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Abstract. We prove that the optimal constants in the classical Bohnenblust–Hille inequality for real-valued
m-homogeneous polynomials, Cm, satisfy lim

m→∞
C

1/m
m = 2, independently of dimension.

1. Introduction

“For polynomials in many variables, what are the estimates independent of the number of variables?” This
question is from the abstract of Aron-Beauzamy-Enflo’s influential paper [1]. Nowadays it clearly constitutes
one of main threads of research in the field.

In this framework of research, the classical Bohnenblust–Hille inequality is a cornerstone. It says that
2m/ (m+ 1) is the smallest possible p > 0 for which there is a constant Cp,m ≥ 1, independent of the number
of variables n, such that

(1.1) |Pm|p ≤ Cp,m sup
‖(x1,...,xn)‖∞≤1

|Pm (x1, . . . , xn)| ,

for all m-homogeneous polynomials Pm (x1, . . . , xn) =
∑
|α|=m aαx

α on Rn. Here |Pm|p denotes the `p norm
of the coefficients of Pm. It is worth noting that the real-valued form of the Bohnenblust–Hille inequality, i.e.
(1.1), follows from its complex-valued version, viz. [5, page 452].

Throughout the paper we shall consider the real vector space Rn endowed with the supremum norm,
that is `n∞. Also, we denote simply by Cm the minimal constant C2m/(m+1),m, corresponding to the case
p = 2m/ (m+ 1). As usual, we denote

‖Pm‖ := sup
‖(x1,...,xn)‖∞≤1

|Pm (x1, . . . , xn)| .

In this note, we are interested in the asymptotic growth with respect to m of the supremum of the `p sums
of the coefficients of real-valued m-homogeneous polynomials acting on Rn. To put it in mathematical terms,
for all p ∈ (0,∞] and all positive integers m, we investigate the asymptotic behavior of

sup
{
|Pm|p : ‖Pm : Rn → R ‖ = 1 and n ∈ N

}
.

Observe that, above, m is fixed, and the supremum is taken over both Pm and n. For the sake of simplicity
we shall just write sup

{
|Pm|p : ‖Pm‖ = 1

}
instead of the above expression.

The main result we prove in this note reads as follows:

Theorem 1.1. For all p ∈ [2,∞], there holds

(1.2) lim
m→∞

(
sup

{
|Pm|p : ‖Pm‖ = 1

})1/m
= 2,

and, moreover,

(1.3) lim
m→∞

(
sup

{
|Pm| 2m

m+1
: ‖Pm‖ = 1

})1/m
= 2.
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In contrast, since 2m/ (m+ 1) is the optimal (smallest) admissible value for p in (1.1), the corresponding
limit in (1.2), when p ∈ (0, 2), is actually infinity. From (1.3) it readily follows that

lim
m→∞

C1/m
m = 2,

for the constants Cm of the Bohnenblust–Hille inequality (1.1).

2. Preliminaries and literature review

The investigation of the constants of the real and complex Bohnenblust–Hille inequalities is a central topic
of investigation, with applications in different fields of mathematics and applied sciences (see, for instance,
[2, 3, 4] and the references therein).

In [3], it was shown that

(2.1) lim sup
m→∞

(
sup

{
|Pm| 2m

m+1
: ‖Pm‖ = 1

})1/m
= 2

and

(2.2) lim sup
m→∞

(
sup

{
|Pm|p : ‖Pm‖ = 1

})1/m
= 2

for all p ∈ [2,∞]. The technique used by these authors combines an old result due to Visser [6] with the
subexponentiality of the Bohnenblust–Hille inequality for complex m-homogeneous polynomials, viz. [2].
They then prove that for all ε > 0 there is a κ > 0 such that

sup
{
|Pm| 2m

m+1
: ‖Pm‖ = 1

}
≤ κ (1 + ε)

m
2m−1.

In particular, this assures that

lim sup
m→∞

(
sup

{
|Pm| 2m

m+1
: ‖Pm‖ = 1

})1/m
≤ 2.

To prove the converse inequality, the authors use the family of polynomials generated as
P2 (x1, x2) = x21 − x22,

P4 (x1, x2, x3, x4) =
(
x21 − x22

)2 − (x23 − x24)2 ,
P8 (x1, . . . , x8) =

[(
x21 − x22

)2 − (x23 − x24)2]2 − [(x25 − x26)2 − (x27 − x28)2]2
and so on. Clearly ‖(P2m)

n‖ = 1 and, by induction, one can show that such n2m-homogeneous polynomials
(P2m)

n satisfy

|(P2m)
n|∞ ≥

(
2n

n+ 1

)2m−1

,

for all m,n. Since

|(P2m)
n|1/(n2

m)
2(n2m)/(n2m+1) ≥ |(P2m)

n|1/(n2
m)

∞ ≥
(

2n

n+ 1

) 2m−1
n2m

=

(
2

n
√
n+ 1

)1− 1
2m

and

sup
n,m

(
2

n
√
n+ 1

)1− 1
2m

= 2,

it follows that

lim sup
m→∞

(
sup

{
|Pm| 2m

m+1
: ‖Pm‖ = 1

})1/m
≥ lim sup

m→∞
(sup {|Pm|∞ : ‖Pm‖ = 1})1/m ≥ 2.

The question whether lim sup could be replaced by the (full) limit has been open since then. This type of
question is often delicate and the main result we prove in this article settles this issue. Indeed we show that
both in (2.1) and in (2.2) the result holds as a full limit, that is, we show that

(2.3) lim inf
m→∞

(sup {|Pm|∞ : ‖Pm‖ = 1})1/m ≥ 2.
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3. The proof

The next lemma is crucial for the proof of our main result.

Lemma 3.1. Let ε ∈ (0, 1) and N ∈ N be given. There exists an M ∈ N, depending only upon ε and N , such
that whenever m ≥M , one can find an n ∈ N, with n > N , satisfying

(1− ε)m < n · 2N ≤ m.

Proof. Let
M = min

{
L ∈ N : L ≥ max

{
2N/ε, (N + 1) 2N

}}
.

Given m ≥M , let n and 0 ≤ r < 2N be respectively the quotient and the remainder of the Euclidean division
of m by 2N . By the definition of n and M , it is plain that n > N . Notice that

(3.1) εm ≥ 2N ,

since m ≥M ≥ 2N/ε, and

(3.2) m = n · 2N + r < n · 2N + 2N = (n+ 1) 2N .

Moreover, by (3.1) and (3.2), we have

(3.3) n · 2N = m− r ≤ m < (n+ 1) 2N = n · 2N + 2N ≤ n · 2N + εm.

Finally, from (3.3), we can deduce that

n · 2N ≤ m and m < n · 2N + εm

which ultimately yields
(1− ε)m < n · 2N ≤ m,

as required. �

We are now in position to establish (2.3). Initially, for all δ ∈ (0, 1), there exists a positive integer N such
that

(3.4)
(

2n

n+ 1

) 2m−1
n2m

> 2− δ

for all n,m ≥ N . It follows from Lemma 3.1 that, given ε > 0, there exists a positive integer M such that for
all r ≥M , we can find tr = nr2

N with nr > N satisfying

(3.5) (1− ε) r ≤ tr ≤ r.

If r ≥M , let us consider
Pr (x1, . . . , x2N+1) = xr−tr

2N+1
(P2N )

nr (x1, . . . , x2N ) .

Since

|Pr|∞ = |(P2N )
nr |∞ ≥

(
2nr

nr + 1

)2N−1

,

by (3.4) and (3.5), we have

|Pr|1/r∞ ≥
(

2nr

nr + 1

) 2N−1
r

≥

( 2nr

nr + 1

) 2N−1
tr

1−ε

=

( 2nr

nr + 1

) 2N−1

nr2N

1−ε

> (2− δ)1−ε ,

and this completes the proof of (2.3).
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