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Introduction and Set-up

That the shortest path between two points in the (Euclidean) plane is a straight line is
rather intuitive and even treated as common sense. However, this ancient problem is
far from being trivial and the endeavor to understand it rigorously has prompted rev-
olutionary ideas and tools throughout the history of mathematics. Euclid had proven
that a straight line is always shorter than two consecutive lines; this is what we nowa-
days call the triangle inequality. It was Archimedes, however, the first one to tackle the
shortest distance problem in the generality we refer nowadays.

The great mathematician Grothendieck [1928–2014] once said: “...one should
never try to prove anything that is not almost obvious”, see [3], and it is hard to find a
better fit to such a principle than the shortest distance problem.

Figure 1 The shortest distance problem. While intuitive, there are infinitely many pos-
sibilities to join two points.

The mathematical formulation of the shortest distance problem can be easily done
solely based on elements covered in any Calculus I course. However, due to the fact
that “the set of candidates”, that is the collection of all possible paths joining two
points form an infinite dimensional space, traditional solutions of the problem depend
on much heavier machineries pertaining to the field of Calculus of Variations.

Some of the classical textbooks on the theme are [1, 2, 5, 6, 7]. There are many other
references that discuss traditional solutions by means of the Euler-Lagrange Equation
associated to the minimization problem in question. As a result, the vast majority of
STEM students conclude their degrees without being able to provide a satisfactory
justification as to why a straight line is indeed the shortest path between two points.

The goal of this article is to remediate this by offering a self-contained solution
to the shortest distance problem. But before, we would like to briefly discuss how to
model the shortest distance path problem in the language of Calculus.
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Set-up With convenient scaling and no loss of generality (see last section), let us
image we are seeking for the shortest path between A = (0, 0) and B = (1, b), for
some b ≥ 0. Also, to the benefit of the presentation, we will restrict to graph paths,
i.e. we are interested in paths of the form: (t, f(t)), for some differentiable function
f : [0, 1] → R, verifying f(0) = 0 and f(1) = b. It might be convenient to give a
name for the collection of all such functions:

P :=
{
f : [0, 1]→ R

∣∣ f(t) is differentiable, f(0) = 0, and f(1) = b
}
. (1)

The arc length of the path (t, f(t)) is given by the formula:

`(f) :=

∫ 1

0

√
1 + [f ′(t)]

2
dt. (2)

The shortest distance path problem can now be properly formulated as:

min
{
`(f)

∣∣ f ∈ P
}
, (3)

and Archimedean’s motto “the shortest path between two points is a straight line”
framed as a precise mathematical theorem:

Theorem 1. The only minimizer to Problem (3) is the function f(t) = bt.

An elementary proof of Theorem 1

We start off by investigating the real function,

F (x) :=
√
1 + x2,

aiming at estimating it from below. Direct application of the Chain Rule yields:

F ′(x) =
x√

1 + x2
and F ′′(x) =

1

(1 + x2)3/2
.

In particular, since F ′′(x) > 0, F is a strictly convex function. Let Tb(x) denote the
tangent line to F (x) at x = b. Easily we compute

Tb(x) = F (b) + F ′(b) · (x− b)
=
√
1 + b2 +

b√
1 + b2

(x− b) . (4)

Being a convex function, F is above its tangent lines, so in particular F (x) ≥ Tb(x),
for all x ∈ R. In fact, this inequality is strict, unless x = b. To put it differently, the
function

e(x) := F (x)− Tb(x) (5)

is convex, non-negative, and e(x) > 0 for all x 6= b.

We are ready to prove the shortest path between (0, 0) and (1, b) is f(t) = bt. For
that, let f : [0, 1] → R be any element of P. In view of (5), F (x) = e(x) + Tb(x),
for all x, which implies:

F (f ′(t)) = e(f ′(t)) + Tb(f
′(t)), (6)



Mathematical Assoc. of America Mathematics Magazine 88:1 May 31, 2022 3:59 p.m. SDP-KatiusciaTeixeira.tex page 3

VOL. 88, NO. 1, FEBRUARY 2015 3

Figure 2 Graphs of the three functions involved in the proof.

for all t ∈ (0, 1). Hence,

`(f) :=

∫ 1

0

√
1 + [f ′(t)]

2
dt =

∫ 1

0

F (f ′(t))dt

=

∫ 1

0

{e(f ′(t)) + Tb(f
′(t))} dt

=

∫ 1

0

e(f ′(t))dt+

∫ 1

0

Tb(f
′(t))dt.

(7)

The first term,
∫ 1

0
e(f ′(t))dt, is greater than or equal to zero, and in fact, it is strictly

positive, unless f ′(t) ≡ b for all t ∈ (0, 1). As for the second term, in view of (4), it
can be computed as,∫ 1

0

Tb(f
′(t))dt =

∫ 1

0

{F (b) + F ′(b) (f ′(t)− b)} dt

=
√
1 + b2 +

b√
1 + b2

∫ 1

0

(f ′(t)− b) dt.
(8)

We recognize the first term,
√
1 + b2, as our target minimizing quantity. As for the

second term, using the Fundamental Theorem of Calculus, we compute:

b√
1 + b2

∫ 1

0

(f ′(t)− b) dt = b√
1 + b2

(f(1)− f(0)− b) = 0. (9)

Combining (6), (7), (8), and (9) we finally obtain:

`(f) =
√
1 + b2 +

∫ 1

0

e(f ′(t))dt ≥
√
1 + b2, (10)

and the above inequality is strict unless f ′(t) ≡ b. Theorem 1 is confirmed. �
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Final remarks

Bonus information. Initially we comment that one can actually use the expression∫ 1

0
e(f ′(t))dt as to quantify the “length excess” in terms of how much f ′(t) deviates

from being b. For δ > 0, consider the sets

Aδ :=
{
t ∈ (0, 1)

∣∣ f ′(t) < b− δ
}

and Bδ :=
{
t ∈ (0, 1)

∣∣ f ′(t) ≥ b− δ} ,
and assume both have positive measures, |Aδ| > 0 and |Bδ| = 1 − |Aδ| > 0. We
break the excess term as:

E :=

∫ 1

0

e(f ′(t))dt =

∫
Aδ

e(f ′(t))dt+

∫
Bδ

e(f ′(t))dt, (11)

where according to (5), e(x) =
√
1 + x2 − 1 + bx√

1 + b2
; a non-negative, strictly convex

function vanishing only at x = b. We readily estimate:∫
Aδ

e(f ′(t))dt ≥ |Aδ|e(b− δ). (12)

Now, since
∫ 1

0
f ′(t)dt = b we have:∫

Bδ

f ′(t)dt = b−
∫
Aδ

f ′(t)dt ≥ (1− |Aδ|) b+ δ|Aδ| = |Bδ|b+ δ|Aδ|. (13)

Applying Jensen’s inequality, see for instance [4] for an elegant proof, we estimate

e

(
1

|Bδ|

∫
Bδ

f ′(t)dt

)
≤ 1

|Bδ|

∫
Bδ

e(f ′(t))dt, (14)

which combined with (13) yields:∫
Bδ

e(f ′(t))dt ≥ |Bδ|e
(
b+ δ

|Aδ|
|Bδ|

)
.

Finally, we can estimate the length excess by

E ≥ |Aδ|e(b− δ) + |Bδ|e
(
b+ δ

|Aδ|
|Bδ|

)
> 0. (15)

Arbitrary intervals. Now let’s us briefly comment on the fact that the problem has
been modeled over the unit interval [0, 1] is not restrictive. Indeed, if a differentiable
function f is defined over an generic interval [c, d] and take arbitrary values f(c) and
f(d), we simply apply the result proven to the new function, f̃ : [0, 1]→ R given as

f̃(t) =
f(c+ t(d− c))− f(c)

d− c
.

To see that, one can easily check that f̃(0) = 0 and f̃(1) = f(d)−f(c)
d−c =: b. Thus,√

1 +

(
f(d)− f(c)

d− c

)2

≤ `(f̃). (16)



Mathematical Assoc. of America Mathematics Magazine 88:1 May 31, 2022 3:59 p.m. SDP-KatiusciaTeixeira.tex page 5

VOL. 88, NO. 1, FEBRUARY 2015 5

On the other hand, making a change of variable, y = c+ t(d− c), we compute:

`(f̃) =

∫ 1

0

√
1 + (f ′(c+ t(d− c)))2dt

=
1

d− c

∫ d

c

√
1 + (f ′(y))

2
dy.

(17)

Comparing (16) and (17) we finally reach:

`(f) ≥
√
(d− c)2 + (f(d)− f(c))2,

with equality if, and only if,

f(t) = f(c) +
f(d)− f(c)

d− c
(t− c).

Summary We offer an elementary solution to the shortest distance problem. In addition to being accessible to
freshman Calculus students, our approach also provides a bit of extra information, namely a way quantify the
“length excess” in terms of how much the path deviates from being a straight line.
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