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Abstract. In this note we discuss a unified approach to the unconditionally summable problem
using combinatorial properties of Hadamard matrices. In particular we derive a constructive proof of
the classical Macphail’s Theorem on the existence of series in `1 that converge unconditionally but
not absolutely.

1. Introduction

A square matrix H = [hij ]n×n is called a Hadamard matrix if hij = ±1 and its columns (and thus
its rows) vectors are mutually orthogonal. That is, if u1, . . . , un are the row vectors of a Hadamard
matrix H, then

〈ui, uj〉 = nδij

for all i, j. As usual δij denotes the Kronecker delta. Equivalently, a square matrix, H = [hij ] is a
Hadamard matrix if |hij | = 1 and

HH> = nIn.

Hadamard matrices are important in several extrema problems for its combinatorial properties. In
particular, Hadamard matrices have maximal determinant, ±n

n
2 , among all possible matrices whose

entries are in [−1, 1].
Given a Hadamard matrix H of order n, a well known construction due to Sylvester yields a

Hadamard matrix of order 2n, simply by partitioning H as:[
H H
H −H

]
.

In particular, starting at the trivial 1× 1 Hadamard matrix H = [1], following Sylvester’s procedure,
one can construct Hadamard matrices of order 2n for all n ≥ 0.

In this paper we are interested in combinatorial iterations of Hadamard matrices’ entries, with
connection to the classical problem of unconditionally convergent sequences in Banach spaces. A
famous result originally due to Macphail [2] assures the existence of unconditionally convergent series
in `1 that do not converge absolutely; for a general historical account of the unconditionally convergent
problem, please see [1]. The problem has been revisited by many authors. Two constructive solutions
have been recently obtained by Pellegrino and Silva in [3]. In that paper, the authors present two
different proofs of Macphail’s theorem, one using complex scalars ala Toeplitz [5] and another one
using the so called Walsh system [6].

We shall present an alternative, simpler proof of Macphail’s theorem using combinatorial properties
of Hadamard matrices. Our solution encloses both approaches from [3]. Indeed, a closer inspection
reveals that both constructions presented in [3] are, in a way, based on particular cases of Hadamard
matrices. In turn, our proof unifies these seemingly disconnected constructions and sheds lights
into the core connection Hadamard matrices have with the problem of unconditionally convergent
sequences.
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Here is the main theorem proven in this note:

Theorem 1. Let k ≥ 1 be a natural number and Hk =
[
h
(k)
rs

]
be a Hadamard matrix of order

2k(k−1). Let p ∈ [1, 2] and consider the sequence in `p defined by the following algorithm: for
j ∈

{
2k(k−1), 2k(k−1) + 1, . . . , 2k(k−1)+1 − 1

}
set

x(j) := 2
−k(k−1)

(
1
2
+ 1

p
+ 1

k

)(
2k(k−1)∑
s=1

h(k)rs e2k(k−1)+s−1

)
,

where ej denotes the j-th canonical unit vectors in `p. If j 6∈
{
2k(k−1), 2k(k−1) + 1, . . . , 2k(k−1)+1 − 1

}
,

simply set x(j) = 0. The resulting sequence,
(
x(j)
)∞
j=1

is unconditionally summable in `p; however

∞∑
j=1

∥∥∥x(j)∥∥∥2−ε
p

=∞,

for all ε > 0.

2. The proof

Following ideas from [4], we starting by noting that for all k and m = 2k(k−1), there holds

(2.1) sup

{
m∑
j=1

∣∣∣∣ m∑
i=1
h
(k)
ij xi

∣∣∣∣ : ∥∥∥(xj)mj=1

∥∥∥
p∗
≤ 1

}
≤ m

1
2
+ 1

p .

Indeed, if ui denotes the i-th row vector of Hk, an application of the Cauchy-Schwarz inequality
yields:

m∑
j=1

∣∣∣∣ m∑
i=1
h
(k)
ij xi

∣∣∣∣ ≤ m1/2

(
m∑
j=1

∣∣∣∣ m∑
i=1
h
(k)
ij xi

∣∣∣∣2
)1/2

= m1/2

(
m∑

i,k=1

xixk 〈ui, uk〉

)1/2

= m

(
m∑
i=1
|xi|2

)1/2

≤ m
1
2
+ 1

p .

Next we shall confirm that the sequence defined in the statement of theorem 1 is indeed
unconditionally convergent in `p, for all p ∈ [1, 2]. For n ∈ N, let kn be the biggest integer such
that 2kn(kn−1) ≤ n. If ϕ ∈ `∗p = `p∗ is a continuous linear functional, we have:

∞∑
j=n

∣∣∣ϕ(x(j))∣∣∣ ≤ ∞∑
j=2kn(kn−1)

∣∣∣ϕ(x(j))∣∣∣ = ∞∑
k=kn

2k(k−1)+1−1∑
j=2k(k−1)

∣∣∣ϕ(x(j))∣∣∣ .
Taking the supreme over all ϕ ∈ `p∗ with norm less than or equal to 1, we reach:

(2.2) sup
‖ϕ‖p∗≤1

∞∑
j=n

∣∣∣ϕ(x(j))∣∣∣ ≤ ∞∑
k=kn

(
sup

‖ϕ‖p∗≤1

2k(k−1)+1−1∑
j=2k(k−1)

∣∣∣ϕ(x(j))∣∣∣) .
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It now follows by the algorithm that defines x(j) :=
(
x
(j)
m

)∞
m=1

that for j = 2k(k−1) + r − 1, there
holds

2k(k−1)+1−1∑
j=2k(k−1)

∣∣∣ϕ(x(j))∣∣∣ = 2k(k−1)+1−1∑
j=2k(k−1)

∣∣∣∣ ∞∑
m=1

ϕmx
(j)
m

∣∣∣∣
=

2k(k−1)∑
r=1

∣∣∣∣ ∞∑
m=1

ϕmx
(2k(k−1)+r−1)
m

∣∣∣∣
= 2

−k(k−1)
(

1
2
+ 1

p
+ 1

k

)
2k(k−1)∑
r=1

∣∣∣∣∣2k(k−1)∑
s=1

h(k)rs ϕ2k(k−1)+s−1

∣∣∣∣∣ .(2.3)

Combining (2.3) with estimate (2.1), we conclude for any δ > 0 given, there exists an nδ ∈ N such
that

∞∑
k=kn

(
sup

‖ϕ‖p∗≤1

2k(k−1)+1−1∑
j=2k(k−1)

∣∣∣ϕ(x(j))∣∣∣)

=
∞∑

k=kn

(
sup

‖ϕ‖p∗≤1
2
−k(k−1)

(
1
2
+ 1

p
+ 1

k

)
2k(k−1)∑
r=1

∣∣∣∣∣2k(k−1)∑
s=1

h(k)rs ϕ2k(k−1)+s−1

∣∣∣∣∣
)

=
∞∑

k=kn

(
2
−k(k−1)

(
1
2
+ 1

p
+ 1

k

)
sup

‖ϕ‖p∗≤1

2k(k−1)∑
r=1

∣∣∣∣∣2k(k−1)∑
s=1

h(k)rs ϕ2k(k−1)+s−1

∣∣∣∣∣
)

≤
∞∑

k=kn

2
−k(k−1)

(
1
2
+ 1

p
+ 1

k

)
· 2k(k−1)

(
1
2
+ 1

p

)

=
∞∑

k=kn

2−(k−1) < δ,(2.4)

whenever n ≥ nδ. We have proven that

sup
‖ϕ‖p∗≤1

∞∑
j=n

∣∣∣ϕ(x(j))∣∣∣ < δ,

whenever n ≥ nδ, and hence
(
x(j)
)∞
j=1

is unconditionally summable.
Next we note that, for j ∈

{
2k(k−1), . . . , 2k(k−1)+1 − 1

}
,∥∥∥x(j)∥∥∥

p
=

∥∥∥∥∥(2k(k−1))−
(

1
2
+ 1

p
+ 1

k

)(
2k(k−1)∑
s=1

h(k)rs e2k(k−1)+s−1

)∥∥∥∥∥
p

= 2−k(k−1)(
1
2
+ 1

k ).

Clearly
∥∥x(j)∥∥

p
= 0 if j 6∈

{
2k(k−1), . . . , 2k(k−1)+1 − 1

}
. For any r > 0, we compute

∞∑
j=1

∥∥∥x(j)∥∥∥r
p
=
∞∑
k=1

2k(k−1) · 2−k(k−1)(
r
2
+ r

k ) =
∞∑
k=1

2k(k−1)(1−
r
2
− r

k )

and note that such a series diverges provided r < 2. The proof of Theorem 1 is complete. �.
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