THE KHINCHIN INEQUALITY FOR MULTIPLE SUMS REVISITED
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ABSTRACT. We present a self-contained proof of the Khinchin inequality for multiple sums, which
avoids advanced results from Probability theory. Not only our new proof is more accessible, but also
it sheds lights on some properties of the inequality which may yield further generalizations.

1. INTRODUCTION

Khinchin’s inequality is an important analytical tool with a charming probabilistic flavor.
Established in the 1920’s, [12], Khinchin’s inequality was originally motivated by the investigation of
the rate of convergence in E. Borel’s strong law of large numbers.

Through the years, Khinchin’s inequality has found a plethora of striking applications in a number
of fields including: harmonic and functional analysis, viz. |1, 2, 3], partial differential equations, viz.
[6, 18, 19|, stochastic processes, viz. [7, 14], computer sciences, viz. |9, 8|, and number theory, viz.
[4, 16], to cite a few. It has several extensions and generalizations and we shall focus on its statement
for multiple sums, referred as the multiple Khinchin inequality, which reads as follows:

Theorem 1.1 (Multiple Khinchin inequality). Let (ai,. i,,);, .
0 < p < o0o. Then there are constants A, and B, such that
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where 1, (t) denotes the Rademacher functions, r,(t) = sgn (sin 2" 'mt).

The probabilistic flavor of Khinchin’s inequality is certainly appealing, but also intricate.
Heuristically, the inequality informs about the behavior of a sort “random walks”, as follows. Suppose
we are given n real (or complex) numbers ay, ..., a, and a fair coin. We shall produce a new sequence
of numbers, o, through the following rules. Flip a coin. If it comes up heads, set a; = ay; if it comes
up tails, set a; = —a1. Repeating the process, after having flipped the coin k times, set

Qg1 = Qg + Ag41,
if the (k 4 1) flip comes up heads; otherwise set
Qp+1 = O — Qf41-

The question one is interested in is how does the absolute value of the generated sequence a; grows.
That is, after n steps, what should be the expected value of |a,|?

Khinchin’s inequality shows, in a very precise sense, that this quantity is close to the fo-norm of
the original sequence, (ay). It is a remarkable result.

2020 Mathematics Subject Classification. 26D15.



2 A. RAPOSO JR. AND K. TEIXEIRA

To better appreciate this interpretation, one should look at the structure of the Rademacher
functions, ry,: [0,1] — [0, 1], defined analytically as

o (t) = sgn (sin2"17t) |

for all positive integers n. They are in the core of Khinchin’s inequality and our first main goal is to
discuss some of their key properties, which are sometimes not formally proven in the literature. This
will allow us to establish a self-contained proof of Khinchin’s inequality, in its multiple (extended)

version; see for instance [15] and the references therein.
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FIGURE 1. Rademacher functions.

The (natural) question regarding optimal constants for Khinchin’s inequality, p > 2, has been
tackled by Szarek in [17] and Haagerup in [11]. The problem boils down to solving the optimization

problems

1
min /
0

1
max /
0

and

i apry (1)
=1

S apr (1)
k=1

p

dt

p

dt

where the minimum and the maximum are taken over the unit sphere of ¢35, i.e. the sequences

n
satisfying |a;€|2 = 1. Through a delicate analysis, Haagerup ultimately managed to prove that:

k=1

Y F(p—i—l)
p =

where pg € (1,2) is determined by

2

(m0) -

The optimal constants of the multiple Khinchin inequality are A" and B} (see [13]).
Our proof of Khinchin’s inequality relies on the multi-orthogonality of the Rademacher functions;
a result that is well understood by the experts, but its proof is often omitted in the literature, see for

if 0 < p < po,

NG

5
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instance [5, page 10]. We offer an easy proof of this property, which is interesting by its own. This
is the content of Section 2. In Section 3 we prove the multiple version of Khinchin’s inequality by
means of an elementary tools. Not only our new proof is more accessible to (say) graduate students,
but also it sheds lights on properties of the inequality which might yield further generalizations.

2. MULTI-ORTHOGONALITY OF THE RADEMACHER FUNCTIONS

We begin by proving a folkloric property of the Rademacher functions which is usually not proven
in the literature (see [5, page 10]).

Lemma 2.1. Let (nj)jil be an increasing sequence of natural numbers. If 0 < ny < ng < --- < Ny
and k,pi1,p2,...,Pr are positive integers, then

1, if each p; is even,

1
/Orﬁi(t)-rﬁi(t)'““rﬁi(ﬂdt:{

0, otherwise.

Proof. Let
k

g (@) =TTy () =g () f (@),

i=1
where £ is the largest integer in the interval [1, k] where py is odd, and where
fO) =TI M@= 11 @),
1<i<k 1<i<i—1
Al

We note that f (¢) is constant along intervals of the form
N Rl S
I] T |:2ngl7 2ngl:| ’
/ i (t) dt = 0;
I

1
thus, /g (t) dt =0, and so / g (t) dt = 0. O
I 0

J

yet,

3. THE PROOF OF KHINCHIN’S INEQUALITY FOR MULTIPLE SUMS

The classical proof of Khinchin’s inequality relies on the fact that the Rademacher functions are
independent random variables, and thus

1 m m 1

(3.1) / I1 exp (anr, (t)) dt = ] exp (anry, (1)) dt,
0 n=1 n=1J0

for any real scalars aq, ..., an.

Our first goal is to show (3.1) by means of self-contained, elementary arguments, and thus avoiding
the usage of probabilistic tools. This is the contents of the upcoming Lemma 3.1.
We start with few elementary considerations. Let (ay),-, € ¢2 be an arbitrary sequence. Define

So=0and S, = ) agry (t) for n > 1. We readily obtain
k=1

1 m m m
(3:2) HSm_SnH%z[O,l]_/O (AZ air; (t)> (}Z ajr; (t)> dt= 3 Jal*.

i=n+1 j=n+1 k=n+1
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In particular, (Sy);- is a Cauchy sequence and thus it converges strongly in Ls [0, 1]. Setting n =0
and letting m — oo in (3.2) yields

1
/
Next, for all positive integers m and each j =1,...,2

cg-m) = ng:lanrn <t§-m)> )

2

glanrn (t)

K 2
dt =Y |an|”.
n=1

M set

where

Note that the definition of c§m) does not depend on the choice of t§m). We claim that

k - m . .
CE» ) am+1, if k= 2j.

In fact, if £ = 27, there holds
Cl(ferl) = Om+1Tm+1 (t](gm+1)) + Z anTn <tl(vm+1))
n=1

and, in this case,

]2;7”1 < ];m_-&-} < tgcmﬂ) < 27’5—4—1 - QL’m
Hence
Tn (t,gm+l)> =7y (tém)> ,
forall n =1,...,m and, since k > 2 is even, we also have
T+l (tg’“rl)) = —1.
Therefore,
c,&mH) = —Qm+1 + in:lanrn <t§-m)> = cgm) — Qm41-

=
The case k = 2j — 1 is analogous.
Lemma 3.1. For all ay,...,a,n € R, we have

1 m m 1
/ I exp (anra () dt = T] / exp (anrn (1)) dt.
0 0

n=1 n=1

Proof. Notice that

B rn @) g alaipit @)-rip ()

il i

(3.3)

exp (anry, (t)) = S
1 n=1i=0 2

=k
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Integrating both sides of (3.3) from 0 to 1, and using Lemma 2.1, we deduce

tm @it qim (1 '
exp (antn (1)) dt = L Tm [l () i (1) dt
1 m
0 n=1 i1,0eyim >0 Z1! s ’Lm! 0
a/%l]‘ “ e a]%ém

i 502011 20!

= ﬁ cosh (ay,)

n=1
1

= ﬁ exp (anry (t)) dt
n=1J0

and the proof is done. O

3.1. The first step of the proof. The proof of Theorem 1.1 is done by induction on m. The first
step of the proof (the case m = 1) is the classical Khinchin inequality; its proof is standard and can
be found in many books.

e First case: 2 < p < oo and real scalars.
Let aq, ..., am, be non-simultaneously null real numbers. Define

FO= S anma(0).

and set

ﬂ — ibnrn (t),

g(t)=
O = Flon 2

where b, = a,/ ||f||L2[o,1]. Clearly

(3.4) nZ:flbi = llgll7, 00 = 1.

From Lemma 3.1, we have
1

1 1 m m
/ exp (g (t)) dt = [1 exp (burn (t)) dt = T] | exp (bpry (t)) dt.
0 0 n=1 n=1J0

Hence, since each r, (t) equals 1 and —1 in sets of measure 1/2, we have

m 1

1 m
(3.5) ‘/m@WﬁZH#W%HMWMFHwWM-
0 n=1 n=1

Using the expansions of cosh (z) and exp (z?/2) in power series, we reach

o0 $27’L o0 xQn x2
(3.6) cosh (z) n§0(2n)! = < 2 )

By (3.4), (3.5), and (3.6), we have

(3.7) /0 exp (g (8)) di < nii exp (”) — exp 621@3) _ 2

Similarly, we conclude that

1
(3.9) /0 exp (—g (1)) dt < el/2,

[\



6 A. RAPOSO JR. AND K. TEIXEIRA

If k£ is a positive integer, there holds

k
(3.9) ly|F < k! (1 + 'ykl) < klelvl,

for all y € R. Thus, by (3.7), (3.8) and (3.9), we can estimate

1 1 1
[ o at< i [exp(g (o) de <k [ (exp9(0) + exp (g () de < 2htel
0 0 0

Since we are considering the case 2 < p < oo, by the monotonicity of the L, norms, we can further
estimate

! Yin 1/
(3.10) HQHL,,[O,l] < HQHLrm [0,1] = </0 |g(t)‘m dt> < (2 (Zﬂ!elﬁ) )

where [p] is the smallest integer bigger than or equal to p. Recall that a,, = by, || f]| La[0,1]> SO from
(3.10) we have

1o < 11,00 = | 50 1 g0
n=1 Lyp[0,1]

1/1p]
— 11 zagony M9l zpoy < (2121€Y2) 1Al g

ie.,

(3.11) <n§1‘an2>u2 < </01

n
Now, let (ay);2, € ¢2 be non-null sequence. By (3.11), taking S, = > arg, we conclude (S,)52; is
k=1

1/2

P 1/p 1 m
dt) < (219112 . <Z Ian\2>
n=1

% anty ()
n=1

a convergent sequence. Letting m — oo in (3.11) yields

(£ mr?)m <( 1 ’ ) " (211e) " (£ faul)

e Second case: 2 < p < oo and complex scalars. It suffices to consider (ay,)ne | = (by)or 4+ (cn)rey €
0y, with (by);2 and (cp),-; sequences of real scalars and use the previous case.

e Third case: 0 < p < 2. Let f = > a,r, and define

n=1
(-

1/2

i anry ()
n=1

so that

(3.12) po+4(1—6)=2.
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Also, as 0 < p < 2, we have 1 < 1/6 < 2. By the Holder inequality, we estimate

/ P e / E P @0

0 0
([ Tror"a) ([ o))
= </01 If (1) dt>9 </01 ok dt)”
- k/ol 7 @F dt>l/p] ’ [</01 Foa) 1/4] o

Applying thecase p = 4 (already established), we have [|f|[1,10.1] < Ba [ fll1,70,1) and

1-0

4(1-0)
1B o < Iy (Bl o) -

Hence,

—4(1-0) 2—4(1-0)
B0 | 00 < 170

and, in view of (3.12), we obtain

4(6—1)/p0
By Fll oy < WF N0 -
Since
4(0-1) 5 _ %
pb p’
we have

9_4
By "l yio,y < MMz p0,0 -

Applying the monotonicity of the L, norms once again, we get

9 4 /' m 1/2 1 P 1/p m 1/2
s (£ = ([ S 0)" = (8 00)

3.2. The induction step. By Lemma 2.1 we have
> 20 i () i (tn) @iy iy

(t)

. . 1/2
(3.13) <Z 2l I%...iml2> =

=1 ipm=1 =1 dp=1 LQ([OJ]m).
Note that
n n p
(3.14) / . Z Ty (tl) T (tm) gy i, dtl . dtm
[0,1™ |i1=1  im=1
S O
= i im i1.tm |
P S ) e R et " '
for all
ks —1 k
s2n gtgks)<2—;, ks=1,2,3,....2% and s=1,...,m.

Suppose Theorem 1.1 has been verifies for a certain m > 1. Let’s prove the induction step, m + 1.
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o First case: 0 < p <2. Let (j1,...,7Jm) = (i2,...,im+1) and, for each i; € {1,...,n}, let
(i1)

Cj1jm = ailmierl :

Thus
1/2

1/2 ) 1/272
(3.15) (z > \m\) - x (z > c§«;?.jm\)

i1=1  imy1=1 i1=1 [ \j1=1  jm=1

By the induction hypothesis, for each i; € {1,...,n}, we have

(3.16) <A ( /
0.

Notice that

i S e [N ¢ (k1) k) S(00)
(317) e 2 nm Z e Z Z . e Z T]l ([El 1 ) ... ij_l (.’,U,gnm)> lel ] )
km=1  ki=1|ji=1  jm=1 o
where L ) L
52; _xgk5)<2—s, ks=1,2,3,...,2% and s=1,...,m
Let

birkm. k1 = i i Ty <Jfgkl)) T (l"gﬁm)) cﬁ’f)]m

P R
By (3.15), (3.16) and (3.17), we have

A2y <AZ
=

1 im=1
n 2m 2m n n ) P\ 2/p V2
(3.18) <SS S S (o) e ()
11=1 km=1 k1=1 jl_l jmzl "
and, since p < 2, by the Minkowski inequality (see [10, Corollary 5.4.2]) we have
n 2" 2" n n . Py 2/P 12
(3.19) S S S S (al) e (al)) )
i1=1 \km=1  ki=1|f1=1  jm=1 o
n 2" on 2/p\ 12
= Z Z T Z |bi1km---k1|p
i1=1 \km=1 k=1
1/p

IN

2m 2" n 1/2 P
Z T Z (Zl ’bilkm-ukl |2>

Em=1  ki=1 | \i1=
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By the induction hypothesis, i.e. Khinchin’s inequality for each ki,..., k, € {1,2,3,...,2"}, we

reach
1/2
( Zl |b11]€m ]{,‘1| )
i1
1 P 1/p
= AI;I (/ Z Tiy (t1) Biykn.. ey dtl)
0 [i1=1
1| n n n (k1) i) p 1/p
= A1 . , , kN (km)\ (1)
Ap </0 ilzzljlzzl jmzilrll (t) 75 (xl ) "m (LEm ) v gm dtl)
11 n n n p 1/p
- k
(320) = Apl (/ Z Z E (tl) ng <$§ 1)) . .rim+1 (x’gﬁm)) ail...im+1 dtl) )
0 i1=112=1 im=1

Therefore, by (3.18), (3.19) and (3.20) we have

) ) 1/2
A;n+127 <Z Z ‘ail...im+1{2>

i1=1  impa=1

i i i 7y (1) 7y <$§k1)> C T (x,(fff’")) Qi g1

i1=lio=1  dimy1=1

on on 1 p 1/p
< Z - Z dty
km=1 ki=1J0

1
(3.14) nm P v
=92 - dti...dtms1 .

On the other hand, since H'HL,,([O 1) < H'”Lz([o 1) the other side of the inequality follows
immediately from (3.13).

n n n

o i () Tigy (Bm1) @iy
i=lia=1  imgp1=1

e Second case: 2 < p < 00. Since H-||L2([0 ) < ”'||Lp([o 1) the right hand side of the inequality
follows from (3.13) . Now, for each k =1,2,3,...,2" let

k—1 k k k n k
on < tgn)ﬂ < on € bgl.)..’im = X Tim41 <t£nzrl) EPR SRR

img1=1
Hence, for all ¢1,...,t,,, we have
1 n n P
/ Yoo 2 i (B) T (Bng1) Gy | A
0 |ii=1  imir=1l
1 n n n P
/ Yoo 2o i ()i (Bm) D Tiggs (bk1) Gy | A
0 ’Ll 1 mel im+1:1
1 2™ n n n (k)
= ST e () i () 2 i (H0) i
k=1 |i1=1 im=1 imt1=1
1 2m n n (k) p
27%21 121 izlril (t1) iy (tm) b3, 4
el P
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P 1/p
dty .. .dth)

P 1/p
Z R Z Til (tl) R rim+1 (tm—i-l) ailmimﬂ dtm+1> dtl e dtm>

i1=1  dpmyr=1
P 1/p
dty... dtm> )

and, consequently,
n n
2o i () Ty (1) Qi

</[0,1]m+1 i1=1  dmy1=1

1
vy
1 2"/

B (2"121 0,1]™

By the induction hypothesis,

(o

and

2o oo i (t) Ty, (tm)bz(f.)..im

11=1 im=1

oo 2L i (t) T, (tm)bgf.),.im

i1=1 tm=1

</[071]m+1

< 1Bm 1%(%%

— p
2n/p Pl R e Mt |

1/2
2
bk ’
) ) i1..,lm
Z1:1 ’Lm+1:1

P 1/p
dty ... dtm+1>

P 1/p n .
dtl...dtm) SB;;<;... >

n n
Yo i (t) iy (bmtt) Gy i

i1=1 im+1=1
p/2
CENE
bi1...im‘ )
Applying Minkowski inequality followed by the induction hypothesis, we conclude that

p/2\ /P
k) |?
bil...im‘ )

p)i>5

1/p

el (8

k=1 \i1=1  ip=1

5

11...0m

1
2\ 2
n n 1 AL n PN\ b
_ = S 75(’@) o
- Z on T1m+1 m—+1 a21~~~2m+1
i1=1  im= k=1 |imi1=1

iSHLN)
[SIE

n
Z Tim—‘—l (tm-i-l) ail...im+1
tmt1=1

p
dtm—‘rl)

and the proof of the multiple version of Khinchin inequality is complete. [

S Bp Z T Z Z ’ai1-~~i7n+1| Y

i1=1 im=1tm41=1
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