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Abstract. In this paper we discuss the infinite measure counterpart

of Zolezzi’s Theorem for infinite measure spaces. For a measure space

with infinite measure, (Ω,Σ, µ), we construct a sequence in L∞(µ), with

uniformly control upon its support measure, that does not converge in

Lp(µ), for all 1 ≤ p <∞, however does converge weakly in L∞(µ).

1. Introduction

Let (Ω,Σ, µ) be a positive, finite measure space, i.e. 0 < µ (Ω) < +∞. A

important result proven originally by Tullio Zolezzi in [9] asserts that any

weakly convergent sequence in L∞(Ω,Σ, µ) converges strongly in Lp(Ω,Σ, µ)

for 1 ≤ p <∞; see [5] for another proof.

Zolezzi’s theorem finds important applications, for instance in fixed point

theory [1], in weakly differentiable maps [2], in free boundary problems [4], as

well as in infinite-dimensional control theory [7] and convergence of solutions

of diffusive PDEs [8], just to cite a few.

As explained in [9], such a interesting result should be understood as a

manifestation of how large the dual space of L∞(Ω,Σ, µ) is. Indeed, a clas-

sical result, see for instance [3] or [6], yields a representation of L∞(Ω,Σ, µ)∗

as the set of all finitely additive finite signed measures defined on Σ, which

are absolutely continuous with respect to µ. Such a vector space, endowed

with the total variation norm, is isometric to L∞(Ω,Σ, µ)∗, equipped with

its natural norm.

The infinite measure counterpart of Zolezzi’s Theorem, that is the case

when µ (Ω) = +∞, is in principle a bit trickier. To begin with, the space

L∞(Ω,Σ, µ) is not embedded into Lp(Ω,Σ, µ). A way to overcome this is to

restrict the analysis to weakly convergent sequences in L∞(Ω,Σ, µ) that are

also bounded in L1(Ω,Σ, µ).

It turns out though that this is not quite the right assumption yet.

Namely, it is easy to construct a sequence (un)n in L∞(Ω,Σ, µ)∩L1(Ω,Σ, µ),

converging strongly to zero with respect to the L∞-norm; however ‖un‖L1 =

1, for all n. For that, one simply considers a nested sequence of finite mea-

sure sets Ωn, with µ (Ωn) ↗ +∞, as n → ∞. The sequence (un)n defined
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as

un(x) =
1

µ (Ωn)
χΩn ,

where χA denotes the indicator function of the set A, satisfies the properties

required.

In the lights of the example above described, the natural question is

whether Zolezzi’s Theorem would have an infinite measure counterpart, un-

der the assumption of uniform control of the support measure of the se-

quence. Note such a constrain, along with weak convergence in L∞(Ω,Σ, µ),

implies uniform boundedness in L1(Ω,Σ, µ).

In this article we discuss such this follow up question reminiscing Zolezzi’s

theorem. Our main theorem is the following:

Theorem 1. Let (Ω,Σ, µ) be a positive, regular Radon measure space, with

µ (Ω) = +∞. There exists a sequence (ϕn)n ⊂ L∞ (Ω,Σ, µ) ∩ L1 (Ω,Σ, µ) ,

with uniform control of their measure supports, i.e. verifying

µ (Supp ϕn) < C,

for all n, that converges weakly to zero in L∞ (Ω,Σ, µ); however it does not

converge strongly to zero in any Lp (Ω,Σ, µ), 1 ≤ p <∞.

Obviously, it follows from Theorem 1 that given any fixed function f ∈
L∞, with bounded measure support, one can find a sequence (fn)n, with

uniform control of their measure supports, that converges weakly to f in

L∞ (Ω,Σ, µ), but it does not converge strongly in any Lp (Ω,Σ, µ), 1 ≤ p <
∞.

We conclude the introduction by commenting that the main difficulty in

the proof of Theorem 1 is to prove that the constructed sequence (ϕn)n does

indeed converge weakly to zero in L∞, as no useful representation theorem is

in principle available. This will be attained by an indirect argument, which

seems to be interesting by its own.

2. Proof

Let (Ω,Σ, µ) be a positive, regular Radon measure space, with µ (Ω) =

+∞. There exists a measurable subset Ω1 ⊂ Ω such that 1 ≤ µ (Ω1) < 2.

Next we look at ΩC
1 , i.e. the complement of the set Ω1, and repeat the

argument. That is, since µ (Ω \ Ω1) = +∞, there exists a measurable subset

Ω2 ⊂ ΩC
1 such that 1 ≤ µ (Ω2) < 2. Arguing recursively, we construct a

sequence of disjoint measurable sets Ω1,Ω2, · · · , satisfying:

1 ≤ µ (Ωn) < 2,

for all n ∈ N. We define

ϕn(x) = χΩn(x).
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Clearly we have

1 ≤ ‖ϕn‖p < 2,

for all 1 ≤ p <∞.

We now claim that (ϕn)n converges weakly to zero in L∞ (Ω,Σ, µ). In-

deed, let Ψ ∈ L∞ (Ω,Σ, µ)∗ be an arbitrary element of the dual space. We

have to show that

Ψ (ϕn)→ 0,

in R (or in C if we consider complex space).

We shall prove this indirectly. For k ∈ N fixed, consider:

Φk(x) = ϕ1(x) + ϕ2(x) + · · ·+ ϕk(x).

By construction, ϕi(x) · ϕj(x) = 0, and thus

‖Φk‖L∞(Ω,Σ,µ) = 1.

Hence, we can estimate:

(1) |Ψ (Φk(x))| ≤ ‖Ψ‖L∞(Ω,Σ,µ)∗ ,

independently of k. On the other hand, by linearity we have:

(2) Ψ (Φk(x)) = Ψ (ϕ1(x)) + Ψ (ϕ2(x)) + · · ·+ Ψ (ϕk(x)) .

Combining (1) and (2) we conclude

(Ψ (ϕk(x)))k∈N ∈ `1,

and thus, in particular,

lim
n→∞

Ψ (ϕn) = 0,

as required. The proof of Theorem 1 is complete. �

Remark 1. If the measure space (Ω,Σ, µ) has more structure, say it is

the Euclidean Space Rd endowed with the Lebesgue measure, then we can

refine our construction as to have a sequence (ϕn)n ⊂ C∞c (Rd) converging

weakly to zero in L∞(Rd), but failing to converge strongly in Lp(Rd) for all

1 ≤ p < ∞. Indeed, let ϕ0 be a smooth positive function defined on Rd,
supported in B1. Fix a unitary vector µ ∈ Sd−1 and define

ϕn(x) := ϕ(x+ 2nν).

It is not hard to verify that such a sequence has all the properties needed in

the proof of Theorem 1, and thus a similar reasoning implies ϕn is weakly

null in L∞(Rd); however
∫
Rd |ϕn|dx ≥ c0 > 0.
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