(x)| \leq 15 \)
 (ii) \(\delta(N(x)) \geq 8 \)
 (iii) \(N(x) \not\supseteq K_8 \cup K_1 \)
- There are only finitely many graphs satisfying (i)-(iii)!
Case 1: \(\exists x \in V(G) \) with \(11 \leq d(x) \leq 15 \) and a component \(K \) of \(G - N[x] \) such that \(N(K) = N(x) \)

Lemma (computer-assisted)

Up to isomorphism, there are precisely 101 graphs \(H \) satisfying that (i) \(11 \leq |H| \leq 15 \), (ii) \(\delta(H) \geq 8 \), (iii) \(H \not> K_8 \cup K_1 \), and (iv) every \(e \in E(H) \) has an end of degree 8.
Case 1: \(\exists x \in V(G) \) with \(11 \leq d(x) \leq 15 \) and a component \(K \) of \(G - N[x] \) such that \(N(K) = N(x) \)

Lemma (computer-assisted)

Up to isomorphism, there are precisely 101 graphs \(H \) satisfying that (i) \(11 \leq |H| \leq 15 \), (ii) \(\delta(H) \geq 8 \), (iii) \(H \not> K_8 \cup K_1 \), and (iv) every \(e \in E(H) \) has an end of degree 8.

- If \(N(x) \) is isomorphic to one of the 101 graphs
 \(\Rightarrow \) can always find some \(L \supseteq N(x) \) such that \(G - x \) has a rooted \(L \)-minor on \(N(x) \) and \(L > K_9 \)
Case 1: \(\exists x \in V(G) \) with \(11 \leq d(x) \leq 15 \) and a component \(K \) of \(G - N[x] \) such that \(N(K) = N(x) \)

Lemma (computer-assisted)

Up to isomorphism, there are precisely 101 graphs \(H \) satisfying that (i) \(11 \leq |H| \leq 15 \), (ii) \(\delta(H) \geq 8 \), (iii) \(H \not\cong K_8 \cup K_1 \), and (iv) every \(e \in E(H) \) has an end of degree 8.

- If \(N(x) \) is isomorphic to one of the 101 graphs
 \(\Rightarrow \) can always find some \(L \supseteq N(x) \) such that \(G - x \) has a rooted \(L \)-minor on \(N(x) \) and \(L \geq K_9 \)
- \(\Rightarrow G > K_{10} \), a contradiction
Case 1: \(\exists x \in V(G) \) with \(11 \leq d(x) \leq 15 \) and a component \(K \) of \(G - N[x] \) such that \(N(K) = N(x) \)

Lemma (computer-assisted)

Up to isomorphism, there are precisely 101 graphs \(H \) satisfying that (i) \(11 \leq |H| \leq 15 \), (ii) \(\delta(H) \geq 8 \), (iii) \(H \not\supset K_8 \cup K_1 \), and (iv) every \(e \in E(H) \) has an end of degree 8.

- If \(N(x) \) is isomorphic to one of the 101 graphs
 \(\Rightarrow \) can always find some \(L \supseteq N(x) \) such that \(G - x \) has a rooted \(L \)-minor on \(N(x) \) and \(L > K_9 \)
 \(\Rightarrow G > K_{10} \), a contradiction

- Examples of \(L - N(x) \): a perfect matching of size 2 or 3, \(K_3 \cup P_2 \), \(P_4 \cup P_2 \), etc
Case 2: $\forall x \in V(G)$ with $11 \leq d(x) \leq 15$ and \forall component K of $G - N[x]$, $N(K) \subset N(x)$

- $\delta(G) \geq 11$, $e(G) = 8|G| - 35$, and every proper minor G' of G satisfies $e(G') \leq 8|G'| - 35$
- Can apply a similar argument used by Jørgensen, Song, and Thomas to show $G > K_{10}$, a contradiction
Roadmap

1. The Four Color Theorem and Hadwiger’s Conjecture
2. The Extremal Function for K_t Minors
3. Proof Outline of Our Conjecture
4. Future Work
Future Work

- Finish checking the argument in the current proof

- **The Extremal Function for K_9^- Minors Conjecture:**
 Every graph on $n \geq 9$ vertices and at least $\frac{13}{2} n - 24$ edges either has a K_9^- minor or falls into a few families of exceptional graphs.

- **Conjecture by Albar and Gonçalves:**
 Every graph that has every edge belonging to at least 7 triangles either has a K_9 minor or contains an induced $K_{1,2,2,2,2,2,2}$.

- Construction of graphs with average degree of order $t \sqrt{\log t}$ that lack a K_t minor for large t