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Assumptions
w: probability measure on (0, +o00) with
my = /xk du(x) < oo,  forall k € Zso.

(an)nez: sequence of independent, identically distributed random variables
with distribution p, taking values in (0, +00).
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Assumptions
w: probability measure on (0, +00) with
my = /xk du(x) < oo,  forall k € Zso.

(an)nez: sequence of independent, identically distributed random variables
with distribution p, taking values in (0, +00).

This means that each a, : @ — (0, +c0) is @ measurable function defined on
a common measure space (Q, X, P),

P(a, € S) = u(S), for every Borel set S C (0, +00),

and /

P(ay € Siforall 1 <i</l)=]]P(a, € S)

i=1

for distinct indices ny,...,m € Z,and S; C (0,400),i=1,...,1.
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The random polynomials
Consider the sequence (P,).2, of polynomials generated by
Pni1(2) = 2Pp(2) — @anPp-1(2), n>1,

with
P(z)=2' ¢=0,1.

The first few are:
Po(Z

)=

Pi(2) =

Py(z) = 22 — a,
)=
)=

’

7

P3(Z z2 - (31 + 32)
Py(z)=2*— (a1 + @ + &) 2° + a1a
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The random polynomials
Consider the sequence (P,).2, of polynomials generated by
Pni1(2) = zPp(2) — anPn-1(2), n>1

)

with
P(z)=2' ¢=0,1.

The first few are:

For each realization of the random variables (an)ncz, the sequence (P,)52, is

a sequence of monic orthogonal polynomials on the real line.
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Consider

0o 1
a 0 1
H = a 0 1

and let H,, denote its principal n x ntruncation.
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Consider

0 1
a 0 1
H= a 0 1

and let H,, denote its principal n x ntruncation.

Then
Pn(2) = det(zl, — Hp).

The zeros of P, are real and simple, denoted

A AP <A
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Two random discrete measures

Fix n > 1. Let o, be the normalized zero counting measure for Pp:

1 n
op = — O.(n)-
n n ; )\/("7)
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Two random discrete measures

Fix n > 1. Let o, be the normalized zero counting measure for Pp:
1 n
On i— E Z;(SA}n).
j:

Let 7, be the spectral measure associated with H,,. This is the measure on
A L] with moments given by

/xk dra(x) = (HXey, €1) = HE(1,1), k € Z>o.
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Two random discrete measures

Fix n > 1. Let o, be the normalized zero counting measure for Pp:
1 n
= n 2O
j=1

Let 7, be the spectral measure associated with H,,. This is the measure on
[)\ﬁ”), A1 with moments given by

/Xde,,(X):(H,’§e1,e1>:H,’1‘(1,1), kEZzo.

Then

n n
2 2
= Gndyn, Y Gon=
j=1 ! =1

The coefficients q] are the Christoffel numbers (appearing in the
Gauss-Jacobi quadrature formula).
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Statement of problem

We investigate the relation between 1 and the asymptotic behavior of the
average measures Eo,, Em,, which can be defined via duality by

/deEa,,zE(/fdan)
/deTn:E</fd7’n>

for all bounded continuous f on R.
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Statement of problem

We investigate the relation between n and the asymptotic behavior of the
average measures Eop,, ET,, which can be defined via duality by

/deEUn:E</fdan>
/deET,,—IE</de,,>

for all bounded continuous f on R.

Our approach is the classical moment method, which consists of expressing
the moments of o, and 7,

/xk don(x) = %Tr(H,’j), k>0
/xden(X):H,’,‘(1,1), k>0
combinatorially, in this case in terms of certain classes of lattice paths.

A. Lépez-Garcia (U. Central Florida) 07/2018 6/28



Lattice paths
A pathy = eres - - - g is a finite, connected union of segments of the form
g :(—1,0—1)—= (i), lij—i-1| =1, foralj=1,... k,

where the heights iy, i, . . ., ix are integers and iy = ix. We say that v has
length k.

Figure: Example of a path of length 14 with initial and final height 0.
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The weight of the edge e; is

wie) =1 il =1
YU ey it =i =1

The weight of a path ~ is
w(y) = [ w(e),

eCry

the product taken over all edges of .
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Let

P(nk,i)={y=e1e--- |1 <jj<nforallj=0,...,kand ip = ix = i}.
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Let

P(nk,i)={y=e1e--- |1 <jj<nforallj=0,...,kand ip = ix = i}.

Ti(H) =), > w()

i=1 veP(n,k,i)

Hy(1,1) = > w(y)

YEP(n,k,1)
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Dyck paths and generalized Dyck paths

A Dyck path of length 2n is a path with heights (i, i1, . . . , in) satisfying
1) fo = lbn = 0.
2) j>0forallj=0,...,2n.

We use D, to denote the set of all such paths.

card(Dp) = ! <2:>, n> 0. (Catalan numbers)
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Dyck paths and generalized Dyck paths

A Dyck path of length 2n is a path with heights (i, i1, . . . , in) satisfying
1) fp = ip =0.
2) j>0forallj=0,...,2n.

We use D, to denote the set of all such paths.

2n
n

card(Dy) = — (

>, n>0. (Catalan numbers)
n+1

A generalized Dyck path (also called flawed Dyck path) of length 2nis a path
with heights (fo, f1, . . ., iop) Satisfying

1) io = i2n = O.
We use P, to denote the set of all such paths.

2
card(P,) = ( :), n>o0.

A. Lépez-Garcia (U. Central Florida) 07/2018 10/28



Dyck paths and generalized Dyck paths

A Dyck path of length 2n is a path with heights (i, i1, . . . , in) satisfying
1) fp = ip =0.
2) j>0forallj=0,...,2n.

We use D, to denote the set of all such paths.

card(Dp) = nl 3 (2:>, n>0. (Catalan numbers)

A generalized Dyck path (also called flawed Dyck path) of length 2nis a path
with heights (fo, f1, . . ., iop) Satisfying

1) io = i2n = O.
We use P, to denote the set of all such paths.

2
card(P,) = ( :), n>o0.

Let -
Dp = {7ly € Dn}
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Weight polynomials

To make the formulas symmetric, we rename the random variables with
negative index:
bn = a_n_1, n Z 0
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Weight polynomials

To make the formulas symmetric, we rename the random variables with
negative index:

bn = a_n_*], n 2 0
We define three sequences (W), (An)q, (Bn)32, of weight polynomials:

W, = Z w(y) n>0,
YEPn

A= Z w(7) n>0,
YEDp

B, = Z w(7) n>o0,
7€5n

where by definition Wy = Ay = By = 1.

Note: In general, if S C Py, then we call the expression . s w(7) the weight
polynomial for S.
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Wy, = Wn(307~-~7an—1§b07~-~,bn—1)a
An = An(aOa ceey an—1)»
Bn = Bn(bOa R bn—1)~

Some explicit expressions:

Ay =1

A= a

Az = ao(ao + a)

As = ay(83 + 2apay + & + aaz)

Wy =1

W, = ag + bo

Wo = ao(ao + 31) + 2apbg + bO(bO + b1)

Ws = ag(a2 + 2apas + & + arap) + aobo(3ap + 3bo + 2ay + 2by)
+ bo(b§ + 2bgby + b2 + by bs).
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Some simple properties, valid for every n > 0:
1) An, B, and W, are homogeneous polynomials of degree n.
2) Wh(ao,...,an-1;b0,...,bn—1) = Wx(bo,...,bn_1;a0,...,an—1).
3) By, = Aa(bo, ..., bn1).
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Some simple properties, valid for every n > 0:
1) An, B, and W, are homogeneous polynomials of degree n.
2) Wy(ao,...,an-1;bo,...,bp_1) = Wp(bo,...,bn_1;a0,--.,8n-1).
3) B, = An(bo, ..., bn_1).

We also need the shifted polynomials: For each kK > 0, n > 0, let

Aﬁ,k) = A,,(ak, ceey ak+n_1)

BY) .= Ba(bx, .., bisn—1)

Note that A, = AY, B, = B{Y.
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Formal Laurent series
We associate to the sequences of weight polynomials certain formal Laurent
series in C((z™1)):

=W
W(Z) = Z ZTL
n=0
A
AN(2):=> = k>0
n=0 z
> gk
BY(z):=)" ZTHH k>0
n=0
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Formal Laurent series

We associate to the sequences of weight polynomials certain formal Laurent
series in C((z™1)):

=W
W(Z) = Z ZTL
n=0
A
AN(2):=> = k>0
n=0 z
> gk
BY(z):=)" zTn+1 k>0
n=0

In the case k = 0 we write

> A
A2) = Sarr

n=0

o Bn
B(z) := Z Z72n+1

n=0
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Lemma
The following relations hold:

WA = am 115;(2)—1 ~z
and for each k > 0,
A(k)(z) = ;
z — g Alkt1)(2)
BW(z) = 1

z — by Bkt1)(2)
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Flajolet’s formula for A,
For any integer n > 1, let
C(n) := {(no,...,n:)| o +---+n, = n,ny € Nis an integer for all 0 < j < r},

and let
C(0) :={e}, e is the empty sequence.
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Flajolet’s formula for A,
For any integer n > 1, let
C(n) := {(no,...,n:)| o +---+n, = n,ny € Nis an integer for all 0 < j < r},

and let
C(0) :={e}, e is the empty sequence.
For example,

C(4) ={(4),(3,1),(1,3),(2,2),(2,1,1),(1,2,1),(1,1,2),(1,1,1,1)}.

9 ) 9
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Flajolet’s formula for A,
For any integer n > 1, let
C(n) := {(no,...,n:)| no+---+n, = n,ny € Nis an integer for all 0 < j < r},

and let
C(0) :={e}, e is the empty sequence.

For example,
C(4) ={(4),(3,1),(1,3),(2,2),(2,1,1),(1,2,1),(1,1,2),(1,1,1, 1) }.

The following formula is due to P. Flajolet, who calls the polynomials A,
Stielties-Rogers polynomials:

_ no+ny — 1 n_q+n-—1\ n
o= () (T e
(no,...,nr)EC(N)

see P. Flajolet, Combinatorial aspects of continued fractions, Discr. Math. 32
(1980), 125-161.
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To make the formulas compact, we introduce some more notations.
Given n € Z>o and n € C(n), let

) = H y (M) it A= (no,....n;), r>1
PR ifn=(n), n>1, orn=e

and N
a(f) — [Ta’ ifA=(no,...,n;), r>0
R fn=e

The same way we define b(n).
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To make the formulas compact, we introduce some more notations.
Given n € Z>o and n € C(n), let

(1) = I (M) it A= (no,....n;), r>1
1 ifn=(n), n>1,orn=e
and

A7) = {Fj_o a i:ﬁ: (No,....n;), r>0

The same way we define b(n).
With these notations, Flajolet’s formula is

A= > pi()a(n).

nec(n)

A. Lépez-Garcia (U. Central Florida) 07/2018 17/28



Formula for W,
For n € Z>, let

C(n) : UC(j)xC(n N,

j=0

i.e., C(n) consists of all pairs (P, q) with p € C(j) and g € C(n — j) for some
0 < j < n. Additionally, for (p, g) € C(n) we define

(%) 4(B) p1(q) 1 B# €.G+ e no = p(1), = G(1)

p2((P,q)) == { p1(P) it g =
p1(q) it p=
Lemma
Foreveryn> 0,
W, = p2((P, q)) a(p) b(q).
(B,g)C(n)
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Taking expectation
We define

an = E(Ap), n>0
wp = E(W,), n>0

and more generally,
ol = E([Aks2n),  k,n€ Zso,

where [A¥]k. 25 is the coefficient of z~(k+27) in the series expansion of A(z)k.

SO Qn = ag‘).
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Taking expectation
We define

an = E(Ap), n>0
wp = E(W,), n>0

and more generally,

ol = E([Aks2n),  k,n€ Zso,

where [A¥]k. 25 is the coefficient of z~(k+27) in the series expansion of A(z)k.

SO Qn = 04571).

Main question: How are the three sequences (m,)5° o, (n)52 o, (Wn)o
related?
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Taking expectation
We define

an = E(Ap), n>0
wp = E(W,), n>0

and more generally,

alf) = E([Aks2n), k,n € Z>o,

where [A¥]k. 25 is the coefficient of z~(k+27) in the series expansion of A(z)k.
So ap = a( ),

Main question: How are the three sequences (m,)52 o, (@n)2, (wn)2o
related?

For a composition n = (no, ..., n,), let

m(n) := H my, a(n) = H an, w(n): Hwn]
j~o j=0
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Theorem
The following identities hold. For every n > 0,

Qp = Z p1(ﬁ)m(,_7)a
nec(n)

wo=Y_  pe(p,q) m(p) M(q).
(p.q)<C(n)

Forallk,n> 0,
n(1)+ k-1 o
af,k) = E <(L 1 )p1(n)m(n),

AeC(n) N

where (1) denotes the first entry of n.
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Theorem
The following relations hold. For any n > 0,

n -
Kk j+k—1 ;
ag)zi ( .1 )mjag)j k>0

j=0
n n—j
_ ) G+
wp = Z m;«a, Qp_iZy
j=0 £=0
W J_ n=l ] .
I =/
oy = () mimy_ ool
j=0 i=0 ¢=0
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Let

0(e) =3 S ko
n=0
> w

f(2) = Z Zznn+1
n=0

Theorem (Cont.)
The previous relations are equivalent to the following:

= /n+k—1\m,gn(z
a@=> (") k=0

n=0

f(2) = mMngn(2) Gni1(2)

n=0
f(z) = ;) ;0 (Z) ks Wil gﬁg) gn-k(2)
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Asymptotics of Ec, and E7,

Theorem
Let k € Z>¢ be fixed. Then

0,
Wk/2,
0,

k2,

n—oo N

lim 1E(Tr(H,’,‘)) = {

im E(Hy(1,1)) ={

Assume there exist unique probability measures o and T on R with moments

of all orders finite, such that
/xk do(x) = RHS of (1),
/ x¥ dr(x) = RHS of (2),

ThenEo, — o and Er,, — .

if k is odd,
if k is even,

if k is odd,
if k is even.

(1)

()

k>0

k>0
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Other relations and trees

my = oy

me — 2
2 = Q2 — Oy

ms = a3 — 3aoay + 201:13

my = ag — 4azaq + 13a2a$ — 304% - 70/11

ms = as — Saga; — 10azas + 2304304? + 34a§a1 — 790[204? + 36a?

A. Lopez-Garcia (U. Central Florida) 07/2018 24/28



Other relations and trees

m = o

mo = ap — Cl/?
ms = a3z — 3anay + Za?

my = ag — 4azaq + 13a2a$ — 304% - 704?1

ms = as — Saga; — 10azas + 2304304? + 34a§a1 — 7901204:13 + 36&‘:’
To invert the relation

an= > prMm@A) =m,+ > pi(A) m(n),

nec(n) neC(m\{(n)}
we apply repeatedly the relation
neC(m\{(n}

This process is suitably expressed with the help of trees.
07/2018
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Letn>1andn=(ng,...,n;) € C(n). We define a class 71(n) of rooted
leveled trees associated with n as follows:

T1) Each vertex of the tree has a positive integer value. The root vertex has
value n.

T2) The vertices of the tree are organized in d + 1 disjoint levels £ =0, ..., d,
d > 0, where level 0 is formed solely by the root vertex, and level d

consists of the vertices with values ng, ny, ..., n,, from left to right.

T3) Foreach ¢ =0,...,d — 1, every vertex at level ¢ has at least one direct
descendant at level ¢ + 1, and there exists at least one vertex at level ¢
that has at least two direct descendants. Foreach ¢ =0,..., d, the sum
of the values of the vertices at level £ is n. If vq,..., v, are the direct
descendants of a vertex v, then the sum of the values of vy,..., v is the
value of v.

T4) If a vertex v has only one direct descendant v/, then v’ has only one
direct descendant as well, unless v’ is a vertex in the last level of the tree.

A. Lépez-Garcia (U. Central Florida) 07/2018 25/28



Figure: Tree in the class 71(n), where n = (1,3,2,1,2,1,2) € C(12).

We define a weight for each tree t € T1(n). First, for any vertex v of £, let

—p1((M1,...,Ag)) if v is multi-branching, and Aq,...,Xs, S >
2, are the values of the direct descendants
k1(V) = of v, from left to right,

1 otherwise.

Then, for an admissible tree t we define

= J[ #1(v),  V(t):setof vertices of .
vev(t)
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Theorem
For each integern > 1,

my= Y ¢1(N)a

nec(n)

where

¢1(T]) = Z W1(t).

te71(n)
Moreover, for each n > 2 we have

> oi(n) =

nec(n)

v

The remaining relations between the sequences (m,)2%,, (), (wn)i2, are
expressed in terms of certain classes of bi-colored trees.
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