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Abstract

We prove ratio asymptotic for sequences of multiple orthogonal polynomials with respect to a Nikishin
system of measures N (σ1, . . . , σm) such that for each k, σk has constant sign on its support consisting on
an interval Δ̃k , on which |σ ′

k
| > 0 almost everywhere, and a set without accumulation points in R \ Δ̃k .
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1. Introduction

Let s be a finite positive Borel measure supported on a bounded interval Δ of the real line R
such that s′ > 0 almost everywhere on Δ and let {Qn}, n ∈ Z+, be the corresponding sequence
of monic orthogonal polynomials; that is, with leading coefficients equal to one. In a series of
two papers (see [15] and [16]), E.A. Rakhmanov proved that under these conditions

lim
n∈Z+

Qn+1(z)

Qn(z)
= ϕ(z)

ϕ′(∞)
, K ⊂ C \ Δ (1)
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(uniformly on each compact subset of C \ Δ), where ϕ(z) denotes the conformal representation
of C \ Δ onto {w: |w| > 1} such that ϕ(∞) = ∞ and ϕ′(∞) > 0. This result attracted great
attention because of its theoretical interest within the general theory of orthogonal polynomials
and its applications to the theory of rational approximation of analytic functions. Simplified
proofs of Rakhmanov’s theorem may be found in [17] and [12].

This result has been extended in several directions. Orthogonal polynomials with respect
to varying measures (depending on the degree of the polynomial) arise in the study of multi-
point Padé approximation of Markov functions. In this context, in [10] and [11], an analogue
of Rakhmanov’s theorem for such sequences of orthogonal polynomials was proved. Recently,
S.A. Denisov [4] (see also [13]) obtained a remarkable extension of Rakhmanov’s result to the
case when the support of s verifies supp(s) = Δ̃∪e ⊂ R, where Δ̃ is a bounded interval, e is a set
without accumulation points in R\Δ̃, and s′ > 0 a.e. on Δ̃. A version for orthogonal polynomials
with respect to varying Denisov type measures was given in [2].

Another direction of generalization is connected with multiple orthogonal polynomials. These
are polynomials whose orthogonality relations are distributed between several measures. They
appear as the common denominator of Hermite–Padé approximations of systems of Markov
functions. An interesting class of such systems is formed by the so-called Nikishin systems
of functions introduced in [14]. For Nikishin multiple orthogonal polynomials a version of
Rakhmanov’s theorem was proved in [1].

An elegant notation for Nikishin systems was proposed in [8]. Let σ1, σ2 be two finite Borel
measures with constant sign, whose supports supp(σ1), supp(σ2) are contained in nonintersecting
intervals of R. Set

d〈σ1, σ2〉(x) =
∫

dσ2(t)

x − t
dσ1(x) = σ̂2(x) dσ1(x).

This expression defines a new measure with constant sign whose support coincides with that
of σ1. Whenever convenient, we use the differential notation of a measure.

Let Σ = (σ1, . . . , σm) be a system of finite Borel measures on the real line with constant
sign and compact support containing infinitely many points. Let Co(supp(σk)) = Δk denote the
smallest interval which contains supp(σk). Assume that

Δk ∩ Δk+1 = ∅, k = 1, . . . ,m − 1.

By definition, S = (s1, . . . , sm) = N (σ1, . . . , σm), where

s1 = σ1, s2 = 〈σ1, σ2〉, . . . , sm = 〈
σ1, 〈σ2, . . . , σm〉〉 (2)

is called the Nikishin system of measures generated by Σ . The system (ŝ1, . . . , ŝm) of Cauchy
transforms of a Nikishin system of measures gives a Nikishin system of functions.

Fix a multi-index n = (n1, . . . , nm) ∈ Zm+. The polynomial Qn(x) is called an nth multiple
orthogonal polynomial with respect to S if it is not identically equal to zero, degQn � |n| =
n1 + · · · + nm, and∫

Qn(x)xν dsk(x) = 0, ν = 0, . . . , nk − 1, k = 1, . . . ,m. (3)

In the sequel, we assume that Qn is monic.
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If (3) implies that degQn = |n|, the multi-index n is said to be normal and the corresponding
monic multiple orthogonal polynomial is uniquely determined. In addition, if the zeros of Qn are
simple and lie in the interior of Co(supp(σ1)) the multi-index is said to be strongly normal. (In
relation to intervals of the real line the interior refers to the Euclidean topology of R.) For Nik-
ishin systems with m = 1,2,3, all multi-indices are strongly normal (see [5]). An open question
is whether or not this is true for all m ∈ N. The best result when m � 4 is that all

n ∈ Zm+(∗) = {
n ∈ Zm+: �1 � i < j < k � m, with ni < nj < nk

}
are strongly normal (see [6]).

In [1], a Rakhmanov type theorem was proved for Nikishin systems such that |σ ′
k| > 0 a.e. on

Co(supp(σk)), k = 1, . . . ,m, and sequences of multi-indices contained in

Zm+(�) = {
n ∈ Zm+: 1 � i < j � m ⇒ nj � ni + 1

}
.

It is easy to see that Zm+(�) ⊂ Zm+(∗). Here, we assume that supp(σk) = Δ̃k ∪ ek , k = 1, . . . ,m,

where Δ̃k is a bounded interval of the real line, |σ ′
k| > 0 a.e. on Δ̃k , ek is a set without accumula-

tion points in R \ Δ̃k , and the sequence of multi-indices on which the limit is taken is in Zm+(∗).
The proof of Theorem 1.1 below uses the construction of so-called second type functions. This

construction depends on the relative value of the components of the multi-indices in Zm+(∗) under
consideration. A crucial step in our study consists in proving an interlacing property for the zeros
of the second type functions corresponding to “consecutive” multi-indices (see Lemma 3.2). For
this purpose, we need to be sure that the second type functions are built using the same proce-
dure. To distinguish different classes of multi-indices which respond for the same construction
of second type functions, we introduce the following definition.

Definition 1.1. Suppose that n = (n1, . . . , nm) ∈ Zm+. Let τn denote the permutation of
{1,2, . . . ,m} given by

τn(i) = j if

{
nj > nk for k < j, k /∈ {τn(1), . . . , τn(i − 1)},
nj � nk for k > j, k /∈ {τn(1), . . . , τn(i − 1)}.

In words, τn(1) is the subindex of the first component of n (from left to right) which is greater
or equal than the rest, τn(2) is the subindex of the first component which is second largest, and
so forth. For example, if n1 � · · · � nm then τn is the identity.

Let τ denote a permutation of {1,2, . . . ,m}. Set

Zm+(∗, τ ) = {
n ∈ Zm+(∗): τn = τ

}
.

Let n ∈ Zm+ and l ∈ {1, . . . ,m}. Define

nl := (n1, . . . , nl−1, nl + 1, nl+1, . . . , nm).

Consider the (m + 1)-sheeted Riemann surface

R=
m⋃

k=0

Rk,

formed by the consecutively “glued” sheets
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R0 := C \ Δ̃1, Rk := C \ (Δ̃k ∪ Δ̃k+1), k = 1, . . . ,m − 1, Rm = C \ Δ̃m,

where the upper and lower banks of the slits of two neighboring sheets are identified. Fix
l ∈ {1, . . . ,m}. There exists a conformal representation G(l) of R onto C such that

G(l)(z) = z +O(1), z → ∞(0), G(l)(z) = C/z +O
(
1/z2), z → ∞(l).

By G
(l)
k we denote the branch of G(l) on Rk .

Theorem 1.1. Let S = N (σ1, . . . , σm) be a Nikishin system with supp(σk) = Δ̃k ∪ ek ,
k = 1, . . . ,m, where Δ̃k is a bounded interval of the real line, |σ ′

k| > 0 a.e. on Δ̃k , and ek is
a set without accumulation points in R \ Δ̃k . Let Λ ⊂ Zm+(∗) be an infinite sequence of distinct
multi-indices with the property that maxn∈Λ(maxk=1,...,m mnk − |n|) < ∞. Let us assume that
there exists l ∈ {1, . . . ,m} and a fixed permutation τ of {1, . . . ,m} such that for all n ∈ Λ we
have that n,nl ∈ Zm+(∗, τ ). Then,

lim
n∈Λ

Qnl
(z)

Qn(z)
= G

(τ−1(l))
0 (z), K ⊂ C \ supp(σ1). (4)

When m = 1 this result reduces to Denisov’s version of Rakhmanov’s theorem. The proof
of Theorem 1.1 follows the guidelines employed in [1] but it is technically more complicated
because of the more general assumptions on the measures and the sequence of multi-indices.

Let 1 = (1, . . . ,1). An immediate consequence of Theorem 1.1 is

Corollary 1.1. Let S = N (σ1, . . . , σm) be a Nikishin system with supp(σk) = Δ̃k ∪ ek ,
k = 1, . . . ,m, where Δ̃k is a bounded interval of the real line, |σ ′

k| > 0 a.e. on Δ̃k , and ek is
a set without accumulation points in R \ Δ̃k . Let Λ ⊂ Zm+(∗) be an infinite sequence of distinct
multi-indices with the property maxn∈Λ(maxk=1,...,m mnk − |n|) < ∞. Then,

lim
n∈Λ

Qn+1(z)

Qn(z)
=

m∏
l=1

G
(l)
0 (z), K ⊂ C \ supp(σ1). (5)

The paper is organized as follows. In Section 2 we introduce and study an auxiliary system
of second type functions. An interlacing property for the zeros of the polynomials Qn and of the
second type functions is proved in Section 3. Using the interlacing property of zeros and results
on ratio and relative asymptotic of polynomials orthogonal with respect to varying measures, in
Section 4 a system of boundary value problems is derived which implies the existence of limit
in (4). Actually, a more general result is proved which also contains the ratio asymptotic of the
second type functions.

2. Functions of second type and orthogonality properties

Fix n = (n1, . . . , nm) ∈ Zm+(∗) and consider Qn the nth multi-orthogonal polynomial
with respect to a Nikishin system S = N (Σ), Σ = (σ1, . . . , σm). For short, in the sequel
we denote Δk = Co(supp(σk)), k = 1, . . . ,m. Inductively, we define functions of second
type Ψn,k , k = 0,1, . . . ,m, systems of measures Σk = (σ k , . . . , σ k ), k = 0,1, . . . ,m − 1,
k+1 m
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Co(supp(σ k
j )) ⊂ Δj , which generate Nikishin systems, and multi-indices nk ∈ Zm−k+ (∗), k =

0, . . . ,m − 1. Take Ψn,0 = Qn, n0 = n, and Σ0 = Σ .
Suppose that nk = (nk

k+1, . . . , n
k
m), Σk = (σ k

k+1, . . . , σ
k
m) and Ψn,k have already been defined,

where 0 � k � m − 2. Let

nk+1 = (
nk+1

k+2, . . . , n
k+1
m

) ∈ Zm−k−1+ (∗)

be the multi-index obtained deleting from nk the first component nk
rk

which verifies

nk
rk

= max
{
nk

j : k + 1 � j � m
}
.

The components of nk+1 and nk are related as follows:

nk
k+1 = nk+1

k+2, . . . , nk
rk−1 = nk+1

rk
, nk

rk+1 = nk+1
rk+1, . . . , nk

m = nk+1
m .

Denote

Ψn,k+1(z) =
∫

Δk+1

Ψn,k(x)

z − x
dsk

rk
(x), (6)

where sk
rk

= 〈σk
k+1, . . . , σ

k
rk

〉 is the corresponding component of the Nikishin system Sk =
N (Σk) = (sk

k+1, . . . , s
k
m).

In order to define Σk+1 we introduce the following notation. Set

sk
i,j = 〈

σk
i , . . . , σ k

j

〉
, k + 1 � i � j � m,

where σk
i ∈ Σk . In page 390 of [9] it is proved that there exists a finite measure τ k

i,j with constant
sign such that

Co
(
supp

(
τ k
i,j

)) ⊂ Co
(
supp

(
sk
i,j

))
,

1

ŝk
i,j (z)

= lki,j (z) + τ̂ k
i,j (z)

where lki,j is a certain polynomial of degree 1. That Co(supp(sk
i,j )) ⊂ Δi easily follows by induc-

tion. We wish to remark that the continuous part of supp(sk
i,j ) and supp(τ k

i,j ) coincide, but not

their isolated parts. In fact, zeros of ŝk
i,j on Δi (there is one such zero between two consecutive

mass points of sk
i,j ) become poles of τ̂ k

i,j (mass points of τ k
i,j ).

Suppose that rk = k + 1. In this case, we take

Σk+1 = (
σk

k+2, . . . , σ
k
m

) = (
σk+1

k+2 , . . . , σ k+1
m

)
deleting the first measure of Σk . If rk � k + 2, then Σk+1 is defined by

(
τ k , ŝk dτ k , . . . , ŝk dτ k

r ,r , ŝk
r ,r dσ k , σ k , . . . , σ k

m

)
,
k+2,rk k+2,rk k+3,rk rk−1,rk k k k k rk+1 rk+2
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Table 1
m = 2

m = 2 k rk−1 Ψn,k Σk nk

n1 � n2 1 1 C(Qn;σ1) (σ2) (n2)

n1 < n2 1 2 C(Qn; 〈σ1, σ2〉) (τ2) (n1)

Table 2
m = 3

m = 3 k rk−1 Ψn,k Σk nk

n1 � n2 � n3 1 1 C(Qn;σ1) (σ2, σ3) (n2, n3)

2 2 C(Ψn,1;σ2) (σ3) (n3)

n1 � n3 > n2 1 1 C(Qn;σ1) (σ2, σ3) (n2, n3)

2 3 C(Ψn,1; 〈σ2, σ3〉) (τ3) (n2)

n2 > n1 � n3 1 2 C(Qn; 〈σ1, σ2〉) (τ2, 〈σ3, σ2〉) (n1, n3)

2 2 C(Ψn,1; τ2), (〈σ3, σ2〉) (n3)

n2 � n3 > n1 1 2 C(Qn; 〈σ1, σ2〉) (τ2, 〈σ3, σ2〉) (n1, n3)

2 3 C(Ψn,1; 〈τ2, σ3, σ2〉) (τ3,2) (n1)

n3 > n1 � n2 1 3 C(Qn; 〈σ1, σ2, σ3〉) (τ2,3, 〈τ3, σ2, σ3〉) (n1, n2)

2 2 C(Ψn,1; τ2,3) (〈τ3, σ2, σ3〉) (n2)

where Co(supp(σ k+1
j )) ⊂ Δj , j = k + 2, . . . ,m. Any two consecutive measures in the system

Σk+1 are supported on disjoint intervals; therefore, Σk+1 generates a Nikishin system. To con-
clude we define

Ψn,m(z) =
∫

Δm

Ψn,m−1(x)

z − x
dsm−1

m (x).

If n1 � · · · � nm, we have that nk = (nk+1, . . . , nm), Σk = (σk+1, . . . , σm) and Ψn,k(z) =∫
Δk

Ψn,k−1(x)

z−x
dσk(x), k = 1, . . . ,m. Basically, this is the situation considered in [1].

To fix ideas let us turn our attention to the cases m = 2 and m = 3. We denote by C(f ;μ) the
Cauchy transform of f dμ; that is,

C(f ;μ)(z) =
∫

f (x)

z − x
dμ(x).

In Tables 1 and 2, we omit the line corresponding to k = 0 because by definition Σ0 = Σ ,
Ψn,0 = Qn and n0 = n.

In Theorem 2 of [6] it was proved that the functions Ψn,k verify the following orthogonality
relations. For each k = 0,1, . . . ,m − 1,∫

Δk+1

xνΨn,k(x) dsk
i (x) = 0, ν = 0,1, . . . , nk

i − 1, i = k + 1, . . . ,m, (7)

where sk
i = 〈σk

k+1, . . . , σ
k
i 〉.

We wish to underline that since Z2+(∗) = Z2+, all multi-indices with two components have
associated functions of second type. However, for m = 3 the case n1 < n2 < n3 has not been
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considered (see Table 2). The rest of this section will be devoted to the construction of certain
functions Ψn,k for this case and to the proof of the orthogonality relations they satisfy. We use
the following auxiliary result.

Lemma 2.1. Let s3,2 = 〈σ3, σ2〉. Then

∫
Δ2

ŝ3,2(x)

σ̂3(x)

dτ2,3(x)

(z − x)
+ C1 = σ̂2(z)

ŝ2,3(z)
, z ∈ C \ supp(σ2), (8)

where C1 = σ2(Δ2)/s2,3(Δ2).

Proof. We employ two useful relations. The first one is

σ̂2(ζ )σ̂3(ζ ) = ŝ2,3(ζ ) + ŝ3,2(ζ ), ζ ∈ C \ (
supp(σ2) ∪ supp(σ3)

)
. (9)

The proof is straightforward and may be found in Lemma 4 of [5]. The second one was mentioned
above and states that there exists a polynomial l2,3 of degree 1 and a measure τ2,3 such that

1

ŝ2,3(z)
= τ̂2,3(z) + l2,3(z), z ∈ C \ supp(σ2). (10)

Notice that

σ̂2(z)

ŝ2,3(z)
− C1 = O

(
1

z

)
∈ H(C \ Δ2).

Let Γ be a positively oriented smooth closed Jordan curve such that Δ2 and {z} ∪ Δ3 lie on the
bounded and unbounded connected components, respectively, of C \ Γ . By Cauchy’s integral
formula, we have

σ̂2(z)

ŝ2,3(z)
− C1 = 1

2πi

∫
Γ

(
σ̂2(ζ )

ŝ2,3(ζ )
− C1

)
dζ

z − ζ
= 1

2πi

∫
Γ

σ̂2(ζ )

ŝ2,3(ζ )

dζ

z − ζ
.

Multiply and divide the expression under the last integral sign by σ̂3 and use (9) to obtain

σ̂2(z)

ŝ2,3(z)
− C1 = 1

2πi

∫
Γ

ŝ2,3(ζ ) + ŝ3,2(ζ )

σ̂3(ζ )ŝ2,3(ζ )

dζ

z − ζ
= 1

2πi

∫
Γ

ŝ3,2(ζ )

σ̂3(ζ )ŝ2,3(ζ )

dζ

z − ζ
.

Taking account of (10) it follows that

σ̂2(z)

ŝ2,3(z)
− C1 = 1

2πi

∫
Γ

ŝ3,2(ζ )

σ̂3(ζ )

(τ̂2,3(ζ ) + l2,3(ζ )) dζ

z − ζ
= 1

2πi

∫
Γ

ŝ3,2(ζ )

σ̂3(ζ )

τ̂2,3(ζ ) dζ

z − ζ
.

Now, substitute τ̂2,3(ζ ) by its integral expression and use the Fubini and Cauchy theorems to
obtain
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σ̂2(z)

ŝ2,3(z)
− C1 =

∫
1

2πi

∫
Γ

ŝ3,2(ζ )

σ̂3(ζ )(z − ζ )

dζ

ζ − x
dτ2,3(x) =

∫
ŝ3,2(x)

σ̂3(x)

dτ2,3(x)

z − x
,

which is what we set out to prove. �
We are ready to define the functions of second type and to prove the orthogonality properties

they verify for multi-indices with 3 components not in Z3+(∗) (with n1 < n2 < n3).

Lemma 2.2. Fix n = (n1, n2, n3) ∈ Z3+ where n1 < n2 < n3 and consider Qn the nth orthogonal
polynomial associated to a Nikishin system S = (s1, s2, s3) = N (σ1, σ2, σ3). Set Ψn,0 = Qn,

Ψn,1(z) =
∫
Δ1

Qn(x)

z − x
ds1,3(x), (11)

Ψn,2(z) =
∫
Δ2

Ψn,1(x)

z − x

ŝ3,2(x)

σ̂3(x)
dτ2,3(x). (12)

Then ∫
Δ1

tνΨn,0(t) ds1,j (t) = 0, 0 � ν � nj − 1, 1 � j � 3, (13)

∫
Δ2

tνΨn,1(t) dτ2,3(t) = 0, 0 � ν � n1 − 1, (14)

∫
Δ2

tνΨn,1(t)
ŝ3,2(t)

σ̂3(t)
dτ2,3(t) = 0, 0 � ν � n2 − 1, (15)

∫
Δ3

tνΨn,2(t)
ŝ2,3(t)

σ̂2(t)
dτ3,2(t) = 0, 0 � ν � n1 − 1. (16)

Remark 2.1. The measure ŝ3,2 dτ2,3/σ̂3 supported on Δ2 cannot be written in the form 〈τ2,3,μ〉
for some measure μ supported on Δ3, so there is no Σ1 and S1 in this case.

Proof. The relations (13) follow directly from the definition of Qn. Let us justify (14) and (15).
For 0 � ν � n1 − 1(� n3 − 3), applying Fubini’s theorem,∫

Δ2

tνΨn,1(t) dτ2,3(t) =
∫
Δ2

tν
∫
Δ1

Qn(x)

t − x
ds1,3(x) dτ2,3(t)

=
∫
Δ1

Qn(x)

∫
Δ2

tν − xν + xν

t − x
dτ2,3(t) ds1,3(x)

=
∫

Qn(x)pν(x) ds1,3(x) −
∫

xνQn(x)τ̂2,3(x) ds1,3(x),
Δ1 Δ1
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where pν(x) = ∫
Δ2

tν−xν

t−x
dτ2,3(t) is a polynomial of degree at most n1 − 2. Since ds1,3(x) =

ŝ2,3(x) dσ1(x) and τ̂2,3(x)ŝ2,3(x) = 1 − l2,3(x)ŝ2,3(x), the measure τ̂2,3(x) ds1,3(x) is equal to
dσ1(x) − l2,3(x) ds1,3(x). Therefore, applying (13) both integrals vanish and we obtain (14).
Actually, we only needed that n1 � n3 − 1.

If 0 � ν � n2 − 1 (� n3 − 2),

∫
Δ2

tνΨn,1(t)
ŝ3,2(t)

σ̂3(t)
dτ2,3(t) =

∫
Δ2

tν
ŝ3,2(t)

σ̂3(t)

∫
Δ1

Qn(x)

t − x
ds1,3(x) dτ2,3(t)

=
∫
Δ1

Qn(x)

∫
Δ2

tν − xν + xν

t − x

ŝ3,2(t)

σ̂3(t)
dτ2,3(t) ds1,3(x)

=
∫
Δ1

Qn(x)xν

∫
Δ2

ŝ3,2(t)

σ̂3(t)

dτ2,3(t)

t − x
ds1,3(x).

By Lemma 2.1, the last expression is equal to

C1

∫
Δ1

Qn(x)xν ds1,3(x) −
∫
Δ1

Qn(x)xν σ̂2(x)

ŝ2,3(x)
ds1,3(x)

= −
∫
Δ1

Qn(x)xν ds1,2(x) = 0

taking into account that ds1,3(x) = ŝ2,3(x) dσ1(x) and (13). This proves (15). It would have been
sufficient to require n2 � n3.

Let us prove (16). Take 0 � ν � n1 − 1, we have

∫
Δ3

tνΨn,2(t)
ŝ2,3(t)

σ̂2(t)
dτ3,2(t) =

∫
Δ3

tν
∫
Δ2

Ψn,1(x)

t − x

ŝ3,2(x)

σ̂3(x)
dτ2,3(x)

ŝ2,3(t)

σ̂2(t)
dτ3,2(t)

=
∫
Δ2

Ψn,1(x)
ŝ3,2(x)

σ̂3(x)

∫
Δ3

tν − xν + xν

t − x

ŝ2,3(t)

σ̂2(t)
dτ3,2(t) dτ2,3(x)

=
∫
Δ2

pν(x)Ψn,1(x)
ŝ3,2(x)

σ̂3(x)
dτ2,3(x)

+
∫
Δ2

Ψn,1(x)xν ŝ3,2(x)

σ̂3(x)

∫
Δ3

ŝ2,3(t)

σ̂2(t)

dτ3,2(t)

t − x
dτ2,3(x)

where pν(x) is the polynomial defined by

∫
tν − xν

t − x

ŝ2,3(t)

σ̂2(t)
dτ3,2(t),
Δ3
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of degree � n1 − 2. Applying (15), the first integral after the last equality equals zero since
n1 < n2 (though n1 � n2 + 1 would have been sufficient). If we interchange the sub-indices 2
and 3 in Lemma 2.1, we obtain

∫
Δ3

ŝ2,3(t)

σ̂2(t)

dτ3,2(t)

t − x
= − σ̂3(x)

ŝ3,2(t)
+ C2, (17)

where C2 = σ3(Δ3)/s3,2(Δ3). Therefore, using (17), (15) and (14), it follows that

∫
Δ2

Ψn,1(x)xν ŝ3,2(t)

σ̂3(x)

∫
Δ3

ŝ2,3(t)

σ̂2(t)

dτ3,2(t)

t − x
dτ2,3(x)

=
∫
Δ2

Ψn,1(x)xν ŝ3,2(t)

σ̂3(x)

(
C2 − σ̂3(x)

ŝ3,2(t)

)
dτ2,3(x) = 0,

since n1 � n2. This completes the proof. �
3. Interlacing property of zeros and varying measures

As we have pointed out, from the definition Zm+(∗) = Zm+, m = 1,2. We have introduced
adequate functions of second type also when m = 3 and n1 < n2 < n3 which were the only
multi-indices initially not in Z3+(∗). To unify notation, in the rest of the paper we will consider
that Z3+(∗) = Z3+.

In this section, we show that for n ∈ Zm+(∗), m ∈ N, the functions Ψn,k , k = 0, . . . ,m − 1,
have exactly |nk| simple zeros in the interior of Δk+1 and no other zeros on C \ Δk . The zeros
of “consecutive” Ψn,k satisfy an interlacing property. These properties are proved in Lemma 3.2
below which complements Theorem 2.1 (see also Lemma 2.1) in [1] and substantially enlarges
the class of multi-indices for which it is applicable. The concept of AT system is crucial in its
proof.

Definition 3.1. Let (ω1,ω2, . . . ,ωm) be a collection of functions which are analytic on a
neighborhood of an interval Δ. We say that it forms an AT-system for the multi-index n =
(n1, n2, . . . , nm) on Δ if whenever one chooses polynomials Pn1 , . . . ,Pnm with deg(Pnj

) �
nj − 1, not all identically equal to zero, the function

Pn1(x)w1(x) + · · · + Pnm(x)wm(x)

has at most |n| − 1 zeros on Δ, counting multiplicities. (ω1, . . . ,ωm) is an AT-system on Δ if it
is an AT-system on that interval for all n ∈ Zm+.

Theorem 1 of [5] (for m = 3) and Theorem 1 of [6] prove the following.

Lemma 3.1. Let (s1, . . . , sm−1) = N (σ1, . . . , σm−1), m � 2, be a Nikishin system of m − 1 mea-
sures. Then (1, ŝ1, . . . , ŝm−1) forms an AT system on any interval Δ disjoint from Δ1 with respect
to any n ∈ Zm+(∗).
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Recall that nl denotes the multi-index obtained adding 1 to the lth component of n.

Lemma 3.2. Let S = N (σ1, . . . , σm) be a Nikishin system. Let n ∈ Zm+(∗), m ∈ N, then for each
k = 0, . . . ,m − 1, the function Ψn,k has exactly |nk| simple zeros in the interior of Δk+1 and
no other zeros on C \ Δk . Let I denote the closure of any one of the connected components of
Δk+1 \ supp(σ k

k+1), then Ψn,k has at most one simple zero on I . Assume that l ∈ {1,2, . . . ,m} is
such that n,nl ∈ Zm+(∗, τ ) for a fixed permutation τ . Then, for each k ∈ {0, . . . ,m − 1} between
two consecutive zeros of Ψnl ,k lies exactly one zero of Ψn,k and vice versa (that is, the zeros of
Ψnl ,k and Ψn,k on Δk+1 interlace).

Proof. Assume that n,nl ∈ Zm+(∗, τ ). We claim that for any real constants A,B , |A| + |B| > 0,
and k ∈ {0,1, . . . ,m − 1}, the function

Gn,k(x) = AΨn,k(x) + BΨnl ,k(x)

has at most |nk| + 1 zeros in C \Δk (counting multiplicities) and at least |nk| simple zeros in the
interior of Δk+1(Δ0 = ∅). We prove this by induction on k.

Let k = 0. The polynomial Gn,0 = AΨn,0 + BΨnl ,0 is not identically equal to zero, and |n| �
deg(Gn,0) � |n|+1. Therefore, Gn,0 has at most |n|+1 zeros in C. Let hj , j = 1, . . . ,m, denote
polynomials, where deg(hj ) � nj − 1. According to (7),

∫
Δ1

Gn,0(x)

m∑
j=1

hj (x)ŝ2,j (x) dσ1(x) = 0 (18)

(ŝ2,1 ≡ 1).
In the sequel, we call change knot a point on the real line where a function changes its sign.

Notice that for each k ∈ {0, . . . ,m−1}, Gn,k is a real function when restricted to the real line. As-
sume that Gn,0 has N � |n| − 1 change knots in the interior of Δ1. We can find polynomials hj ,
j = 1, . . . ,m,deg(hj ) � nj − 1, such that

∑m
j=1 hj ŝ2,j has a simple zero at each change knot of

Gn,0 on Δ1 and a zero of order |n| − 1 − N at one of the extreme points of Δ1. By Lemma 3.1,
(1, ŝ2,2, . . . , ŝ2,m) forms an AT system with respect to n ∈ Zm+(∗); therefore,

∑m
j=1 hj ŝ2,j can

have no other zero on Δ1, but this contradicts (18) since Gn,0
∑m

j=1 hj ŝ2,j would have a con-

stant sign on Δ1 (and supp(σ1) contains infinitely many points). Therefore, Gn,0 has at least |n|
change knots in the interior of Δ1. Consequently, all the zeros of Gn,0 are simple and lie on R as
claimed.

Assume that for each k ∈ {0, . . . , κ − 1}, 1 � κ � m − 1, the claim is satisfied whereas it is
violated when k = κ . Let hj denote polynomials such that deg(hj ) � nκ

j − 1, κ + 1 � j � m.

Using (7) or (13)–(16) according to the situation (to simplify the writing we use the notation
of (7) but the arguments are the same when m = 3 and n1 < n2 < n3; in particular, in this case,
ds0

r0
= ds1,3, ds1

r1
= ŝ3,2 dτ2,3/σ̂3 and ds2

r2
= ŝ2,3 dτ3,2/σ̂2)

∫
Gn,κ (x)

m∑
j=κ+1

hj (x)ŝκ
κ+2,j (x) dσ κ

κ+1(x) = 0 (19)
Δκ+1
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(ŝκ
κ+2,κ+1 ≡ 1). Arguing as above, since (1, ŝκ

κ+2,κ+2, . . . , ŝ
κ
κ+2,m) forms an AT system with re-

spect to nκ ∈ Zm−κ+ (∗), we conclude that Gn,κ has at least |nκ | change knots in the interior
of Δκ+1.

Let us suppose that Gn,κ has at least |nκ | + 2 zeros in C \ Δκ and let Wn,κ be the monic
polynomial whose zeros are those points (counting multiplicities). The complex zeros of Gn,κ

(if any) must appear in conjugate pairs since Gn,κ (z) = Gn,κ (z); therefore, the coefficients of
Wn,κ are real numbers. On the other hand, from (7) ((13) or (15) when necessary)

0 =
∫
Δκ

Gn,κ−1(x)
z
nκ−1

rκ−1 − x
nκ−1

rκ−1

z − x
dsκ−1

rκ−1
(x).

Therefore,

Gn,κ (z) = 1

z
nκ−1

rκ−1

∫
Δκ

x
nκ−1

rκ−1 Gn,κ−1(x)

z − x
dsκ−1

rκ−1
(x) = O

(
1

z
nκ−1

rκ−1 +1

)
, z → ∞,

and taking into consideration the degree of Wn,κ , we obtain

zjGn,κ

Wn,κ

= O
(

1

z2

)
∈ H(C \ Δκ), j = 0, . . . ,

∣∣nκ−1
∣∣ + 1.

Let Γ be a closed Jordan curve which surrounds Δκ and such that all the zeros of Wn,κ lie in
the exterior of Γ . Using Cauchy’s theorem, the integral expression for Gn,κ , Fubini’s theorem,
and Cauchy’s integral formula, for each j = 0, . . . , |nκ−1| + 1, we have

0 = 1

2πi

∫
Γ

zjGn,κ (z)

Wn,κ (z)
dz = 1

2πi

∫
Γ

zj

Wn,κ (z)

∫
Δκ

Gn,κ−1(x)

z − x
dsκ−1

rκ−1
(x) dz

=
∫
Δκ

xjGn,κ−1(x)

Wn,κ (x)
dsκ−1

rκ−1
(x),

which implies that Gn,κ−1 has at least |nκ−1| + 2 change knots in the interior of Δκ . This
contradicts our induction hypothesis since this function can have at most |nκ−1| + 1 zeros in
C \ Δκ−1 ⊃ Δκ . Hence Gn,κ has at most |nκ | + 1 zeros in C \ Δκ as claimed.

Taking B = 0 the assumption nl ∈ Zm+(∗, τ ) is not required, and the arguments above lead to
the proof that Ψn,k has at most |nk| zeros on C \ Δk since Qn = Ψn,0 has at most |n| zeros on C.
Consequently, the zeros of Ψn,k in C \ Δk are exactly the |nk| simple ones it has in the interior
of Δk+1.

Let I be the closure of a connected component of Δk+1 \ supp(σ k
k+1) and let us assume

that I contains two consecutive simple zeros x1, x2 of Ψn,k . Taking B = 0 and A = 1, we can
rewrite (19) as follows

∫
Ψn,k(x)

(x − x1)(x − x2)

m∑
j=k+1

hj (x)ŝk
k+2,j (x)(x − x1)(x − x2) dσ k

k+1(x) = 0, (20)
Δk+1
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where deg(hj ) � nk
j − 1, j = k + 1, . . . ,m. The measure (x − x1)(x − x2) dσ k

k+1(x) has a con-

stant sign on Δk+1 and Ψn,k(x)/(x − x1)(x − x2) has |nk| − 2 change knots on Δk+1. Using
again Lemma 3.1, we can construct appropriate polynomials hj to contradict (20). Therefore, I

contains at most one zero of Ψn,k .
Fix y ∈ R \ Δk and k ∈ {0,1, . . . ,m − 1}. It cannot occur that Ψnl ,k(y) = Ψn,k(y) = 0. If

this was so, y would have to be a simple zero of Ψnl ,k and Ψn,k . Therefore, (Ψnl ,k)
′(y) �= 0 �=

(Ψn,k)
′(y). Taking A = 1,B = −Ψ ′

n,k(y)/Ψ ′
nl ,k

(y), we find that

Gn,k(y) = (AΨn,k + BΨnl ,k)(y) = (Gn,k)
′(y) = 0,

which means that Gn,k has at least a double zero at y against what we proved before.
Now, taking A = Ψnl ,k(y),B = −Ψn,k(y), we have that |A| + |B| > 0. Since

Ψnl ,k(y)Ψn,k(y) − Ψn,k(y)Ψnl ,k(y) = 0,

and the zeros on R\Δk of Ψnl ,k(y)Ψn,k(x)−Ψn,k(y)Ψnl ,k(x) with respect to x are simple, using
again what we proved above, it follows that

Ψnl ,k(y)Ψ ′
n,k(y) − Ψn,k(y)Ψ ′

nl ,k
(y) �= 0.

But Ψnl ,k(y)Ψ ′
n,k(y) − Ψn,k(y)Ψ ′

nl ,k
(y) is a continuous real function on R \ Δk so it must have

constant sign on each one of the intervals forming R \ Δk ; in particular, its sign on Δk+1 is
constant.

We know that Ψnl ,k has at least |nk| simple zeros in the interior of Δk+1. Evaluating
Ψnl ,k(y)Ψ ′

n,k(y) − Ψn,k(y)Ψ ′
nl ,k

(y) at two consecutive zeros of Ψnl ,k , since the sign of Ψ ′
nl ,k

at these two points changes the sign of Ψn,k must also change. Using Bolzano’s theorem we
find that there must be an intermediate zero of Ψn,k . Analogously, one proves that between two
consecutive zeros of Ψn,k on Δk+1 there is one of Ψnl ,k . Thus, the interlacing property has been
proved. �

Let Qn,k+1, k = 0, . . . ,m − 1, denote the monic polynomial whose zeros are equal to those
of Ψn,k on Δk+1. From (7) ((13), (15), or (16) when necessary)

0 =
∫

Δk+1

Ψn,k(x)
z
nk

rk − x
nk

rk

z − x
dsk

rk
(x).

(Recall that when m = 3 and n1 < n2 < n3, we take ds0
r0

= ds1,3, ds1
r1

= ŝ3,2 dτ2,3/σ̂3 and ds2
r2

=
ŝ2,3 dτ3,2/σ̂2.) Therefore,

Ψn,k+1(z) = 1

z
nk

rk

∫
Δk+1

x
nk

rk Ψn,k(x)

z − x
dsk

rk
(x) = O

(
1

z
nk

rk
+1

)
, z → ∞,

and taking into consideration the degree of Qn,k+2 (by definition Qn,m+1 ≡ 1), we obtain

zjΨn,k+1 = O
(

1
2

)
∈ H(C \ Δk+1), j = 0, . . . ,

∣∣nk
∣∣ − 1.
Qn,k+2 z
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Let Γ be a closed Jordan curve which surrounds Δk+1 such that all the zeros of Qn,k+2 lie in
the exterior of Γ . Using Cauchy’s theorem, the integral expression for Ψn,k+1, Fubini’s theorem,
and Cauchy’s integral formula, for each j = 0, . . . , |nk| − 1 (we also define Qn,0 ≡ 1), we have

0 = 1

2πi

∫
Γ

zjΨn,k+1(z)

Qn,k+2(z)
dz = 1

2πi

∫
Γ

zj

Qn,k+2(z)

∫
Δk+1

Ψn,k(x)

z − x
dsk

rk
(x) dz

=
∫

Δk+1

xjQn,k+1(x)
Hn,k+1(x) dsk

rk
(x)

Qn,k(x)Qn,k+2(x)
, k = 0, . . . ,m − 1, (21)

where

Hn,k+1 = Qn,kΨn,k

Qn,k+1
, k = 0, . . . ,m,

has constant sign on Δk+1.
This last relation implies that

∫
Δk+1

(Q(z) − Q(x))

z − x
Qn,k+1(x)

Hn,k+1(x) dsk
rk

(x)

Qn,k(x)Qn,k+2(x)
= 0,

where Q is any polynomial of degree � |nk|. If we use this formula with Q = Qn,k+1 and
Q = Qn,k+2, respectively, we obtain

∫
Δk+1

Qn,k+1(x)

z − x

Hn,k+1(x) dsk
rk

(x)

Qn,k(x)Qn,k+2(x)

= 1

Qn,k+1(z)

∫
Δk+1

Q2
n,k+1(x)

z − x

Hn,k+1(x) dsk
rk

(x)

Qn,k(x)Qn,k+2(x)

and

∫
Δk+1

Qn,k+1(x)

z − x

Hn,k+1(x) dsk
rk

(x)

Qn,k(x)Qn,k+2(x)

= 1

Qn,k+2(z)

∫
Δk+1

Ψn,k(x) dsk
rk

(x)

z − x
.

Equating these two relations and using the definition of Ψn,k+1 and Hn,k+2, we obtain

Hn,k+2(z) =
∫

Q2
n,k+1(x)

z − x

Hn,k+1(x) dsk
rk

(x)

Qn,k(x)Qn,k+2(x)
, k = 0, . . . ,m − 1. (22)
Δk+1
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Notice that from the definition Hn,1 ≡ 1.

For each k = 1, . . . ,m, set

K−2
n,k =

∫
Δk

Q2
n,k(x)

∣∣∣∣Qn,k−1(x)Ψn,k−1(x)

Qn,k(x)

∣∣∣∣ d|sk−1
rk−1

|(x)

|Qn,k−1(x)Qn,k+1(x)| , (23)

where |s| denotes the total variation of the measures s. Take

Kn,0 = 1, κn,k = Kn,k

Kn,k−1
, k = 1, . . . ,m.

Define

qn,k = κn,kQn,k, hn,k = K2
n,k−1Hn,k, (24)

and

dρn,k(x) = hn,k(x) dsk−1
rk−1

(x)

Qn,k−1(x)Qn,k+1(x)
. (25)

Notice that the measure ρn,k has constant sign on Δk . Let εn,k be the sign of ρn,k . From (21) and
the notation introduced above, we obtain∫

Δk

xνqn,k(x) d|ρn,k|(x) = 0, ν = 0, . . . ,
∣∣nk−1

∣∣ − 1, k = 1, . . . ,m, (26)

and qn,k is orthonormal with respect to the varying measure |ρn,k|. On the other hand, using (22)
it follows that

hn,k+1(z) = εn,k

∫
Δk

q2
n,k(x)

z − x
d|ρn,k|(x), k = 1, . . . ,m. (27)

Lemma 3.3. Let S = N (σ1, . . . , σm) be a Nikishin system such that supp(σk) = Δ̃k ∪ ek ,
k = 1, . . . ,m, where Δ̃k is a bounded interval of the real line, |σ ′

k| > 0 a.e. on Δ̃k , and ek is
a set without accumulation points in R \ Δ̃k . Let Λ ⊂ Zm+(∗) be an infinite sequence of distinct
multi-indices with the property that maxn∈Λ(maxk=1,...,m mnk − |n|) < ∞. For any continuous
function f on supp(σ k−1

k )

lim
n∈Λ

∫
Δk

f (x)q2
n,k(x) d|ρn,k|(x) = 1

π

∫
Δ̃k

f (x)
dx√

(bk − x)(x − ak)
, (28)

where Δ̃k = [ak, bk]. In particular,

lim εn,khn,k+1(z) = 1√ , K ⊂ C \ supp
(
σk−1

k

)
, (29)
n∈Λ (z − bk)(z − ak)
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where
√

(z − bk)(z − ak) > 0 if z > 0. Consequently, for k = 1, . . . ,m, each point of
supp(σ k−1

k ) \ Δ̃k , is a limit of zeros of {Qn,k}, n ∈ Λ.

Proof. We will proof this by induction on k. For k = 1, using Corollary 3 in [2], it follows that

lim
n∈Λ

∫
Δ1

f (x)q2
n,1(x)

d|s0
r0

|(x)

|Qn,2(x)| = 1

π

∫
Δ̃1

f (x)
dx√

(b1 − x)(x − a1)
,

where f is continuous on supp(σ1). Take f (x) = (z − x)−1 where z ∈ C \ supp(σ1). According
to (27) and the previous limit one obtains that

lim
n∈Λ

εn,1hn,2(z) = 1√
(z − b1)(z − a1)

=: h2(z),

pointwise on C \ supp(σ1). Since

∣∣∣∣
∫
Δ1

q2
n,1(x)

z − x

d|s0
r0

|(x)

|Qn,2(x)|
∣∣∣∣ � 1

d(K, supp(σ1))
, z ∈K ⊂ C \ supp(σ1),

where d(K, supp(σ1)) denotes the distance between the two compact sets, the sequence {hn,2},
n ∈ Λ, is uniformly bounded on compact subsets of C \ supp(σ1) and (29) follows for k = 1.

Let ζ ∈ supp(σ1) \ Δ̃1. Take r > 0 sufficiently small so that the circle Cr = {z: |z − ζ | = r}
surrounds no other point of supp(σ1) \ Δ̃1 and contains no zero of qn,1,n ∈ Λ. From (29) for
k = 1

lim
n∈Λ

1

2πi

∫
Cr

εn,1h
′
n,2(z)

εn,1hn,2(z)
dz = 1

2πi

∫
Cr

h′
2(z)

h2(z)
dz = 0.

From the definition, Ψn,1, n ∈ Λ, has either a simple pole at ζ or Qn,1 has a zero at ζ . In the
second case there is nothing to prove. Let us restrict our attention to those n ∈ Λ such that Ψn,1,
n ∈ Λ, has a simple pole at ζ . Then, hn,2 = K2

n,1Qn,1Ψn,1/Qn,2 also has a simple pole at ζ .
Using the argument principle, it follows that for all sufficiently large |n|,n ∈ Λ, Qn,1 must have a
simple zero inside Cr . The parameter r can be taken arbitrarily small; therefore, the last statement
of the lemma readily follows and the basis of induction is fulfilled.

Let us assume that the lemma is satisfied for k ∈ {1, . . . , κ − 1}, 1 � κ � m, and let us prove
that it is also true for κ. From (29) applied to κ − 1, we have that

lim
n∈Λ

∣∣hn,κ (x)
∣∣ = 1√|(x − bκ−1)(x − aκ−1)|

,

uniformly on Δκ ⊂ C \ supp(σ κ−2
κ−1 ). It follows that {|hn,κ |d|sκ−1

rκ−1
|}, n ∈ Λ, is a sequence of

Denisov type measures according to Definition 3 in [2] and ({|hn,κ |d|sκ−1
rκ−1

|}, {|Qn,κ−1Qn,κ+1|},
l), n ∈ Λ, is strongly admissible as in Definition 2 of [2] for each l ∈ Z (see paragraph just after
both definitions in the referred paper). Therefore, we can apply Corollary 3 in [2] of which (28)
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is a particular case. In the proof of Corollary 3 of [2] (see also Theorem 9 in [3]) it is required
that deg(Qn,k−1Qn,k+1)− 2 deg(Qn,k) � C where C � 0 is a constant. For k = 1 this is trivially
true (with C = 0). Since we apply an induction procedure on k, in order that this requirement be
fulfilled for all k ∈ {1, . . . ,m} we impose that maxn∈Λ(maxk=1,...,m mnk − |n|) < ∞. From (28),
(29) and the rest of the statements of the lemma immediately follow just as in the case when
k = 1. With this we conclude the proof. �
Remark 3.1. The last statement of Lemma 3.3 concerning the convergence of the zeros of Qn,1
outside Δ̃1 to the mass points of σ1 on supp(σ1) \ Δ̃1 can be proved without the assumption
that |σ ′

k| > 0 a.e. on Δ̃k , k = 1, . . . ,m. This is an easy consequence of Theorem 1 in [7]. From
the proof of Lemma 3.3 it also follows that if we only have |σ ′

k| > 0 a.e. on Δ̃k , k = 1, . . . ,m′,
m′ � m, then (28)–(29) are satisfied for k = 1, . . . ,m′ and the statement concerning the zeros
holds for k = 1, . . . ,m′ + 1.

Lemma 3.4. Let S = N (σ1, . . . , σm) be a Nikishin system such that supp(σk) = Δ̃k ∪ ek , k =
1, . . . ,m, where Δ̃k is a bounded interval of the real line, |σ ′

k| > 0 a.e. on Δ̃k , and ek is a set
without accumulation points in R \ Δ̃k . Let Λ ⊂ Zm+(∗) be an infinite sequence of distinct multi-
indices with the property that maxn∈Λ(maxk=1,...,m mnk − |n|) < ∞. Let us assume that there
exists l ∈ {1, . . . ,m} and a fixed permutation τ of {1, . . . ,m} such that for all n ∈ Λ we have that
n,nl ∈ Zm+(∗, τ ). Then, for each k = 1, . . . ,m, and each compact set K ⊂ C \ supp(σ k−1

k ) there
exist positive constants Ck,1(K),Ck,2(K) such that

Ck,1(K) � inf
z∈K

∣∣∣∣Qnl ,k(z)

Qn,k(z)

∣∣∣∣ � sup
z∈K

∣∣∣∣Qnl ,k(z)

Qn,k(z)

∣∣∣∣ � Ck,2(K),

for all sufficiently large |n|,n ∈ Λ.

Proof. The uniform bound from above and below on each fixed compact subset K ⊂ C \Δk (for
all n ∈ Λ) is a direct consequence of the interlacing property of the zeros of Qnl ,k and Qn,k . In
fact, comparing distances to z ∈K of consecutive interlacing zeros, it is easy to verify that

d1 � inf
z∈K

∣∣∣∣Qnl ,k(z)

Qn,k(z)

∣∣∣∣ � sup
z∈K

∣∣∣∣Qnl ,k(z)

Qn,k(z)

∣∣∣∣ �
d2

2

d1
,

where d2 denotes the diameter of K ∪ Δk and d1 denotes the distance between K and Δk . It is
not needed that |σ ′

k| > 0 or maxn∈Λ(maxk=1,...,m mnk − |n|) < ∞.

These restrictions come in so as to guarantee that the zeros of the polynomials Qnl ,k and Qn,k

lying in Δk \ supp(σ k−1
k ) converge to the mass points as Lemma 3.3 asserts in this case. Then,

we can allow K ⊂ C \ supp(σ k−1
k ). Let K be such. Notice that K can intersect at most a finite

number I0, . . . , IM (I0 = ∅) of the open intervals forming Δk \ supp(σ k−1
k ). The polynomials

Qnl ,k and Qn,k can have at most one zero in each of those intervals. Consequently, for all |n|,
n ∈ Λ, sufficiently large, the zeros of Qnl ,k and Qn,k lie at a positive distance ε from K. Now, it
is easy to show that

d̃1

(
ε

d

)M

� inf
z∈K

∣∣∣∣Qnl ,k(z)

Q (z)

∣∣∣∣ � sup

∣∣∣∣Qnl ,k(z)

Q (z)

∣∣∣∣ �
d̃ 2

2
˜

(
d2

ε

)M

,

2 n,k z∈K n,k d1
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where d̃2 denotes the diameter of K ∪ (Δk \ ⋃M
j=0 Ij ) and d̃1 the distance between K and Δk \⋃M

j=0 Ij . �
4. Proof of main results

In this final section, S = N (σ1, . . . , σm) is a Nikishin system with supp(σk) = Δ̃k ∪ ek ,
k = 1, . . . ,m, where Δ̃k is a bounded interval of the real line, |σ ′

k| > 0 a.e. on Δ̃k , and ek is a set
without accumulation points in R \ Δ̃k . Let Λ ⊂ Zm+(∗) be a sequence of distinct multi-indices.
Let us assume that there exists l ∈ {1, . . . ,m} and a fixed permutation τ of {1, . . . ,m} such that
for all n ∈ Λ we have that n,nl ∈ Zm+(∗, τ ). From Lemma 3.4 we know that the sequences

{Qnl ,k/Qn,k}n∈Λ, k = 1, . . . ,m,

are uniformly bounded on each compact subset of C \ supp(σ k−1
k ) for all sufficiently large |n|.

By Montel’s theorem, there exists a subsequence of multi-indices Λ′ ⊂ Λ and a collection of
functions F̃ l

k , holomorphic in C \ supp(σ k−1
k ), respectively, such that

lim
n∈Λ′

Qnl ,k(z)

Qn,k(z)
= F̃

(l)
k (z), K ⊂ C \ supp

(
σk−1

k

)
, k = 1, . . . ,m. (30)

In principle, the functions F̃
(l)
k may depend on Λ′. We shall see that this is not the case and,

therefore, the limit in (30) holds for n ∈ Λ. First, let us obtain some general information on the
functions F̃

(l)
k .

The points in supp(σ k−1
k ) \ Δ̃k are isolated singularities of F̃

(l)
k . Let ζ ∈ supp(σ k−1

k ) \ Δ̃k . By
Lemma 3.3 each such point is a limit of zeros of Qn,k and Qnl ,k as |n| → ∞,n ∈ Λ, and in a
sufficiently small neighborhood of them, for each n ∈ Λ, there can be at most one such zero of
these polynomials (so there is exactly one, for all sufficiently large |n|). Let limn∈Λ ζn = ζ where
Qn,k(ζn) = 0. From (30)

lim
n∈Λ′

(z − ζn)Qnl ,k(z)

Qn,k(z)
= (z − ζ )F̃

(l)
k (z), K ⊂ (

C \ supp
(
σk−1

k

)) ∪ {ζ },

and (z − ζ )F̃
(l)
k (z) is analytic in a neighborhood of ζ . Hence ζ is not an essential singularity

of F̃
(l)
k . Taking into consideration that Qnl ,k,n ∈ Λ also has a sequence of zeros converging

to ζ , from the argument principle it follows that ζ is a removable singularity of F̃
(l)
k which is

not a zero. By Lemma 3.4 we also know that the sequence of functions |Qnl ,k/Qn,k|,n ∈ Λ, is
uniformly bounded from below by a positive constant for all sufficiently large |n|. Therefore, in
C \ supp(σ k−1

k ) the function F̃
(l)
k is also different from zero. According to the definition of Qn,k

and Qnl ,k and Lemma 3.2, for k = 1, . . . , τ−1(l), we have that degQnl ,k = |nk−1
l | = |nk−1|+1 =

degQn,k + 1 whereas, for k = τ−1(l) + 1, . . . ,m, we obtain that degQnl ,k = |nk−1
l | = |nk−1| =

degQn,k . Consequently, for k = 1, . . . , τ−1(l), the function F̃
(l)
k has a simple pole at infinity and

(F̃
(l)
k )′(∞) = 1, whereas, for k = τ−1(l) + 1, . . . ,m, it is analytic at infinity and F̃

(l)
k (∞) = 1.

Now let us prove that the functions F̃
(l) satisfy a system of boundary value problems.
k
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Lemma 4.1. Let S = N (σ1, . . . , σm) be a Nikishin system with supp(σk) = Δ̃k ∪ ek ,
k = 1, . . . ,m, where Δ̃k is a bounded interval of the real line, |σ ′

k| > 0 a.e. on Δ̃k , and ek is a set
without accumulation points in R \ Δ̃k . Let Λ ⊂ Zm+(∗) be a sequence of distinct multi-indices
such that maxn∈Λ(maxk=1,...,m mnk − |n|) < ∞. Let us assume that there exists l ∈ {1, . . . ,m}
and a fixed permutation τ of {1, . . . ,m} such that for all n ∈ Λ we have that n,nl ∈ Zm+(∗, τ ).

Take Λ′ ⊂ Λ such that (30) holds. Then, there exists a normalization F
(l)
k , k = 1, . . . ,m, by

positive constants, of the functions F̃
(l)
k , k = 1, . . . ,m, given in (30), which verifies the system of

boundary value problems

1) F
(l)
k ,1/F

(l)
k ∈ H(C \ Δ̃k),

2)
(
F

(l)
k

)′
(∞) > 0, k = 1, . . . , τ−1(l),

2′) F
(l)
k (∞) > 0, k = τ−1(l) + 1, . . . ,m,

3)
∣∣F (l)

k (x)
∣∣2 1

|(F (l)
k−1F

(l)
k+1)(x)|

= 1, x ∈ Δ̃k, (31)

where F
(l)
0 ≡ F

(l)
m+1 ≡ 1.

Proof. The assertions 1), 2), and 2′) were proved above for the functions F̃
(l)
k . Consequently,

they are satisfied for any normalization of these functions by means of positive constants.
From (26) applied to n and nl , for each k = 1, . . . ,m, we have∫

Δk

xνQn,k(x) d|ρn,k|(x) = 0, ν = 0, . . . ,
∣∣nk−1

∣∣ − 1,

and ∫
Δk

xνQnl ,k(x)gn,k(x) d|ρn,k|(x) = 0, ν = 0, . . . ,
∣∣nk−1

l

∣∣ − 1,

where

gn,k(x) = |Qn,k−1(x)Qn,k+1(x)|
|Qnl ,k−1(x)Qnl ,k+1(x)|

|hnl ,k(x)|
|hn,k(x)| , dρn,k(x) = hn,k(x) dsk−1

rk−1
(x)

Qn,k−1(x)Qn,k+1(x)
.

From (29) and (30)

lim
n∈Λ′ gn,k(x) = ∣∣(F̃ (l)

k−1F̃
(l)
k+1

)
(x)

∣∣−1 (32)

uniformly on Δk .
Fix k ∈ {τ−1(l) + 1, . . . ,m}. As mentioned above, for this selection of k we have that

degQnl ,k = degQn,k = |nk−1|. Using Theorems 1 and 2 of [2], and (30), it follows that

lim′
Qnl ,k(z) = Sk(z) = S̃k(z) = F̃

(l)
k (z), K ⊂ C \ supp

(
σk−1

k

)
, (33)
n∈Λ Qn,k(z) Sk(∞)
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where Sk denotes the Szegő function on C \ Δ̃k with respect to the weight |F̃ (l)
k−1(x)F̃

(l)
k+1(x)|−1,

x ∈ Δ̃k . The function Sk is uniquely determined by

1) Sk,1/Sk ∈ H(C \ Δ̃k),

2) Sk(∞) > 0,

3)
∣∣Sk(x)

∣∣2 1

|(F̃ (l)
k−1F̃

(l)
k+1)(x)|

= 1, x ∈ Δ̃k. (34)

Now, fix k ∈ {1, . . . , τ−1(l)}. In this situation degQnl ,k = degQn,k + 1 = |nk−1| + 1.

Let Q∗
n,k(x) be the monic polynomial of degree |nk−1| orthogonal with respect to the varying

measure gn,k d|ρn,k|. Using the same arguments as above, we have

lim
n∈Λ′

Q∗
n,k(z)

Qn,k(z)
= Sk(z)

Sk(∞)
= S̃k(z), K ⊂ C \ supp

(
σk−1

k

)
. (35)

On the other hand, since degQnl ,k = degQ∗
n,k + 1 and both of these polynomials are orthogonal

with respect to the same varying weight, by Theorem 1 of [2] and (30), it follows that

lim
n∈Λ′

Qnl ,k(z)

Q∗
n,k(z)

= ϕk(z)

ϕ′
k(∞)

= ϕ̃k(z), K ⊂ C \ supp
(
σk−1

k

)
, (36)

where ϕk denotes the conformal representation of C \ Δ̃k onto {w: |w| > 1} such that
ϕk(∞) = ∞ and ϕ′

k(∞) > 0. The function ϕk is uniquely determined by

1) ϕk,1/ϕk ∈ H(C \ Δ̃k),

2) ϕ′
k(∞) > 0,

3)
∣∣ϕk(x)

∣∣ = 1, x ∈ Δ̃k. (37)

From (35) and (36), we obtain

lim
n∈Λ′

Qnl ,k(z)

Qn,k(z)
= (S̃kϕ̃k)(z) = F̃

(l)
k (z), K ⊂ C \ supp

(
σk−1

k

)
. (38)

Thus,

F̃
(l)
k =

{
S̃kϕ̃k, k = 1, . . . , τ−1(l),

S̃k, k = τ−1(l) + 1, . . . ,m,
(39)

and from (34) and (39) it follows that

∣∣F̃ (l)
k (x)

∣∣2 1

|(F̃ (l)
F̃

(l)
)(x)|

= 1

ωk

, x ∈ Δ̃k, k = 1, . . . ,m, (40)

k−1 k+1
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where

ωk =
{

(Skϕ
′
k)

2(∞), k = 1, . . . , τ−1(l),

S2
k (∞), k = τ−1(l) + 1, . . . ,m.

(41)

Now, let us show that there exist positive constants ck , k = 1, . . . ,m, such that the functions
F

(l)
k = ckF̃

(l)
k satisfy (31). In fact, according to (40) for any such constants ck we have that

∣∣F (l)
k (x)

∣∣2 1

|(F (l)
k−1F

(l)
k+1)(x)|

= c2
k

ck−1ck+1ωk

, x ∈ Δ̃k, k = 1, . . . ,m,

where c0 = cm+1 = 1. The problem reduces to finding appropriate constants ck such that

c2
k

ck−1ck+1ωk

= 1, k = 1, . . . ,m. (42)

Taking logarithm, we obtain the linear system of equations

2 log ck − log ck−1 − log ck+1 = logωk, k = 1, . . . ,m (43)

(c0 = cm+1 = 1) on the unknowns log ck. This system has a unique solution with which we
conclude the proof. �

Consider the (m + 1)-sheeted compact Riemann surface R introduced in Section 1. Given
l ∈ {1, . . . ,m}, let ψ(l) be a singled valued function defined on R onto the extended complex
plane satisfying

ψ(l)(z) = C1

z
+O

(
1

z2

)
, z → ∞(0),

ψ(l)(z) = C2z +O(1), z → ∞(l),

where C1 and C2 are nonzero constants. Since the genus of R is zero, ψ(l) exists and is uniquely
determined up to a multiplicative constant. Consider the branches of ψ(l), corresponding to the
different sheets k = 0,1, . . . ,m of R

ψ(l) := {
ψ

(l)
k

}m

k=0.

We normalize ψ(l) so that

m∏
k=0

∣∣ψ(l)
k (∞)

∣∣ = 1, C1 ∈ R \ {0}. (44)

Certainly, there are two ψ(l) verifying this normalization.
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Given an arbitrary function F(z) which has in a neighborhood of infinity a Laurent expansion
of the form F(z) = Czk +O(zk−1),C �= 0, and k ∈ Z, we denote

F̃ := F/C.

C is called the leading coefficient of F . When C ∈ R, sg(F (∞)) will represent the sign of C.
Since the product of all the branches

∏m
k=0 ψ

(l)
k is a single valued analytic function in C

without singularities, by Liouville’s theorem it is constant and because of the normalization in-
troduced above this constant is either 1 or −1. In particular, the function appearing in (4) equals

G
(τ−1(l))
0 (z) = 1/ψ̃

(τ−1(l))
0 (z) =

m∏
k=1

ψ̃
(τ−1(l))
k (z). (45)

If ψ(l) is such that C1 ∈ R \ {0}, then

ψ(l)(z) = ψ(l)(z), z ∈R.

In fact, let φ(z) := ψ(l)(z). φ and ψ(l) have the same divisor; consequently, there exists a con-
stant C such that φ = Cψ(l). Comparing the leading coefficients of the Laurent expansion of
these functions at ∞(0), we conclude that C = 1 since C1 ∈ R \ {0}.

In terms of the branches of ψ(l), the symmetry formula above means that for each
k = 0,1, . . . ,m:

ψ
(l)
k : R \ (Δ̃k ∪ Δ̃k+1) → R

(Δ̃0 = Δ̃m+1 = ∅); therefore, the coefficients (in particular, the leading one) of the Laurent ex-
pansion at ∞ of these branches are real numbers, sg(ψ

(l)
k (∞)) is defined, and

ψ
(l)
k (x±) = ψ

(l)
k (x∓) = ψ

(l)
k+1(x±), x ∈ Δ̃k+1. (46)

We are ready to state and prove our main result.

Theorem 4.1. Let S = N (σ1, . . . , σm) be a Nikishin system with supp(σk) = Δ̃k ∪ ek ,
k = 1, . . . ,m, where Δ̃k is a bounded interval of the real line, |σ ′

k| > 0 a.e. on Δ̃k , and ek is a set
without accumulation points in R \ Δ̃k . Let Λ ⊂ Zm+(∗) be a sequence of distinct multi-indices
such that maxn∈Λ(maxk=1,...,m mnk − |n|) < ∞. Let us assume that there exists l ∈ {1, . . . ,m}
and a fixed permutation τ of {1, . . . ,m} such that for all n ∈ Λ we have that n,nl ∈ Zm+(∗, τ ).
Let {Qn,k}mk=1, n ∈ Λ, be the corresponding sequences of polynomials defined in Section 3. Then,
for each fixed k ∈ {1, . . . ,m}, we have

lim
n∈Λ

Qnl ,k(z)

Qn,k(z)
= F̃

(l)
k (z), z ∈K ⊂ C \ supp

(
σk−1

k

)
, (47)

where

F
(l)
k := sg

(
m∏

ψ(τ−1(l))
ν (∞)

)
m∏

ψ(τ−1(l))
ν . (48)
ν=k ν=k
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Proof. Since the families of functions

{Qnl ,k/Qn,k}n∈Λ, k = 1, . . . ,m,

are uniformly bounded on each compact subset K ⊂ C \ supp(σ k−1
k ) for all sufficiently large |n|,

n ∈ Λ, uniform convergence on compact subsets of the indicated region follows from proving that
any convergent subsequence has the same limit. According to Lemma 4.1 the limit functions,
appropriately normalized, of a convergent subsequence satisfy the same system of boundary
value problems (31). According to Lemma 4.2 in [1] this system has a unique solution.

It remains to show that the functions defined in (48) satisfy (31). When multiplying two con-
secutive branches, the singularities on the common slit cancel out; therefore, 1) takes place since

only the singularities of ψ
(τ−1(l))
k on Δ̃k remain. From the definition of ψ(τ−1(l)) it also follows

that for k = 1, . . . , τ−1(l), F
(l)
k has at infinity a simple pole, whereas it is regular and different

from zero when k = τ−1(l) + 1, . . . ,m. The factor sign in front of (48) guarantees the positivity
claimed in 2) and 2′).

In order to verify 3), notice that F
(l)
k /F

(l)
k−1 = sg(ψ

(τ−1(l))
k−1 (∞))/ψ

(τ−1(l))
k−1 . Therefore, if

k = 2, . . . ,m,

|F (l)
k (x)|2

|F (l)
k−1(x)F

(l)
k+1(x)|

= |ψ(τ−1(l))
k (x)|

|ψ(τ−1(l))
k−1 (x)|

= 1, x ∈ Δ̃k,

on account of (46). For k = 1, from the definition and (46)

|F (l)
1 (x)|2

|F (l)
2 (x)|

= ∣∣ψ(τ−1(l))
1 (x)

∣∣2

∣∣∣∣∣
m∏

ν=2

ψ(τ−1(l))
ν (x)

∣∣∣∣∣ =
∣∣∣∣∣

m∏
ν=0

ψ(τ−1(l))
ν (x)

∣∣∣∣∣ = 1, x ∈ Δ̃1,

since
∏m

ν=0 ψ
(τ−1(l))
ν is constantly equal to 1 or −1 on all C. �

Theorem 1.1 is a particular case of Theorem 4.1 on account of (45).

Proof of Corollary 1.1. Let

Λτ = Λ ∩ Zm+(∗, τ ),

where τ is a given permutation of {1, . . . ,m}. We are only interested in those Λτ with infi-
nitely many terms. There are at most m! such subsequences. For n ∈ Λτ fixed, denote nτ(j),
j ∈ {1, . . . ,m}, the multi-index obtained adding one to all j components τ(1), . . . , τ (j) of n.
(Notice that this notation differs from that introduced previously for nl .) In particular, nτ(m) =
n + 1. It is easy to verify that for all j ∈ {1, . . . ,m}, nτ(j) ∈ Λτ . For all n ∈ Λτ and each
k ∈ {1, . . . ,m}, we have

Qn+1,k

Qn,k

=
m−1∏ Qnτ (j+1),k

Qnτ (j),k

,

j=0
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where Qnτ (0),k = Qn,k . From (47) it follows that

lim
n∈Λτ

Qn+1,k(z)

Qn,k(z)
=

m∏
l=1

F̃
(l)
k (z), K ⊂ C \ supp

(
σk−1

k

)
.

The right side does not depend on l, since all possible values intervene. Therefore, the limit is
the same for all τ and thus

lim
n∈Λ

Qn+1,k(z)

Qn,k(z)
=

m∏
l=1

F̃
(l)
k (z), K ⊂ C \ supp

(
σk−1

k

)
. (49)

Formula (5) is (49) for k = 1 on account of (45) and (48). �
The following corollary complements Theorem 4.1. The proof is similar to that of Corol-

lary 4.1 in [1].

Corollary 4.1. Let S = N (σ1, . . . , σm) be a Nikishin system with supp(σk) = Δ̃k ∪ ek ,
k = 1, . . . ,m, where Δ̃k is a bounded interval of the real line, |σ ′

k| > 0 a.e. on Δ̃k , and ek is a set
without accumulation points in R \ Δ̃k . Let Λ ⊂ Zm+(∗) be a sequence of distinct multi-indices
such that maxn∈Λ(maxk=1,...,m mnk − |n|) < ∞. Let us assume that there exists l ∈ {1, . . . ,m}
and a fixed permutation τ of {1, . . . ,m} such that for all n ∈ Λ we have that n,nl ∈ Zm+(∗, τ ).
Let {qn,k = κn,kQn,k}mk=1,n ∈ Λ, be the system of orthonormal polynomials as defined in (24)

and {Kn,k}mk=1, n ∈ Λ, the values given by (23). Then, for each fixed k = 1, . . . ,m, we have

lim
n∈Λ

κnl ,k

κn,k

= κ
(l)
k , (50)

lim
n∈Λ

Knl ,k

Kn,k

= κ
(l)
1 · · ·κ(l)

k , (51)

and

lim
n∈Λ

qnl ,k(z)

qn,k(z)
= κ

(l)
k F̃

(l)
k (z), z ∈K ⊂ C \ supp

(
σk−1

k

)
, (52)

where

κ
(l)
k = c

(l)
k√

c
(l)
k−1c

(l)
k+1

, c
(l)
k =

{
(F

(l)
k )′(∞), k = 1, . . . , τ−1(l),

F
(l)
k (∞), k = τ−1(l) + 1, . . . ,m,

(53)

and the F
(l)
k are defined by (48).

Proof. By Theorem 4.1, we have limit in (32) along the whole sequence Λ. Reasoning as in the
deduction of formulas (33) and (38), but now in connection with orthonormal polynomials (see
Theorems 1 and 2 of [2]), it follows that

lim
qnl ,k(z) =

{
(Skϕk)(z), k = 1, . . . , τ−1(l),

−1 K ⊂ C \ supp
(
σk−1

k

)
,

n∈Λ qn,k(z) Sk(z), k = τ (l) + 1, . . . ,m,



A. López García, G. López Lagomasino / Advances in Mathematics 218 (2008) 1081–1106 1105
where Sk is defined in (34). This formula, divided by (33) or (38) according to the value of k

gives

lim
n∈Λ

κnl ,k

κn,k

= √
ωk = ck√

ck−1ck+1
,

where ωk is defined in (41), and the ck are the normalizing constants found in Lemma 3.1 solving
the linear system of equations (43) which ensure that

F
(l)
k ≡ ckF̃

(l)
k , k = 1, . . . ,m,

with F
(l)
k satisfying (31) and thus given by (48). Since (F̃

(l)
k )′(∞) = 1, k = 1, . . . , τ−1(l), and

(F̃
(l)
k )(∞) = 1, k = τ−1(l) + 1, . . . ,m, formula (50) immediately follows with κ

(l)
k as in (53).

From the definition of κn,k , we have that

Kn,k = κn,1 · · ·κn,k.

Taking the ratio of these constants for the multi-indices n and nl and using (50), we get (51).
Formula (52) is an immediate consequence of (50) and (47). �
Remark 4.1. We have imposed two types of restrictions on the class of multi-indices under
consideration. The first one refers to being in Zm+(∗). This is connected with a long standing
question in the theory of multiple orthogonal polynomials; namely, if for any m all multi-indices
of a Nikishin system are strongly normal or not. We have proved our results in the largest class of
multi-indices known to be strongly normal. Should this conjecture be solved in the positive sense,
our methods would allow to eliminate this condition as we have done for the cases m = 1,2,3.

The second restriction maxn∈Λ(maxk=1,...,m mnk − |n|) < ∞ is connected with the use of
Lemma 3.3. This condition means that all components of the multi-indices are of the same order
and that orthogonality is, basically, equally distributed between all measures. The proof of (28)
requires the density of certain classes of rational functions with fixed poles (in our case at the ze-
ros of the polynomials Qn,k−1Qn,k+1 and numerator of degree twice the order of orthogonality)
in the space of continuous functions on a given interval. In general, this is not true if the rational
functions are such that the degree of the denominator is much larger in order than that of the
numerator (as |n| → ∞). This is what may occur if we eliminate the restriction above. It can be
relaxed to nk = |n|/m+O(log |n|), k = 1, . . . ,m, without changing the structure of the Riemann
surface which describes the solution of the problem, but not much more. In limiting situations
(for example, if one of the components of the multi-indices is not allowed to grow at all) some
of the sheets may even disappear. The description of the solution in the most general situation is
very difficult and technically complicated. On the other hand, in applications, the diagonal case
(nk = |n|/m, k = 1, . . . ,m) and nearby indices are the most important.
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