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Abstract. We establish new vector-valued Kahane–Salem–Zygmund inequalities, with asymptoti-
cally bounded constants, on spaces with unconditional Schauder basis.

1. Introduction

Multilinear forms or polynomials with ±1 coefficients and small norms play key roles in several
fields of mathematics and its applications, viz. [3, 4, 8, 9, 11]. To some extend, they should be
thought as extrema of some sort of optimization problems. For instance, the classical Littlewood’s
4/3 inequality yields(

∞∑
i,j=1
|T (ei, ej)|4/3

)3/4

≤
√

2 sup {|T (x, y)| : ‖x‖ ≤ 1 and ‖y‖ ≤ 1} ,

for all bilinear forms T : c0 × c0 −→ R. The exponent 4/3 and the constant
√

2 are optimal and the
optimality of such parameters are attained by suitable bilinear forms with coefficients ±1.

Similarly, Bohnenblust and Hille [8] constructed an m-linear form An : `n∞ × · · · × `n∞ −→ C with
complex coefficients with modulus 1 satisfying

‖An‖ ≤ n(m+1)/2

and they showed that the exponent (m+ 1) /2 is optimal, i.e., it cannot be replaced by a smaller
one. This result plays a fundamental role in the investigation of the famous Bohr radius problem.
In the 1970’s and 1980’s, similar inequalities were investigated in [4, 6, 7, 10, 14] using probabilistic
techniques and their statements can be summarized as follows. If we denote K = R or C and represent
Kn endowed with the `p-norm by `np , for all positive integers m,n and p1, . . . , pm ∈ [1,∞], there exists
an m-linear form An : `np1 × · · · × `

n
pm −→ K of the type

An(z(1), . . . , z(m)) =
n∑

i1=1
· · ·

n∑
im=1

± z(1)i1
· · · z(m)

im
,

such that

‖An‖ ≤ Cmn
1

min{max{2,p∗1},...,max{2,p∗m}}
+
∑m

k=1 max
{

1
2
− 1

pk
,0
}

for a certain constant Cm. Above and henceforth, as usual, we consider 1/∞ = 0, the conjugate of p
is denoted by p∗, i.e., p∗ = p/ (p− 1).

Inequalities of that type are called nowadays called Kahane–Salem–Zygmund inequalities (KSZ
for short). In the case of bilinear forms, Bennett’s approach [5, Proposition 3.2] is more general,
allowing different dimensions at the domain of the bilinear forms. More precisely, Bennett’s inequality
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claims that, for all p1, p2 ∈ [1,∞] and all positive integers n1, n2, there exists a bilinear form
An1,n2 : `n1

p1 × `
n2
p2 −→ R with coefficients ±1 satisfying

(1.1) ‖An1,n2‖ ≤ C max

{
n
1/p∗2
2 n

max
{

1
2
− 1

p1
,0
}

1 , n
1/p∗1
1 n

max
{

1
2
− 1

p2
,0
}

2

}
,

where C is a constant depending only on p1 and p2. The KSZ inequality (following Bennett’s style)
was recently extended to m-linear forms ([2, 13]) as follows: let m,n1, . . . , nm be positive integers and
p1, . . . , pm ∈ [1,∞]. There exist a constant Cm and an m-linear form An1,...,nm : `n1

p1 ×· · ·× `
nm
pm −→ K

of the type

An1,...,nm

(
z(1), . . . , z(m)

)
=

n1∑
i1=1
· · ·

nm∑
im=1

± z(1)i1
· · · z(m)

im
,

such that

(1.2) ‖An1,...,nm‖ ≤ Cm max
k=1,...,m

{
n

1
min{max{2,p∗1},...,max{2,p∗m}}

k

}
m∏
k=1

n
max

{
1
2
− 1

pk
,0
}

k .

A simple calculation shows that when m = 2 and p1, p2 ∈ [2,∞], the inequality (1.2) recovers (1.1).
It turns out that, while powerful, the probabilistic approach generates very large bounding constants,
viz. Cm >

√
m!.

The program to obtain improved (smaller) constants for these inequalities has become an important
tread of research. For instance, in [12], the original KSZ inequality was investigated by means of
deterministic methods that allowed to show that in some cases the constants are asymptotically
dominated by 1. Here is the precise statement:

Theorem 1.1. ([12, Corollary 1.2]) Let a positive integer m and ε > 0 be given. There exists a
positive integer N such that, for all n ≥ N , there exists an m-linear form An : `n∞ × · · · × `n∞ −→ K
of the type

An(z(1), . . . , z(m)) =
n∑

i1=1
· · ·

n∑
im=1

± z(1)i1
· · · z(m)

im
,

such that
‖An‖ ≤ (1 + ε)n

m+1
2 .

The main goal of this current paper is to generalize Theorem 1.1 in several ways. Initially we are
interested in inequalities over more general Banach spaces. This will be attained by replacing the
`n∞ space by n-dimensional subspaces of a Banach space with unconditional Schauder basis. Next we
extend the role of `ns in the original inequality to allow n-dimensional subspaces of a Banach space of
cotype s, with unconditional Schauder basis.

Before we can state our main result, let’s denote the infimum of the cotypes assumed by a Banach
space E by cot(E). The cotype q constant of E will be represented hereafter by Cq(E). Here is the
main theorem of this paper:

Theorem 1.2. Let a positive integer m and ε > 0 be given and E(1), . . . , E(m) be infinite-dimensional
Banach spaces with normalized unconditional Schauder basis

(
z
(1)
j

)∞
j=1

, . . . ,
(
z
(m)
j

)∞
j=1

and constants

K1, . . . ,Km, respectively. Let also F be Banach space with cotype q = cot (F ) and normalized
unconditional Schauder basis

(
z
(m+1)
j

)∞
j=1

with constant Km+1. Let us denote

E
(i)
k := span{z(i)1 , . . . , z

(i)
k }
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for all i = 1, . . . ,m. Then, there exists a positive integer N such that, for all n ≥ N , there exists an
m-linear form An : E

(1)
n × · · · × E(m)

n −→ F ∗ with

An(z
(1)
j1
, . . . , z

(m)
jm

)
(
z
(m+1)
jm+1

)
= ±1,

for all j1, . . . , jm, jm+1 ∈ {1, . . . , n}, satisfying

‖An‖ ≤ (K1 · · ·Km+1Cq(F ) + ε)n
m+2

2
− 1

q .

Moreover, the exponent m+2
2 − 1

q is optimal, in the sense that it cannot be improved by a smaller one
keeping the generality of the statement.

When F ∗ = `s and E(1) = · · · = E(m) = c0, we recover [1, Lemma 6.2]; however with a much more
precise constant as the original estimate in [1] yields Cm >

√
m!.

The second main result we will proof in this article generalizes Bennett’s inequality (1.1) for
p1, p2 ∈ [2,∞] and n1 = n2 as follows:

Theorem 1.3. Let ε > 0 and q1, q2 ∈ [2,∞]. For k = 1, 2, let E(k) be a Banach space of cotype
qk = cot

(
E(k)

)
and normalized unconditional Schauder basis

(
z
(k)
j

)∞
j=1

with constant Kk. There

exists a positive integer N such that, whenever n > N , there is a bilinear form A : E
(1)
n ×E(2)

n −→ K
of the type

A(z(1), z(2)) =
n∑

i=1

n∑
j=1
± z(1)i z

(2)
j ,

such that
‖A‖ ≤

(
K1K2Cq1(E(1))Cq2(E(2)) + ε

)
n

3
2
− 1

q1
− 1

q2

The rest of the paper is organized as follows: in Section 2 we establish the proof of Theorem 1.2.
In fact we shall establish a slightly more general result. In section 3, we will discuss the proof of
Theorem 1.3.

2. Proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2. However, for the sake of completeness, we will
actually establish a more general result, of whom Theorem 1.2 is a direct consequence. The precise
statement of the result to be proven in this section is as follows:

Theorem 2.1. Let a positive integer m and ε > 0 be given and E(1), . . . , E(m) be Banach spaces
with normalized unconditional Schauder basis

(
z
(1)
j

)∞
j=1

, . . . ,
(
z
(m)
j

)∞
j=1

and constants K1, . . . ,Km,

respectively. Let also F be an infinite-dimensional Banach space of cotype q and unconditional
Schauder basis

(
z
(m+1)
j

)∞
j=1

with constant Km+1. Then, there exists a positive integer N such that,

for all n1, . . . , nm ≥ N , there exists an m-linear operator An1,...,nm : E
(1)
n1 × · · · × E

(m)
nm −→ F ∗ with

An1,...,nm(z
(1)
j1
, . . . , z

(m)
jm

)
(
z
(m+1)
jm+1

)
= ±1,

for all jk ∈ {1, . . . , nk} and j ∈ {1, . . . ,min{n1, . . . , nm}}, satisfying

‖An1,...,nm‖ ≤ (K1 · · ·Km+1Cq(F ) + ε) min{n1, . . . , nm}
1
2
− 1

q max{n1, . . . , nm}1/2
m∏
j=1

n
1/2
j .
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Let X1, . . . , Xm, Y be Banach spaces. We recall the following isometric isomorphism between the
space L (X1, . . . , Xm;Y ∗) of all continuous m-linear operators from X1 × · · · × Xm to Y ∗ and the
space L (Y,X1, . . . , Xm;K) of all (m+ 1)-linear forms from Y ×X1 × · · · ×Xm to K.

Ψ: L (Y,X1, . . . , Xm;K) −→ L (X1, . . . , Xm;Y ∗)

Ψ (A) (x1, . . . , xm) (y) = A (y, x1, . . . , xm) .

In view of such an isometric isomorphism, it suffices to prove the following:
If E(1) is an infinite-dimensional Banach space of cotype q and unconditional Schauder basis(
z
(1)
j

)∞
j=1

with constant K1 and E(2), . . . , E(m) are infinite-dimensional Banach spaces with uncondi-

tional Schauder basis
(
z
(2)
j

)∞
j=1

, . . . ,
(
z
(m)
j

)∞
j=1

and constants K2, . . . ,Km, respectively, then, there

exists a positive integer N with the following property:
• For all n2, . . . , nm ≥ N and n1 = min{n2, . . . , nm}, there exists an m-linear form
An1,...,nm : E

(1)
n1 × · · · × E

(m)
nm −→ K of the type

An1,...,nm(z(1), . . . , z(m)) =
n1∑

i1=1
· · ·

nm∑
im=1

± z(1)i1
· · · z(m)

im
,

satisfying

(2.1) ‖An1,...,nm‖ ≤
(
K1 · · ·KmCq(E

(1)) + ε
)
n

1
2
− 1

q

1 max{n2, . . . , nm}1/2
m∏
j=2

n
1/2
j .

We then proceed to prove the existence of a constant An1,...,nm satisfying (2.1). Since E(1) has
cotype q, the identity id : E(1) −→ E(1) is absolutely (q; 1)-summing with constant Cq(E

(1)):(
n∑

j=1
|aj |q

)1/q

=

(
n∑

j=1

∥∥∥id(ajz(1)j

)∥∥∥q)1/q

≤ Cq(E
(1)) sup

εj=±1

∥∥∥∥∥ n∑
j=1

εjajz
(1)
j

∥∥∥∥∥ .
Since K1 is the constant of the unconditional basis

(
z
(1)
j

)∞
j=1

, we have

sup
εj=±1

∥∥∥∥∥ n∑
j=1

εjajz
(1)
j

∥∥∥∥∥ ≤ K1

∥∥∥∥∥ n∑
j=1

ajz
(1)
j

∥∥∥∥∥ .
Therefore,∥∥∥∥∥ n∑

j=1
ajz

(1)
j

∥∥∥∥∥ ≤ 1⇒

(
n∑

j=1
|aj |q

)1/q

≤ K1Cq(E
(1))⇒

(
n∑

j=1
|aj |2

)1/2

≤ K1Cq(E
(1))n

1
2
− 1

q .

We also know that ∥∥∥∥∥ n∑
j=1

ajz
(k)
j

∥∥∥∥∥ ≤ 1⇒ |aj | ≤ Kk

for all k = 2, . . . ,m.
With no loss of generality, we can assume

n2 ≤ · · · ≤ nm.
Let us first suppose that for each k = 2, . . . ,m, there is a Hadamard matrix Hnk

with order nk.
For k = 2, . . . ,m, let u(k)i , i = 1, . . . , nk, be the rows of Hnk

; hence

(2.2)
〈
u
(k)
i , u

(k)
j

〉
= nkδij .
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Let us consider the square matrices of order nm defined by[
h
(k)
ij

]
nm×nm

:=

[
Hnk

0nk×(nm−nk)

0(nm−nk)×nk
0(nm−nk)×(nm−nk)

]
for each k = 2, . . . ,m. Consider the m-linear form A : E

(1)
n1 × · · · × E

(m)
nm −→ K defined by

A
(
x(1), . . . , x(m)

)
=

n1∑
i1=1
· · ·

nm∑
im=1

h
(2)
i1i2
· · ·h(m)

im−1im
x
(1)
i1
· · ·x(m)

im
,

where

x(k) =
nk∑
j=1

x
(k)
j z

(k)
j .

For all k = 1, . . . ,m, given x(k) =
nk∑
j=1

x
(k)
j z

(k)
j in the unit ball of E(k), let us denote

y(k) =
nm∑
j=1

y
(k)
j z

(k)
j ,

with y(k)j = 0 for all j = nk + 1, . . . , nm and y(k)j = x
(k)
j for all j = 1, . . . , nk. Then, by the Hölder

inequality,∣∣∣A(x(1), . . . , x(m)
)∣∣∣ =

∣∣∣∣∣ nm∑
i1,...,im=1

(
m∏
r=2

h
(r)
ir−1ir

)(
m∏
s=1

y
(s)
is

)∣∣∣∣∣
≤

nm∑
im=1

∣∣∣∣∣ nm∑
i1,...,im−1=1

(
m∏
r=2

h
(r)
ir−1ir

)(
m−1∏
s=1

y
(s)
is

)∣∣∣∣∣ ∣∣∣y(m)
im

∣∣∣
≤

(
nm∑

im=1
|y(m)

im
|2
)1/2

·

 nm∑
im=1

∣∣∣∣∣ nm∑
i1,...,im−1=1

(
m∏
r=2

h
(r)
ir−1ir

)(
m−1∏
s=1

y
(s)
is

)∣∣∣∣∣
2
1/2

≤ Kmn
1/2
m

 nm∑
im=1

nm∑
i1,...,im−1=1
j1,...,jm−1=1

(
m∏
r=2

h
(r)
ir−1ir

h
(r)
jr−1jr

)(
m−1∏
s=1

y
(s)
is
y
(s)
js

)
1/2

.

Thus,

∣∣∣A(x(1), . . . , x(m)
)∣∣∣ ≤ Kmn

1/2
m

 nm∑
i1,...,im−1=1
j1,...,jm−1=1

(
m−1∏
r=2

h
(r)
ir−1ir

h
(r)
jr−1jr

)(
m−1∏
s=1

y
(s)
is
y
(s)
js

)
nm∑

im=1
h
(m)
im−1im

h
(m)
jm−1im


1/2

= Kmn
1/2
m

 nm∑
i1,...,im−1=1
j1,...,jm−1=1

(
m−1∏
r=2

h
(r)
ir−1ir

h
(r)
jr−1jr

)(
m−1∏
s=1

y
(s)
is
y
(s)
js

)〈
u
(m)
im−1

, u
(m)
jm−1

〉
1/2

and, by (2.2), we have

∣∣∣A(x(1), . . . , x(m)
)∣∣∣ ≤ Kmn

1/2
m

 nm∑
im−1=1

nm∑
i1,...,im−2=1
j1,...,jm−2=1

(
m−1∏
r=2

h
(r)
ir−1ir

h
(r)
jr−1jr

)(
m−2∏
s=1

y
(s)
is
y
(s)
js

) ∣∣∣y(m−1)im−1

∣∣∣2 nm


1/2
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≤ Km−1Kmnm

 nm∑
i1,...,im−2=1
j1,...,jm−2=1

(
m−2∏
r=2

h
(r)
ir−1ir

h
(r)
jr−1jr

)(
m−2∏
s=1

y
(s)
is
y
(s)
js

)
nm∑

im−1=1
h
(m−1)
im−2im−1

h
(m−1)
jm−2im−1


1/2

= Km−1Kmnm

 nm∑
i1,...,im−2=1
j1,...,jm−2=1

(
m−2∏
r=2

h
(r)
ir−1ir

h
(r)
jr−1jr

)(
m−2∏
s=1

y
(s)
is
y
(s)
js

)〈
u
(m−1)
im−2

, u
(m−1)
jm−2

〉
1/2

.

Since  nm∑
i1,...,im−2=1
j1,...,jm−2=1

(
m−2∏
r=2

h
(r)
ir−1ir

h
(r)
jr−1jr

)(
m−2∏
s=1

y
(s)
is
y
(s)
js

)〈
u
(m−1)
im−2

, u
(m−1)
jm−2

〉
1/2

= n
1/2
m−1

 nm∑
im−2=1

nm∑
i1,...,im−3=1
j1,...,jm−3=1

(
m−2∏
r=2

h
(r)
ir−1ir

h
(r)
jr−1jr

)(
m−2∏
s=1

y
(s)
is
y
(s)
js

)
1/2

= n
1/2
m−1

 nm∑
im−2=1

|y(m−2)im−2
|2

nm∑
i1,...,im−3=1
j1,...,jm−3=1

(
m−2∏
r=2

h
(r)
ir−1ir

h
(r)
jr−1jr

)(
m−3∏
s=1

y
(s)
is
y
(s)
js

)
1/2

,

we have

∣∣∣A(x(1), . . . , x(m)
)∣∣∣ ≤ ( m∏

j=m−2
Kj

)
nmn

1/2
m−1

 nm∑
im−2=1

nm∑
i1,...,im−3=1
j1,...,jm−3=1

(
m−2∏
r=2

h
(r)
ir−1ir

h
(r)
jr−1jr

)(
m−3∏
s=1

y
(s)
is
y
(s)
js

)
1/2

and, repeating this procedure, we finally obtain∣∣∣A(x(1), . . . , x(m)
)∣∣∣ ≤ ( m∏

j=2
Kj

)
n
1/2
2 · · ·n1/2m−1nm

(
nm∑
i1=1

∣∣∣y(1)i1

∣∣∣2)1/2

≤

(
m∏
j=1

Kj

)
Cq(E

(1))n
1
2
− 1

q

1 n1/2m

m∏
j=2

n
1/2
j .

Let us deal with the general case.
Recall that a set of positive integers A is said to be asymptotically dense in N if for all ε > 0, there

exists a positive integer nε such that for all m ≥ nε there is n ∈ A satisfying

m ≤ n ≤ m (1 + ε) .

The next result is folklore, but we present a proof for the sake of completeness.

Lemma 2.2. The set of orders of Hadamard matrices is asymptotically dense in N.

Proof. Since for all i, j there are Hadamard matrices of order 4i12j , it suffices to show that
A :=

{
4i12j : i, j ∈ {0, 1, 2, 3, . . .}

}
is asymptotically dense in N. An immediate consequence of

the classical Dirichlet’s approximation theorem on Diophantine approximation says that, fixed an
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irrational number α > 0 and given an arbitrary ε > 0, there exists a positive integer nε ∈ N such
that, for all x ≥ nε, we can find a, b ∈ {0, 1, 2, 3, . . .} satisfying

0 < a+ bα− x < ε.

It is easy to check that log4 3 is irrational, for all k. So, geting α = 1 + log4 3, given 0 < ε < 1, there
is a sufficiently large positive integer nε such that, if Nε ≥ 4nε , then, whenever m ≥ Nε, there are
i, j ∈ {0, 1, 2, 3, . . .} such that

0 ≤ i+ j (1 + log4 3)− log4m ≤ log4 (1 + ε)

or, equivalently,
log4m ≤ i+ j (1 + log4 3) ≤ log4 ((1 + ε)m) .

Since
i+ j (1 + log4 3) = log4 (4)i (12)j ,

there are i, j ∈ {0, 1, 2, 3, . . .} such that

log4m ≤ log4 (4)i (12)j ≤ log4 ((1 + ε)m) ,

whenever m ≥ Nε, which yields the thesis of the Lemma. �

By the previous lemma, for each

δ =

1 + ε

((
m∏
j=1

Kj

)
Cq(E

(1))

)−1 1
m+1

2 − 1
q

− 1 > 0,

there is a positive integer N such that, for each k = 1, . . . ,m, whenever nk > N is an integer, there
exists a Hadamard matrix of order tk satisfying

nk ≤ tk < (1 + δ)nk.

Notice that, without loss of generality, we can assume t1 ≤ · · · ≤ tm. Thus, there is an m-linear form
A0 : E(t1) × · · · × E(tm) −→ K with coefficients ±1 such that

‖A0‖ ≤

(
m∏
j=1

Kj

)
Cq(E

(1))t
1
2
− 1

q

1 t1/2m

m∏
k=2

t
1/2
k .

If nk = tk for each k, it is sufficient to make An1,...,nm = A0. Otherwise, let us consider the m-linear
form

An1,...,nm : E(1)
n1
× · · · × E(m)

nm
−→ K

defined by

An1,...,nm

(
n1∑
j=1

a
(1)
j z

(1)
j , . . . ,

nm∑
j=1

a
(m)
j z

(m)
j

)
= A0

(
t1∑
j=1

a
(1)
j z

(1)
j , . . . ,

tm∑
j=1

a
(m)
j z

(m)
j

)
,

where a(k)j = 0 for all k = nk + 1, . . . , tk. Then, given
nk∑
j=1

a
(k)
j z

(k)
j ∈ B

E
(k)
nk

, k = 1, . . . ,m,

we have∣∣∣∣∣An1,...,nm

(
n1∑
j=1

a
(1)
j z

(1)
j , . . . ,

nm∑
j=1

a
(m)
j z

(m)
j

)∣∣∣∣∣ ≤ ‖A0‖ ≤

(
m∏
j=1

Kj

)
Cq(E

(1))t
1
2
− 1

q

1 t1/2m

m∏
j=2

t
1/2
j
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≤

(
m∏
j=1

Kj

)
Cq(E

(1)) (1 + δ)
1
2
− 1

q n
1
2
− 1

q

1 (1 + δ)1/2 n1/2m

m∏
j=2

(1 + δ)1/2 n
1/2
j

≤

(
m∏
j=1

Kj

)
Cq(E

(1)) (1 + δ)
m+1

2
− 1

q n
1
2
− 1

q

1 n1/2m

m∏
j=2

n
1/2
j

=

((
m∏
j=1

Kj

)
Cq(E

(1)) + ε

)
n

1
2
− 1

q

1 n1/2m

m∏
j=2

n
1/2
j

and this completes the proof. �

3. Proof of Theorem 1.3

As in the proof of the previous result, for k = 1, 2, we have∥∥∥∥∥ n∑
j=1

ajz
(k)
j

∥∥∥∥∥ ≤ 1⇒

(
n∑

j=1
|aj |qk

)1/qk

≤ KkCqk(E(k))⇒

(
n∑

j=1
|aj |2

)1/2

≤ KkCqk(E(k))n
1
2
− 1

qk .

Let [hij ]n×n be a Hadamard matrix of order n. It is easy to see that the bilinear form A0 : E
(1)
n ×

E
(2)
n −→ K given by

(3.1) A0(x
(1), x(2)) =

n∑
i=1

n∑
j=1

hija
(1)
i a

(2)
j ,

where
x(k) =

n∑
j=1

a
(k)
j z

(k)
j .

has norm
‖A0‖ ≤ K1K2Cq1(E(1))Cq2(E(2))n

3
2
− 1

q1
− 1

q2 .

In fact, if x(k) =
n∑

j=1
a
(k)
j z

(k)
j ∈ B

E
(k)
nk

, k = 1, 2, from the Cauchy-Schwarz inequality, we have

∣∣∣A0

(
x(1), x(2)

)∣∣∣ ≤ n∑
j=1

∣∣∣∣ n∑
i=1
hija

(1)
i

∣∣∣∣ ∣∣∣a(2)j

∣∣∣
≤

(
n∑

j=1

∣∣∣a(2)j

∣∣∣2)1/2

·

(
n∑

j=1

∣∣∣∣ n∑
i=1
hija

(1)
i

∣∣∣∣2
)1/2

≤ K2Cq2(E(2))n
1
2
− 1

q2

(
n∑

j=1

n∑
i,k=1

hijhkja
(1)
i a

(1)
k

)1/2

= K2Cq2(E(2))n
1
2
− 1

q2

(
n∑

i,k=1

a
(1)
i a

(1)
k nδik

)1/2

≤ K1K2Cq1(E(1))Cq2(E(2))n
3
2
− 1

q1
− 1

q2 .

We shall show that, for other values of n, we have the same inequality, with the addition of the
“asymptotic factor” (1 + ε).

Given δ > 0, there is a positive integer N such that, whenever n > N , there exists a Hadamard
order t that complies

(3.2) n ≤ t ≤ n (1 + δ) .
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Let

δ =
(

1 + ε(K1K2Cq1(E(1))Cq2(E(2))−1
) 1

3
2−

1
p1
− 1

p2 − 1 > 0.

Now, let us consider some Hadamard matrix [hij ]t×t of order t. Let A0 : E
(1)
t × E

(2)
t −→ K be as in

(3.1). Hence,

‖A0‖ ≤ K1K2Cq1(E(1))Cq2(E(2))t
3
2
− 1

p1
− 1

p2 .
If n = t, we make A = A0. If n < t, we define

A : E(1)
n × E(2)

n −→ K,

taking

A

(
n∑

j=1
a
(1)
j z

(1)
j ,

n∑
j=1

a
(2)
j z

(2)
j

)
= A0

(
t∑

j=1
a
(1)
j z

(1)
j ,

t∑
j=1

a
(2)
j z

(2)
j

)
,

where a(k)j = 0 for all k = n+ 1, . . . , t. Therefore, given x(k) =
n∑

j=1
a
(1)
j z

(1)
j ∈ B

E
(k)
n

, by (3.2), we have∣∣∣A(x(1), x(2))∣∣∣ ≤ ‖A0‖

≤ K1K2Cq1(E(1))Cq2(E(2))t
3
2
− 1

p1
− 1

p2

≤ K1K2Cq1(E(1))Cq2(E(2)) (1 + δ)
3
2
− 1

p1
− 1

p2 n
3
2
− 1

p1
− 1

p2

= K1K2Cq1(E(1))Cq2(E(2)) (1 + ε)n
3
2
− 1

p1
− 1

p2 ,

as desired. The proof of Theorem 1.3 is complete. �
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