
THE KHINCHIN INEQUALITY FOR MULTIPLE SUMS REVISITED

ANSELMO RAPOSO JR. AND KATIUSCIA B. TEIXEIRA

Abstract. We present a self-contained proof of the Khinchin inequality for multiple sums, which
avoids advanced results from Probability theory. Not only our new proof is more accessible, but also
it sheds lights on some properties of the inequality which may yield further generalizations.

1. Introduction

Khinchin’s inequality is an important analytical tool with a charming probabilistic flavor.
Established in the 1920’s, [12], Khinchin’s inequality was originally motivated by the investigation of
the rate of convergence in E. Borel’s strong law of large numbers.

Through the years, Khinchin’s inequality has found a plethora of striking applications in a number
of fields including: harmonic and functional analysis, viz. [1, 2, 3], partial differential equations, viz.
[6, 18, 19], stochastic processes, viz. [7, 14], computer sciences, viz. [9, 8], and number theory, viz.
[4, 16], to cite a few. It has several extensions and generalizations and we shall focus on its statement
for multiple sums, referred as the multiple Khinchin inequality, which reads as follows:

Theorem 1.1 (Multiple Khinchin inequality). Let (ai1...im)
n
i1,...,im=1 be real or complex scalars and

0 < p < ∞. Then there are constants Ap and Bp such that

Am
p

(
n∑

i1=1
· · ·

n∑
im=1

|ai1...im |
2

)1/2

≤

∥∥∥∥∥ n∑
i1=1

· · ·
n∑

im=1
ri1 (t1) · · · rim (tm) ai1...im

∥∥∥∥∥
Lp([0,1]

m)

≤ Bm
p

(
n∑

i1=1
· · ·

n∑
im=1

|ai1...im |
2

)1/2

,

where rn(t) denotes the Rademacher functions, rn(t) = sgn
(
sin 2n+1πt

)
.

The probabilistic flavor of Khinchin’s inequality is certainly appealing, but also intricate.
Heuristically, the inequality informs about the behavior of a sort “random walks”, as follows. Suppose
we are given n real (or complex) numbers a1, . . . , an and a fair coin. We shall produce a new sequence
of numbers, αj , through the following rules. Flip a coin. If it comes up heads, set α1 = a1; if it comes
up tails, set α1 = −a1. Repeating the process, after having flipped the coin k times, set

αk+1 = αk + ak+1,

if the (k + 1) flip comes up heads; otherwise set

αk+1 = αk − ak+1.

The question one is interested in is how does the absolute value of the generated sequence αj grows.
That is, after n steps, what should be the expected value of |αn|?

Khinchin’s inequality shows, in a very precise sense, that this quantity is close to the ℓ2-norm of
the original sequence, (an). It is a remarkable result.
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To better appreciate this interpretation, one should look at the structure of the Rademacher
functions, rn : [0, 1] → [0, 1], defined analytically as

rn(t) = sgn
(
sin 2n+1πt

)
,

for all positive integers n. They are in the core of Khinchin’s inequality and our first main goal is to
discuss some of their key properties, which are sometimes not formally proven in the literature. This
will allow us to establish a self-contained proof of Khinchin’s inequality, in its multiple (extended)
version; see for instance [15] and the references therein.
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Figure 1. Rademacher functions.

The (natural) question regarding optimal constants for Khinchin’s inequality, p > 2, has been
tackled by Szarek in [17] and Haagerup in [11]. The problem boils down to solving the optimization
problems

min

∫ 1

0

∣∣∣∣ n∑
k=1

akrk (t)

∣∣∣∣p dt

and

max

∫ 1

0

∣∣∣∣ n∑
k=1

akrk (t)

∣∣∣∣p dt

where the minimum and the maximum are taken over the unit sphere of ℓ2, i.e. the sequences

satisfying
n∑

k=1

|ak|2 = 1. Through a delicate analysis, Haagerup ultimately managed to prove that:

Ap =



2
p−2
2 , if 0 < p ≤ p0,

2
p−2
2

Γ

(
p+ 1

2

)
Γ

(
3

2

) , if p0 ≤ p ≤ 2,

where p0 ∈ (1, 2) is determined by

Γ

(
p0 + 1

2

)
=

√
π

2
.

The optimal constants of the multiple Khinchin inequality are Am
p and Bm

p (see [13]).
Our proof of Khinchin’s inequality relies on the multi-orthogonality of the Rademacher functions;

a result that is well understood by the experts, but its proof is often omitted in the literature, see for
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instance [5, page 10]. We offer an easy proof of this property, which is interesting by its own. This
is the content of Section 2. In Section 3 we prove the multiple version of Khinchin’s inequality by
means of an elementary tools. Not only our new proof is more accessible to (say) graduate students,
but also it sheds lights on properties of the inequality which might yield further generalizations.

2. Multi-orthogonality of the Rademacher functions

We begin by proving a folkloric property of the Rademacher functions which is usually not proven
in the literature (see [5, page 10]).

Lemma 2.1. Let (nj)
∞
j=1 be an increasing sequence of natural numbers. If 0 < n1 < n2 < · · · < nk

and k, p1, p2, . . . , pk are positive integers, then∫ 1

0
rp1n1

(t) · rp2n2
(t) · · · · · rpknk

(t) dt =

{
1, if each pj is even,

0, otherwise.

Proof. Let

g (t) =
k∏

i=1
rpini

(t) = rpℓnℓ
(t) f (t) ,

where ℓ is the largest integer in the interval [1, k] where pℓ is odd, and where

f (t) =
∏

1≤i≤k
i ̸=ℓ

rpini
(t) =

∏
1≤i≤ℓ−1

rpini
(t) .

We note that f (t) is constant along intervals of the form

Ij :=

[
j − 1

2nℓ−1
,

j

2nℓ−1

]
;

yet, ∫
Ij

rpℓnℓ
(t) dt = 0;

thus,
∫
Ij

g (t) dt = 0, and so
∫ 1

0
g (t) dt = 0. □

3. The proof of Khinchin’s inequality for multiple sums

The classical proof of Khinchin’s inequality relies on the fact that the Rademacher functions are
independent random variables, and thus

(3.1)
∫ 1

0

m∏
n=1

exp (anrn (t)) dt =
m∏

n=1

∫ 1

0
exp (anrn (t)) dt,

for any real scalars a1, . . . , am.
Our first goal is to show (3.1) by means of self-contained, elementary arguments, and thus avoiding

the usage of probabilistic tools. This is the contents of the upcoming Lemma 3.1.
We start with few elementary considerations. Let (an)

∞
n=1 ∈ ℓ2 be an arbitrary sequence. Define

S0 = 0 and Sn =
n∑

k=1

akrk (t) for n ≥ 1. We readily obtain

(3.2) ∥Sm − Sn∥2L2[0,1]
=

∫ 1

0

(
m∑

i=n+1
airi (t)

)(
m∑

j=n+1
ajrj (t)

)
dt =

m∑
k=n+1

|ak|2 .
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In particular, (Sn)
∞
n=1 is a Cauchy sequence and thus it converges strongly in L2 [0, 1]. Setting n = 0

and letting m → ∞ in (3.2) yields∫ 1

0

∣∣∣∣ ∞∑
n=1

anrn (t)

∣∣∣∣2 dt =
∞∑
n=1

|an|2 .

Next, for all positive integers m and each j = 1, . . . , 2m, set

c
(m)
j :=

m∑
n=1

anrn

(
t
(m)
j

)
,

where
j − 1

2m
< t

(m)
j <

j

2m
.

Note that the definition of c(m)
j does not depend on the choice of t(m)

j . We claim that

c
(m+1)
k =

 c
(m)
j + am+1, if k = 2j − 1,

c
(m)
j − am+1, if k = 2j.

In fact, if k = 2j, there holds

c
(m+1)
k = am+1rm+1

(
t
(m+1)
k

)
+

m∑
n=1

anrn

(
t
(m+1)
k

)
and, in this case,

j − 1

2m
<

k − 1

2m+1
< t

(m+1)
k <

k

2m+1
=

j

2m
.

Hence

rn

(
t
(m+1)
k

)
= rn

(
t
(m)
j

)
,

for all n = 1, . . . ,m and, since k ≥ 2 is even, we also have

rm+1

(
t
(m+1)
k

)
= −1.

Therefore,

c
(m+1)
k = −am+1 +

m∑
n=1

anrn

(
t
(m)
j

)
= c

(m)
j − am+1.

The case k = 2j − 1 is analogous.

Lemma 3.1. For all a1, . . . , am ∈ R, we have∫ 1

0

m∏
n=1

exp (anrn (t)) dt =
m∏

n=1

∫ 1

0
exp (anrn (t)) dt.

Proof. Notice that

(3.3)
m∏

n=1
exp (anrn (t)) =

m∏
n=1

∞∑
i=0

(anrn (t))

i!

i

=
∑

i1,...,im≥0

ai11 · · · aimm ri11 (t) · · · rimm (t)

i1! · · · im!
.
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Integrating both sides of (3.3) from 0 to 1, and using Lemma 2.1, we deduce∫ 1

0

m∏
n=1

exp (anrn (t)) dt =
∑

i1,...,im≥0

ai11 · · · aimm
i1! · · · im!

∫ 1

0
ri11 (t) · · · rimm (t) dt

=
∑

i1,...,im≥0

a2i11 · · · a2imm

2i1! · · · 2im!

=
m∏

n=1
cosh (an)

=
m∏

n=1

∫ 1

0
exp (anrn (t)) dt

and the proof is done. □

3.1. The first step of the proof. The proof of Theorem 1.1 is done by induction on m. The first
step of the proof (the case m = 1) is the classical Khinchin inequality; its proof is standard and can
be found in many books.

• First case: 2 ≤ p < ∞ and real scalars.
Let a1, . . . , am be non-simultaneously null real numbers. Define

f (t) =
m∑

n=1
anrn (t) ,

and set

g (t) =
f (t)

∥f∥L2[0,1]

=
m∑

n=1
bnrn (t) ,

where bn = an/ ∥f∥L2[0,1]
. Clearly

(3.4)
m∑

n=1
b2n = ∥g∥2L2[0,1]

= 1.

From Lemma 3.1, we have∫ 1

0
exp (g (t)) dt =

∫ 1

0

m∏
n=1

exp (bnrn (t)) dt =
m∏

n=1

∫ 1

0
exp (bnrn (t)) dt.

Hence, since each rn (t) equals 1 and −1 in sets of measure 1/2, we have

(3.5)
∫ 1

0
exp (g (t)) dt =

m∏
n=1

1

2
(exp (bn) + exp (−bn)) =

m∏
n=1

cosh (bn) .

Using the expansions of cosh (x) and exp
(
x2/2

)
in power series, we reach

(3.6) cosh (x) =
∞∑
n=0

x2n

(2n)!
≤

∞∑
n=0

x2n

n!2n
= exp

(
x2

2

)
.

By (3.4), (3.5), and (3.6), we have

(3.7)
∫ 1

0
exp (g (t)) dt ≤

m∏
n=1

exp

(
b2n
2

)
= exp

(
1

2

m∑
n=1

b2n

)
= e1/2.

Similarly, we conclude that

(3.8)
∫ 1

0
exp (−g (t)) dt ≤ e1/2.
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If k is a positive integer, there holds

(3.9) |y|k ≤ k!

(
1 +

|y|k

k!

)
≤ k!e|y|,

for all y ∈ R. Thus, by (3.7), (3.8) and (3.9), we can estimate∫ 1

0
|g (t)|k dt ≤ k!

∫ 1

0
exp (|g (t)|) dt ≤ k!

∫ 1

0
(exp (g (t)) + exp (−g (t))) dt ≤ 2k!e1/2.

Since we are considering the case 2 ≤ p < ∞, by the monotonicity of the Lp norms, we can further
estimate

(3.10) ∥g∥Lp[0,1]
≤ ∥g∥L⌈p⌉[0,1]

=

(∫ 1

0
|g (t)|⌈p⌉ dt

)1/⌈p⌉

≤
(
2 ⌈p⌉!e1/2

)1/⌈p⌉
,

where ⌈p⌉ is the smallest integer bigger than or equal to p. Recall that an = bn ∥f∥L2[0,1]
, so from

(3.10) we have

∥f∥L2[0,1]
≤ ∥f∥Lp[0,1]

=

∥∥∥∥ m∑
n=1

bn ∥f∥L2[0,1]
rn

∥∥∥∥
Lp[0,1]

= ∥f∥L2[0,1]
∥g∥Lp[0,1]

≤
(
2 ⌈p⌉!e1/2

)1/⌈p⌉
∥f∥L2[0,1]

,

i.e.,

(3.11)
(

m∑
n=1

|an|2
)1/2

≤
(∫ 1

0

∣∣∣∣ m∑
n=1

anrn (t)

∣∣∣∣p dt

)1/p

≤
(
2 ⌈p⌉!e1/2

)1/⌈p⌉( m∑
n=1

|an|2
)1/2

.

Now, let (an)
∞
n=1 ∈ ℓ2 be non-null sequence. By (3.11), taking Sn =

n∑
k=1

akrk, we conclude (Sn)
∞
n=1 is

a convergent sequence. Letting m → ∞ in (3.11) yields

( ∞∑
n=1

|an|2
)1/2

≤
(∫ 1

0

∣∣∣∣ ∞∑
n=1

anrn (t)

∣∣∣∣p dt

)1/p

≤
(
2 ⌈p⌉!e1/2

)1/⌈p⌉( ∞∑
n=1

|an|2
)1/2

.

• Second case: 2 ≤ p < ∞ and complex scalars. It suffices to consider (an)∞n=1 = (bn)
∞
n=1+i (cn)

∞
n=1 ∈

ℓ2, with (bn)
∞
n=1 and (cn)

∞
n=1 sequences of real scalars and use the previous case.

• Third case: 0 < p < 2. Let f =
m∑

n=1
anrn and define

θ :=
(
2− p

2

)−1
,

so that

(3.12) pθ + 4 (1− θ) = 2.
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Also, as 0 < p < 2, we have 1 < 1/θ < 2. By the Hölder inequality, we estimate∫ 1

0
|f (t)|2 dt =

∫ 1

0
|f (t)|pθ |f (t)|4(1−θ) dt

≤
(∫ 1

0

[
|f (t)|pθ

]1/θ
dt

)θ (∫ 1

0

[
|f (t)|4(1−θ)

]1/(1−θ)
dt

)1−θ

=

(∫ 1

0
|f (t)|p dt

)θ (∫ 1

0
|f (t)|4 dt

)1−θ

=

[(∫ 1

0
|f (t)|p dt

)1/p
]pθ [(∫ 1

0
|f (t)|4 dt

)1/4
]4(1−θ)

.

Applying thecase p = 4 (already established), we have ∥f∥L4[0,1]
≤ B4 ∥f∥L2[0,1]

and

∥f∥2L2[0,1]
≤ ∥f∥pθLp[0,1]

(
B4 ∥f∥L2[0,1]

)4(1−θ)
.

Hence,
B

−4(1−θ)
4 ∥f∥2−4(1−θ)

L2[0,1]
≤ ∥f∥pθLp[0,1]

and, in view of (3.12), we obtain

B
4(θ−1)/pθ
4 ∥f∥L2[0,1]

≤ ∥f∥Lp[0,1]
.

Since
4 (θ − 1)

pθ
= 2− 4

p
,

we have

B
2− 4

p

4 ∥f∥L2[0,1]
≤ ∥f∥Lp[0,1]

.

Applying the monotonicity of the Lp norms once again, we get

B
2− 4

p

4

(
m∑

n=1
|an|2

)1/2

≤
(∫ 1

0

∣∣∣∣ m∑
n=1

anrn (t)

∣∣∣∣p dt

)1/p

≤
(

m∑
n=1

|an|2
)1/2

.

3.2. The induction step. By Lemma 2.1 we have

(3.13)

(
n∑

i1=1
· · ·

n∑
im=1

|ai1...im |
2

)1/2

=

∥∥∥∥∥ n∑
i1=1

· · ·
n∑

im=1
ri1 (t1) · · · rim (tm) ai1...im

∥∥∥∥∥
L2([0,1]

m)

.

Note that ∫
[0,1]m

∣∣∣∣∣ n∑
i1=1

· · ·
n∑

im=1
ri1 (t1) · · · rim (tm) ai1...im

∣∣∣∣∣
p

dt1 . . . dtm(3.14)

=
1

2nm

2n∑
k1=1

· · ·
2n∑

km=1

∣∣∣∣∣ n∑
i1=1

· · ·
n∑

im=1
ri1

(
t
(k1)
1

)
· · · rim

(
t(km)
m

)
ai1...im

∣∣∣∣∣
p

,

for all
ks − 1

2n
≤ t(ks)s <

ks
2n

, ks = 1, 2, 3, . . . , 2n and s = 1, . . . ,m.

Suppose Theorem 1.1 has been verifies for a certain m ≥ 1. Let’s prove the induction step, m+ 1.
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• First case: 0 < p ≤ 2. Let (j1, . . . , jm) = (i2, . . . , im+1) and, for each i1 ∈ {1, . . . , n}, let

c
(i1)
j1...jm

= ai1...im+1 .

Thus

(3.15)

(
n∑

i1=1
· · ·

n∑
im+1=1

∣∣ai1...im+1

∣∣2)1/2

=

 n∑
i1=1

( n∑
j1=1

· · ·
n∑

jm=1

∣∣∣c(i1)j1...jm

∣∣∣2)1/2
21/2

.

By the induction hypothesis, for each i1 ∈ {1, . . . , n}, we have(
n∑

j1=1
· · ·

n∑
jm=1

∣∣∣c(i1)j1...jm

∣∣∣2)1/2

≤ A−m
p

(∫
[0,1]m

∣∣∣∣∣ n∑
j1=1

· · ·
n∑

jm=1
rj1 (x1) · · · rjm (xm) c

(i1)
j1...jm

∣∣∣∣∣
p

dx1 . . . dxm

)1/p

.(3.16)

Notice that ∫
[0,1]m

∣∣∣∣∣ n∑
j1=1

· · ·
n∑

jm=1
rj1 (x1) · · · rjm (xm−1) c

(i1)
j1...jm

∣∣∣∣∣
p

dx1 . . . dxm

= 2−nm
2n∑

km=1

· · ·
2n∑

k1=1

∣∣∣∣∣ n∑
j1=1

· · ·
n∑

jm=1
rj1

(
x
(k1)
1

)
· · · rjm−1

(
x(km)
m

)
c
(i1)
j1...jm

∣∣∣∣∣
p

,(3.17)

where
ks − 1

2n
≤ x(ks)s <

ks
2n

, ks = 1, 2, 3, . . . , 2n and s = 1, . . . ,m.

Let
bi1km...k1 =

n∑
j1=1

· · ·
n∑

jm=1
rj1

(
x
(k1)
1

)
· · · rjm

(
x(km)
m

)
c
(i1)
j1...jm

.

By (3.15), (3.16) and (3.17), we have

Am
p 2

nm
p

(
n∑

i1=1
· · ·

n∑
im=1

∣∣ai1...im+1

∣∣2)1/2

≤

 n∑
i1=1

(
2n∑

km=1

· · ·
2n∑

k1=1

∣∣∣∣∣ n∑
j1=1

· · ·
n∑

jm=1
rj1

(
x
(k1)
1

)
· · · rjm

(
x(km)
m

)
c
(i1)
j1...jm

∣∣∣∣∣
p)2/p

1/2

(3.18)

and, since p ≤ 2, by the Minkowski inequality (see [10, Corollary 5.4.2]) we have n∑
i1=1

(
2n∑

km=1

· · ·
2n∑

k1=1

∣∣∣∣∣ n∑
j1=1

· · ·
n∑

jm=1
rj1

(
x
(k1)
1

)
· · · rjm

(
x(km)
m

)
c
(i1)
j1...jm

∣∣∣∣∣
p)2/p

1/2

(3.19)

=

 n∑
i1=1

(
2n∑

km=1

· · ·
2n∑

k1=1

|bi1km...k1 |
p

)2/p
1/2

≤

 2n∑
km=1

· · ·
2n∑

k1=1

( n∑
i1=1

|bi1km...k1 |
2

)1/2
p1/p
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By the induction hypothesis, i.e. Khinchin’s inequality for each k1, . . . , km ∈ {1, 2, 3, . . . , 2n}, we
reach (

n∑
i1=1

|bi1km...k1 |
2

)1/2

≤ A−1
p

(∫ 1

0

∣∣∣∣∣ n∑
i1=1

ri1 (t1) bi1km...k1

∣∣∣∣∣
p

dt1

)1/p

= A−1
p

(∫ 1

0

∣∣∣∣∣ n∑
i1=1

n∑
j1=1

· · ·
n∑

jm=1
ri1 (t1) rj1

(
x
(k1)
1

)
· · · rjm

(
x(km)
m

)
c
(i1)
j1...jm

∣∣∣∣∣
p

dt1

)1/p

= A−1
p

(∫ 1

0

∣∣∣∣∣ n∑
i1=1

n∑
i2=1

· · ·
n∑

im=1
ri1 (t1) ri2

(
x
(k1)
1

)
· · · rim+1

(
x(km)
m

)
ai1...im+1

∣∣∣∣∣
p

dt1

)1/p

.(3.20)

Therefore, by (3.18), (3.19) and (3.20) we have

Am+1
p 2

nm
p

(
n∑

i1=1
· · ·

n∑
im+1=1

∣∣ai1...im+1

∣∣2)1/2

≤

(
2n∑

km=1

· · ·
2n∑

k1=1

∫ 1

0

∣∣∣∣∣ n∑
i1=1

n∑
i2=1

· · ·
n∑

im+1=1
ri1 (t1) ri2

(
x
(k1)
1

)
· · · rim+1

(
x(km)
m

)
ai1...im+1

∣∣∣∣∣
p

dt1

)1/p

(3.14)
= 2

nm
p

(∫
[0,1]m+1

∣∣∣∣∣ n∑
i1=1

n∑
i2=1

· · ·
n∑

im+1=1
ri1 (t1) · · · rim+1 (tm+1) ai1...im+1

∣∣∣∣∣
p

dt1 . . . dtm+1

)1/p

.

On the other hand, since ∥·∥Lp([0,1]m+1) ≤ ∥·∥L2([0,1]m+1) the other side of the inequality follows
immediately from (3.13).

• Second case: 2 < p < ∞. Since ∥·∥L2([0,1]m+1) ≤ ∥·∥Lp([0,1]m+1), the right hand side of the inequality
follows from (3.13) . Now, for each k = 1, 2, 3, . . . , 2n, let

k − 1

2n
≤ t

(k)
m+1 <

k

2n
e b

(k)
i1...im

=
n∑

im+1=1
rim+1

(
t
(k)
m+1

)
ai1...im+1 .

Hence, for all t1, . . . , tm, we have∫ 1

0

∣∣∣∣∣ n∑
i1=1

· · ·
n∑

im+1=1
ri1 (t1) · · · rim+1 (tm+1) ai1...im+1

∣∣∣∣∣
p

dtm+1

=

∫ 1

0

∣∣∣∣∣ n∑
i1=1

· · ·
n∑

im=1
ri1 (t1) · · · rim (tm)

n∑
im+1=1

rim+1 (tm+1) ai1...im+1

∣∣∣∣∣
p

dtm+1

=
1

2n

2n∑
k=1

∣∣∣∣∣ n∑
i1=1

· · ·
n∑

im=1
ri1 (t1) · · · rim (tm)

n∑
im+1=1

rim+1

(
t
(k)
m+1

)
ai1...im+1

∣∣∣∣∣
p

=
1

2n

2n∑
k=1

∣∣∣∣∣ n∑
i1=1

· · ·
n∑

im=1
ri1 (t1) · · · rim (tm) b

(k)
i1...im

∣∣∣∣∣
p
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and, consequently,(∫
[0,1]m+1

∣∣∣∣∣ n∑
i1=1

· · ·
n∑

im+1=1
ri1 (t1) · · · rim+1 (tm+1) ai1...im+1

∣∣∣∣∣
p

dt1 . . . dtm+1

)1/p

=

(∫
[0,1]m

(∫ 1

0

∣∣∣∣∣ n∑
i1=1

· · ·
n∑

im+1=1
ri1 (t1) · · · rim+1 (tm+1) ai1...im+1

∣∣∣∣∣
p

dtm+1

)
dt1 . . . dtm

)1/p

=

(
1

2n

2n∑
k=1

∫
[0,1]m

∣∣∣∣∣ n∑
i1=1

· · ·
n∑

im=1
ri1 (t1) · · · rim (tm) b

(k)
i1...im

∣∣∣∣∣
p

dt1 . . . dtm

)1/p

.

By the induction hypothesis,(∫
[0,1]m

∣∣∣∣∣ n∑
i1=1

· · ·
n∑

im=1
ri1 (t1) · · · rim (tm) b

(k)
i1...im

∣∣∣∣∣
p

dt1 . . . dtm

)1/p

≤ Bm
p

(
n∑

i1=1
· · ·

n∑
im+1=1

∣∣∣b(k)i1...,im

∣∣∣2)1/2

and (∫
[0,1]m+1

∣∣∣∣∣ n∑
i1=1

· · ·
n∑

im+1=1
ri1 (t1) · · · rim+1 (tm+1) ai1...im+1

∣∣∣∣∣
p

dt1 . . . dtm+1

)1/p

≤ 1

2n/p
Bm

p

 1

2n

2n∑
k=1

(
n∑

i1=1
· · ·

n∑
im=1

∣∣∣b(k)i1...im

∣∣∣2)p/2
1/p

Applying Minkowski inequality followed by the induction hypothesis, we conclude that

1

2n/p
Bm

p

 1

2n

2n∑
k=1

(
n∑

i1=1
· · ·

n∑
im=1

∣∣∣b(k)i1...im

∣∣∣2)p/2
1/p

≤ 1

2n/p

(
n∑

i1=1
· · ·

n∑
im=1

(
2n∑
k=1

∣∣∣b(k)i1...im

∣∣∣p) 2
p

) 1
2

=

 n∑
i1=1

· · ·
n∑

im=1

(
1

2n

2n∑
k=1

∣∣∣∣∣ n∑
im+1=1

rim+1

(
t
(k)
m+1

)
ai1...im+1

∣∣∣∣∣
p) 2

p


1
2

=

 n∑
i1=1

· · ·
n∑

im=1

(∫ 1

0

∣∣∣∣∣ n∑
im+1=1

rim+1 (tm+1) ai1...im+1

∣∣∣∣∣
p

dtm+1

) 2
p


1
2

≤ Bp

(
n∑

i1=1
· · ·

n∑
im=1

n∑
im+1=1

∣∣ai1...im+1

∣∣2)1/2

,

and the proof of the multiple version of Khinchin inequality is complete. □
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