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Abstract

For a system of two measures supported on a starlike set in the complex plane, we study the asymptotic
properties of the associated multiple orthogonal polynomials Qn and their recurrence coefficients. These
measures are assumed to form a Nikishin-type system, and the polynomials Qn satisfy a three-term
recurrence relation of order three with positive coefficients. Under certain assumptions on the orthogonality
measures, we prove that the sequence of ratios {Qn+1/Qn} has four different periodic limits, and we
describe these limits in terms of a conformal representation of a compact Riemann surface. Several relations
are found involving these limiting functions and the limiting values of the recurrence coefficients. We also
study the nth root asymptotic behavior and zero asymptotic distribution of Qn .
c⃝ 2011 Elsevier Inc. All rights reserved.
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1. Introduction and statement of main results

This work was motivated by recent investigations of Aptekarev et al. [2] on asymptotic
properties of monic polynomials Qn generated by the higher-order three-term recurrence relation

zQn = Qn+1 + an Qn−p, n ≥ p, p ∈ N, an > 0, (1)
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with initial conditions

Q j (z) = z j , j = 0, . . . , p. (2)

In [2], strong asymptotics of Qn was studied by assuming that the recurrence coefficients satisfy

∞−
n=p

|an − a| < ∞, a > 0. (3)

An important element in the asymptotic analysis of the polynomials Qn is the starlike set

S0 :=

p
k=0

exp(2π ik/(p + 1))[0, α], α := [(p + 1)/p p/(p+1)
]a1/(p+1).

In fact, [2, Theorem 7.2] asserts that

lim
n→∞

Qn(z)

wn
0 (z)

= F0(z), uniformly on compact subsets of C \S0,

where w0(z) is the unique branch of the algebraic equation w p+1
− zw p

+ a = 0 that is
meromorphic at infinity and has an analytic continuation in C \S0.

We remark that notable families of polynomials satisfy (1) in the constant coefficients
case, for example the classical monic Chebyshev polynomials of the second kind Un(x) =

sin((n + 1) cos−1(x/2))/ sin(cos−1(x/2)) for the segment [−2, 2] (p = 1, an = 1 for all n).
It was shown by He and Saff [9] that the Faber polynomials associated with the closed domain
bounded by the (p + 1)-cusped hypocycloid with parametric equation

z = exp(iθ)+
1
p

exp(−piθ), 0 ≤ θ < 2π, p ≥ 2,

are also generated by the recurrence relation (1) with constant coefficients an = a = 1/p, and
their zeros are contained in S0. Many other properties of the zeros of these Faber polynomials
were obtained in [9,6].

Using operator theoretic techniques, in [3] it was proved that the polynomials Qn generated
by (1)–(2) are in fact multiple orthogonal polynomials with respect to a system of p measures
supported on

p
k=0

exp(2π ik/(p + 1))[0,∞).

Moreover, if (3) holds then the orthogonality measures have a specific hierarchy structure; they
form a Nikishin-type system (see Section 8 and Theorem 9.1 in [2]). This system is the system
of spectral measures of the banded Hessenberg operator (with only two nonzero diagonals)
associated with (1).

In this paper we study, among other topics, ratio and nth root asymptotics of multiple
orthogonal polynomials associated with a Nikishin-type system of two measures supported on a
starlike set, starting from assumptions on these orthogonality measures. For simplicity we assume
that these measures are given by weights. Under similar assumptions, analogous results can be
obtained for general measures. We introduce next the Nikishin-type system.
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Let

S0 :=

2
k=0

exp(2π ik/3)[0, α], 0 < α < ∞.

We emphasize that α is arbitrary here. Assume that s1 is a complex-valued function defined on
S0, such that

s1 ≥ 0 on (0, α), s1 ∈ L1(0, α),

s1


e

2π i
3 z


= e
4π i
3 s1(z), z ∈ S0 \


0, α, e

2π i
3 α, e

4π i
3 α

.

Set

f (z) := z2
∫

−a

−b

s2(t)

z3 − t3 dt, 0 < a < b < ∞,

where s2 is a non-negative integrable function defined on [−b,−a]. Note that f is analytic in
C \ S1, where

S1 :=

2
k=0

exp(2π ik/3)[−b,−a].

We may assume that s2 ≡ 0 on (−∞, 0] \ [−b,−a], and we extend s2 to the set
2

k=0
exp(2π ik/3)(−∞, 0] through the symmetry property

s2


e

2π i
3 z


= e
4π i
3 s2(z), z ∈ ∪

2
k=0 exp(2π ik/3)(−∞, 0].

Then

f (z) =
1
3

∫
S1

s2(t)

t − z
dt =

z2

3

∫
−a3

−b3

s2(
3
√
τ)

(z3 − τ)τ 2/3 dτ, z ∈ C \ S1. (4)

The Nikishin-type system is then the system of measures {s1(t)dt, f (t)s1(t)dt} defined on S0.
Let {Qn}

∞

n=0 be the sequence of monic polynomials of lowest degree that satisfy the following
conditions:

∫
S0

Q2n(t)t
ks1(t)dt = 0, k = 0, . . . , n − 1,∫

S0

Q2n(t)t
k f (t)s1(t)dt = 0, k = 0, . . . , n − 1,∫

S0

Q2n+1(t)t
ks1(t)dt = 0, k = 0, . . . , n,∫

S0

Q2n+1(t)t
k f (t)s1(t)dt = 0, k = 0, . . . , n − 1.

(5)

These are the polynomials whose algebraic and asymptotic properties we investigate.

Proposition 1.1. The degree of each polynomial Qn is maximal, i.e., deg Qn = n. Moreover, if
n = 3 j , then Qn has exactly j simple zeros on the interval (0, α). If n = 3 j + 1, then Qn has
a simple zero at the origin and j simple zeros on (0, α). Finally, if n = 3 j + 2, then Qn has a
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double zero at the origin and j simple zeros on (0, α). The remaining zeros of Qn are located
on the rays exp(2π i/3)(0, α), exp(4π i/3)(0, α), and are rotations of the zeros on (0, α).

Proposition 1.2. The monic polynomials Qn satisfy the following three-term recurrence relation

zQn = Qn+1 + an Qn−2, n ≥ 2, an ∈ R, (6)

where

Q j (z) = z j , j = 0, 1, 2. (7)

The coefficients an are given by the formulas

a2n =

 α
0 tn Q2n(t)s1(t)dt α

0 tn−1 Q2n−2(t)s1(t)dt
, a2n+1 =

 α
0 tn Q2n+1(t) f (t)s1(t)dt α

0 tn−1 Q2n−1(t) f (t)s1(t)dt
. (8)

Moreover, an > 0 for all n ≥ 2.

Propositions 1.1 and 1.2 are proved in Section 2. Let

Ψn(z) :=

∫
S0

Qn(t)

t − z
s1(t)dt.

The functions Ψn (usually called functions of second type) satisfy:
Ψn ∈ H(C \ S0),

Ψ2n(z) = O(1/zn+1), z → ∞,

Ψ2n+1(z) = O(1/zn+2), z → ∞.

(9)

It is important for our analysis to determine the exact number of zeros of Ψn outside S0, and their
location. The following result, proved in Section 3, gives the answers to these questions.

Proposition 1.3. For each j ∈ {0, 1, 2, 3, 5}, the function Ψ6l+ j has exactly 3l simple zeros in
C\ S0, of which l zeros are located in (−b,−a), and the remaining 2l zeros are rotations of these
l zeros by angles of 2π/3 and 4π/3;Ψ6l+ j has no other zeros in C \ S0. The function Ψ6l+4 has
exactly 3l + 3 simple zeros in C \ S0, of which l + 1 zeros are located in (−b,−a), and the
remaining 2l + 2 zeros are rotations of these l + 1 zeros by angles of 2π/3 and 4π/3;Ψ6l+4 has
no other zeros in C \ S0.

Let us define Qn,2 as the monic polynomial whose zeros coincide with the zeros of Ψn in
C \ S0.

The following result asserts that for consecutive values of n, the zeros of Qn interlace, and
the same is true for the zeros of Qn,2.

Theorem 1.4. For every n ≥ 0, the polynomials Qn and Qn+1 do not have any common zeros
in (0, α). Moreover, there is exactly one zero of Qn+1 between two consecutive zeros of Qn in
(0, α). Conversely, there is exactly one zero of Qn between two consecutive zeros of Qn+1 in
(0, α).

Additionally, for every n ≥ 0, the functions Ψn and Ψn+1 do not have any common zeros in
(−b,−a). There is exactly one zero of Ψn+1 between two consecutive zeros of Ψn in (−b,−a),
and vice versa.
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Theorem 1.4 is proved in Section 4. We can determine exactly how the zeros of Qn interlace,
thanks to the fact that the recurrence coefficients an are all positive (see Proposition 4.2 in
Section 4).

We next describe the ratio asymptotics of the polynomials Qn and Qn,2, and the limiting
behavior of the recurrence coefficients an . By Propositions 1.1 and 1.3, for some polynomials Pn
and Pn,2 we may write:

Q3k(τ ) = P3k(τ
3), Q3k+1(τ ) = τ P3k+1(τ

3), Q3k+2(τ ) = τ 2 P3k+2(τ
3), (10)

Qn,2(τ ) = Pn,2(τ
3). (11)

Theorem 1.5. Assume that s1 > 0 a.e. on [0, α] and s2 > 0 a.e. on [−b,−a]. Then, for each
i ∈ {0, . . . , 5}, the following limits hold:

lim
k→∞

P6k+i+1(z)

P6k+i (z)
= F (i)1 (z), z ∈ C \ [0, α3

], (12)

lim
k→∞

P6k+i+1,2(z)

P6k+i,2(z)
= F (i)2 (z), z ∈ C \ [−a3,−b3

], (13)

where convergence is uniform on compact subsets of the indicated regions. Moreover (cf. (6)),

lim
k→∞

a6k+i =


−C (i)

1 , for i ∈ {0, 1, 3, 4},

−C (i)
0 , for i ∈ {2, 5},

(14)

where

F (i)1 (z) =


1 + C (i)

1 /z + O(1/z2), for i ∈ {0, 1, 3, 4},

z + C (i)
0 + O(1/z), for i ∈ {2, 5},

(15)

is the Laurent expansion at ∞ of F (i)1 . Consequently, the limits

lim
k→∞

Q6k+i+1(z)

Q6k+i (z)
= zF (i)1 (z3), z ∈ C \ S0, i ∈ {0, 1, 3, 4},

lim
k→∞

Q6k+i+1(z)

Q6k+i (z)
=

F (i)1 (z3)

z2 , z ∈ C \ S0, i ∈ {2, 5},

lim
k→∞

Q6k+i+1,2(z)

Q6k+i,2(z)
= F (i)2 (z3), z ∈ C \ S1, i ∈ {0, . . . , 5},

hold uniformly on compact subsets of the indicated regions.

We also describe in Proposition 5.8 (Section 5) the ratio asymptotic behavior of the functions
of second type Ψn , as well as the ratio asymptotic behavior of the polynomials pn, pn,2 defined
in (67) (these polynomials are “orthonormal versions” of the polynomials Pn, Pn,2 defined in
(10)–(11), see Proposition 5.3) and their leading coefficients.

Several relations can be established among the limiting functions F (i)1 , F (i)2 , and the limiting
values of the recurrence coefficients (see also the boundary value properties described in
Proposition 5.5).

Let us define

a(i) := lim
k→∞

a6k+i , 0 ≤ i ≤ 5.
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Proposition 1.6. The following relations among the functions F (i)j are valid:

F (2)1 (z) = zF (0)1 (z), F (5)1 (z) = zF (3)1 (z), (16)F (0)1
F (1)1 = F (3)1

F (4)1 , F (1)1
F (2)1 = F (4)1

F (5)1 , F (2)1
F (3)1 = F (5)1

F (0)1 , (17)

1 − F (3)1

1 − F (0)1

=
a(3)

a(0)
,

1 − F (4)1

1 − F (1)1

=
a(4)

a(1)
,

z − F (5)1 (z)

z − F (2)1 (z)
=

a(5)

a(2)
, (18)

F (0)2 = F (2)2 , F (3)2 = F (5)2 , (19)F (0)2
F (1)2 = F (3)2

F (4)2 , F (1)2
F (2)2 = F (4)2

F (5)2 , F (2)2
F (3)2 = F (5)2

F (0)2 . (20)

Furthermore, the functions F (i)1 , i ∈ {0, . . . , 5}, are all distinct, and the functions F (i)2 , i ∈

{0, 1, 3, 4}, are also distinct.
For every i ∈ {0, . . . , 5}, a(i) > 0, and the following relations hold:

a(0) = a(2), a(3) = a(5), a(0) + a(1) = a(3) + a(4). (21)

The following inequalities also hold:

a(0) ≠ a(3), a(0) ≠ a(4), a(1) ≠ a(3), a(1) ≠ a(4).

In fact, we will show that a(4) > a(1), and therefore (21) implies that a(0) > a(3) (see
Remark 6.2). Theorem 1.5 and Proposition 1.6 are proved in Section 5.

We next describe the limiting functions F (i)j in terms of a conformal representation of a

compact Riemann surface. Let ∆1 := [0, α3
], and ∆2 := [−b3,−a3

]. Consider the three-sheeted
Riemann surface

R = R0 ∪ R1 ∪ R2,

formed by the consecutively “glued” sheets

R0 := C \ ∆1, R1 := C \ (∆1 ∪ ∆2), R2 := C \ ∆2. (22)

Since R has genus zero, there exists a unique conformal representationψ of R onto C satisfying:
ψ(z) = −2z/a3

+ O(1), z → ∞
(1)

∈ R1,

ψ(z) = B/z + O(1/z2), z → ∞
(2)

∈ R2, B ≠ 0.
(23)

Here −a3 is the right endpoint of ∆2. Let {ψk}
2
k=0 denote the branches of ψ .

Finally, given an arbitrary function H(z) that has in a neighborhood of infinity a Laurent
expansion of the form H(z) = Czk

+ O(zk−1),C ≠ 0, k ∈ Z, we denote by H the function
H/C .

Theorem 1.7. The following representations are valid:

F (0)1 =
a(0) − a(3)

a(0)ψ0 − a(3)
, F (1)1 =

(a(4) − a(1))ψ0

a(4)ψ0 − a(1)
, F (2)1 (z) =

z(a(0) − a(3))

a(0)ψ0(z)− a(3)
,

F (3)1 =
(a(0) − a(3))ψ0

a(0)ψ0 − a(3)
, F (4)1 =

a(4) − a(1)

a(4)ψ0 − a(1)
, F (5)1 (z) =

z(a(0) − a(3))ψ0(z)

a(0)ψ0(z)− a(3)
,
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F (0)2 (z) = F (2)2 (z) =
a(0)(a(0) − a(3))zψ0(z)ψ2(z)

(a(0) − a(3)ω(3)1
ψ0(z)ψ2(z)/ω

(0)
1 )(a(0)ψ0(z)− a(3))

,

F (3)2 (z) = F (5)2 (z) =
a(0)(a(0) − a(3))zψ0(z)

(a(0) − a(3)ω(3)1
ψ0(z)ψ2(z)/ω

(0)
1 )(a(0)ψ0(z)− a(3))

,

F (1)2 =
a(4) − a(1)ψ2(a(4)ψ0 − a(1))(ψ1 − (ω

(1)
1 − 1)/ω(4)1 )

,

F (4)2 =
a(4) − a(1)

(a(4)ψ0 − a(1))(ψ1 − (ω
(1)
1 − 1)/ω(4)1 )

.

The constants ω(l)1 are the reciprocals of the right-hand sides in the boundary value Eqs. (92)–
(94). They can be written in terms of the limiting values a(i) as follows:

ω
(0)
1 = ω

(2)
1 =

a(4) − a(1)

a(0)a(4)
, ω

(3)
1 = ω

(5)
1 =

a(0)

a(0) − a(3)
, ω

(1)
1 =

a(4)

a(4) − a(1)
,

ω
(4)
1 =

a(0) − a(3)

(a(0))2
.

Using Theorem 3.1 from [11], we can easily describe the cubic algebraic equation solved by
ψ . The coefficients of this equation can be computed exclusively in terms of the endpoints of the
intervals ∆1 and ∆2.

Proposition 1.8. Let

λ :=
2b3

a3 − 1, µ :=
2α3

a3 + 1, (24)

and let β and γ be the unique solutions of the algebraic system
2(β + γ )(3 − βγ − β − γ )(3 − βγ + β + γ )+ (λ− µ)(β − γ )3 = 0,
(λ+ µ)2(β − γ )6 = 4(3 + βγ )3(1 − βγ )(2 + β + γ )(2 − β − γ ),

satisfying the conditions −1 < γ < β < 1. Then w = ψ(z) is the solution of the cubic equation

w3
+

[
2z

a3 + 1 +
3 + h + Θ2 − Θ1

H(β)

]
w2

+

[
4z

a3 H(β)
+

2
H(β)

+
2 + 2h + Θ2 − 3Θ1

H(β)2

]
w −

2Θ1

H(β)3
= 0, (25)

where

H(z) = h + z +
Θ1z

1 − z
+

Θ2z

1 + z
, h =

1
4
(β + γ )


2βγ −

(β − γ )2

1 − βγ


,

Θ1 =
1
4
(1 − c)(1 − d)(1 − β)(1 − γ ), Θ2 =

1
4
(1 + c)(1 + d)(1 + β)(1 + γ ),

c and d are the solutions of the equation

x2
+ (β + γ )x +

(β − γ )2

1 − βγ
− 3 = 0,

satisfying c < −1, d > 1.
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Remark 1.9. Using (25) and Theorem 1.7, it is easy to deduce that

a(0) − a(3) = −
a3Θ2

4H(β)
= a(4) − a(1).

Theorem 1.7 and Proposition 1.8 are proved in Section 6. We now describe the results on nth
root asymptotics and zero asymptotic distribution for the polynomials Qn and Qn,2. First, we
introduce certain definitions and notations.

Given a compact set E ⊂ C, let M1(E) denote the space of all probability Borel measures
supported on E . If P is a polynomial of degree n, we indicate by µP the associated normalized
zero counting measure, i.e.,

µP :=
1
n

−
P(x)=0

δx ,

where δx is the Dirac measure with unit mass at x (in the sum the zeros are repeated according
to their multiplicity). If µ ∈ M1(E), let

Vµ(z) :=

∫
log

1
|z − t |

dµ(t),

and for a sequence {µn} ⊂ M1(E), µn
∗

−→ µ refers to the convergence of µn in the weak-star
topology to µ.

Let E1, E2 be compact subsets of C, and let M = [c j,k] be a real, positive definite, symmetric
matrix of order two. Given a vector measure µ = (µ1, µ2) ∈ M1(E1)× M1(E2), we define the
combined potential

W µ
j :=

2−
k=1

c j,k Vµk , j = 1, 2,

and the constants

ω
µ
j := inf{W µ

j (x) : x ∈ E j }, j = 1, 2.

It is well known (see [12, Chapter 5]) that if E1, E2 are regular with respect to the Dirichlet
problem, and c j,k ≥ 0 in case E j ∩ Ek ≠ ∅, then there exists a unique vector measure

µ = (µ1, µ2) ∈ M1(E1) × M1(E2) satisfying the properties W µ
j (x) = ω

µ
j for all x ∈

supp(µ j ), j = 1, 2. The measure µ is called the vector equilibrium measure determined by

the interaction matrix M on the system of compact sets (E1, E2), and ωµ
1 , ω

µ
2 are called the

equilibrium constants.
Let λ1 be the positive, rotationally invariant measure on S0 whose restriction to the interval

[0, α] coincides with the measure s1(x)dx , and let λ2 be the positive, rotationally invariant
measure on S1 whose restriction to the interval [−b,−a] coincides with the measure s2(x)dx .

Let Reg denote the space of regular measures in the sense of Stahl and Totik (see definition
in [15, pg. 61]). The zero asymptotic distribution and nth root asymptotics for the polynomials
Pn and Pn,2 can be described as follows:

Theorem 1.10. Assume that the measures λ1 and λ2 are in the class Reg, and suppose that
supp(λ1) and supp(λ2) are regular for the Dirichlet problem. Then

µPn

∗
−→ µ1 ∈ M1(∆1), µPn,2

∗
−→ µ2 ∈ M1(∆2), (26)
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where µ = (µ1, µ2) is the vector equilibrium measure determined by the interaction matrix[
1 −1/4

−1/4 1/4

]
(27)

on the system of intervals (∆1,∆2). Therefore, the limits

lim
n→∞

|Pn(z)|
1/n

= e−
1
3 Vµ1 (z), z ∈ C \ ∆1,

lim
n→∞

|Pn,2(z)|
1/n

= e−
1
6 Vµ2 (z), z ∈ C \ ∆2,

(28)

hold uniformly on compact subsets of the indicated regions. Moreover,

lim
n→∞

∫ α3

0
P2

n (τ )dνn(τ )

1/n

= e−
2
3ω

µ
1 ,

lim
n→∞

∫
−a3

−b3
P2

n,2(τ )dνn,2(τ )

1/n

= e−
4
3ω

µ
2 ,

(29)

where (ωµ
1 , ω

µ
2 ) is the corresponding vector of equilibrium constants, and the varying measures

dνn and dνn,2 are defined in (69).

Corollary 1.11. Under the same assumptions of Theorem 1.10, let µ = (µ1, µ2) be the
vector equilibrium measure determined by the interaction matrix (27) on the system of intervals
[0, α3

], [−b3,−a3
], and let (ωµ

1 , ω
µ
2 ) be the corresponding vector of equilibrium constants.

Consider the probability measures ϑ1 ∈ M1([0, α]) and ϑ2 ∈ M1([−b,−a]), defined as
follows:

ϑ1(E) := µ1(E
3), E ⊂ [0, α], ϑ2(E) := µ2(E

3), E ⊂ [−b,−a],

where E3
= {x3

: x ∈ E}. If we denote by Z Qn the set of all roots of Qn on (0, α), and by Z Qn,2

the set of all roots of Qn,2 on (−b,−a), then

1
n

−
x∈Z Qn

δx
∗

−→
1
3
ϑ1,

1
n

−
x∈Z Qn,2

δx
∗

−→
1
6
ϑ2.

The limits

lim
n→∞

|Qn(z)|
1/n

= e−
1
3 Vµ1 (z3), z ∈ C \ S0,

lim
n→∞

|Qn,2(z)|
1/n

= e−
1
6 Vµ2 (z3), z ∈ C \ S1,

hold uniformly on compact subsets of the indicated regions. Finally, we have

lim
k→∞

∫ α

0
Q2

3k(t)
s1(t)

Q3k,2(t)
dt

1/k

= e−2ωµ
1 ,

lim
k→∞

∫ α

0
Q2

3k+1(t)
ts1(t)

Q3k+1,2(t)
dt

1/k

= e−2ωµ
1 ,

lim
k→∞

∫ α

0
Q2

3k+2(t)
s1(t)

t Q3k+2,2(t)
dt

1/k

= e−2ωµ
1 ,
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lim
n→∞

∫
−a

−b
Q2

n,2(t)
|hn(t)|

|Qn(t)|
s2(t)dt

1/n

= e−
4
3ω

µ
2 ,

where the functions hn are defined in (68) (see also (70)).

The following proposition provides a link between the results on ratio and nth root
asymptotics.

Proposition 1.12. Under the same assumptions of Theorem 1.5, the following relations hold:

Vµ1(z) = −
1
2

5−
i=0

log |F (i)1 (z)|, z ∈ C \ [0, α3
],

Vµ2(z) = −

5−
i=0

log |F (i)2 (z)|, z ∈ C \ [−b3,−a3
],

(30)

where (µ1, µ2) is the vector equilibrium measure determined by the interaction matrix (27) on
the system of intervals [0, α3

], [−b3,−a3
].

Theorem 1.10 and Proposition 1.12 are proved in Section 7. Corollary 1.11 follows immedi-
ately from Theorem 1.10, so we omit its proof.

2. The polynomials Qn

Observe that the functions Ψn satisfy the orthogonality conditions

0 =

∫
S1

tνΨ2n+i (t)s2(t)dt, ν = 0, . . . , n − 1, i = 0, 1. (31)

This follows directly from the definition of Ψ2n+i , (4) and (5), since∫
S1

tνΨ2n+i (t)s2(t)dt =

∫
S0

Q2n+i (x)s1(x)
∫

S1

tν − xν + xν

x − t
s2(t)dtdx

=

∫
S0

Q2n+i (x)(pν(x)− 3xν f (x))s1(x)dx,

where pν is a polynomial of degree at most n − 2.

Proposition 2.1. Let Qn be the monic polynomial of smallest degree satisfying (5). If dn :=

deg Qn , then

Qn


e

2π i
3 z


= e
2π idn

3 Qn(z), Qn(z) = Qn(z). (32)

Furthermore, for each 0 ≤ k ≤ n − 1,

0 =

∫ α

0
tk Q2n(t)(1 + e2π i(k+d2n)/3 + e4π i(k+d2n)/3)s1(t)dt, (33)

0 =

∫ α

0
tk Q2n(t)(1 + e2π i(k+2+d2n)/3 + e4π i(k+2+d2n)/3)s1(t) f (t)dt, (34)

0 =

∫ α

0
tk Q2n+1(t)(1 + e2π i(k+2+d2n+1)/3 + e4π i(k+2+d2n+1)/3)s1(t) f (t)dt, (35)
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and for each 0 ≤ k ≤ n,

0 =

∫ α

0
tk Q2n+1(t)(1 + e2π i(k+d2n+1)/3 + e4π i(k+d2n+1)/3)s1(t)dt. (36)

Proof. It is easy to check that Qn(z), Qn


e

2π i
3 z

/e

2π idn
3 and Qn(z) satisfy the same orthogo-

nality conditions. By the uniqueness of the definition of Qn , these polynomials must be equal to
each other, so (32) holds. If we write (5) in terms of [0, α], we obtain (33)–(36). �

Lemma 2.2. Let n1, n2 be non-negative integers, and assume that P1, P2 are polynomials, not
both identically equal to zero, such that deg P1 ≤ n1 −1 and deg P2 ≤ n2 −1. Then the functions

H1(t) := P1(t)+ P2(t)
3
√

t f ( 3
√

t), t > 0,

H2(t) := P1(t)t + P2(t)
3
√

t f ( 3
√

t), t > 0,

have at most n1 + n2 − 1 zeros on (0,∞), counting multiplicities.

Proof. Let σ be a finite positive measure with compact support in R, and let

σ(z) :=

∫
dσ(x)
z − x

.

Lemma 5 in [8] asserts that {1,σ } forms an AT system on any closed interval ∆ ⊂ R
disjoint from Co(supp(σ )), the convex hull of supp(σ ). This means that for any multi-index
(n1, n2) ∈ Z2

+, and any pair of polynomials π1, π2 with degπ1 ≤ n1 − 1, degπ2 ≤ n2 − 1,
not both identically equal to zero, the function π1 + π2σ has at most n1 + n2 − 1 zeros on ∆,
counting multiplicities. By (4) we know that H2(t) = t (P1(t) + P2(t)σ(t)), where σ denotes
now the measure (s2(

3
√
τ)/3τ 2/3)dτ supported on [−b3,−a3

], so the assertion concerning H2 is
valid.

Let n1 ≥ n2, and suppose that there exist polynomials P1, P2, not both identically equal to
zero, such that H1 has at least n1 + n2 zeros on (0,∞), counting multiplicities. We may assume
that P2 ≢ 0. Let T be a polynomial of degree n1 + n2 that vanishes at n1 + n2 zeros of H1 on
(0,∞). H1 can be analytically extended onto C \ [−b3,−a3

],

H1(z)

T (z)
=

P1(z)

T (z)
+

z P2(z)

3T (z)

∫
−a3

−b3

s2(
3
√
τ)

z − τ

dτ

τ 2/3 = O


1

zn2+1


, z → ∞.

By a standard argument this implies that

0 =

∫
−a3

−b3

τ ν+1 P2(τ )s2(
3
√
τ)

T (τ )τ 2/3 dτ, 0 ≤ ν ≤ n2 − 1,

contradicting the fact that deg P2 ≤ n2 − 1. If n1 < n2, we use again this argument by
contradiction, but now we divide H1(z) by T (z)σ(z) instead of T (z), and use the fact that
1/σ(z) = l(z)+ µ(z), where l(z) is a polynomial of degree one and µ is a measure of constant
sign supported on [−b3,−a3

] (see the Appendix of [10]). �

Proof of Proposition 1.1. Assume first that n = 3l, d2n = 3 j . Then (33)–(34) reduce to

0 =

∫ α

0
t3k Q2n(t)s1(t)dt =

∫ α

0
t3k Q2n(t)t f (t)s1(t)dt, 0 ≤ k ≤ l − 1.
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From (32) and the assumption d2n = 3 j , we deduce that Q2n(t) = Q2n(t3), for a polynomialQ2n of degree j . Therefore,

0 =

∫ α3

0
τ k Q2n(τ )s1(

3
√
τ)

dτ

τ 2/3

=

∫ α3

0
τ k Q2n(τ )

3
√
τ f ( 3

√
τ)s1(

3
√
τ)

dτ

τ 2/3 , 0 ≤ k ≤ l − 1. (37)

Suppose that Q2n has N < 2l sign change knots on (0, α3). Let P1, P2 be polynomials of
degree at most l − 1, (P1, P2) ≠ (0, 0), such that H1(t) = P1(t) + P2(t)

3
√

t f ( 3
√

t) has a zero
at each point where Q2n changes sign on (0, α3), and a zero of order 2l − 1 − N at α3. By
Lemma 2.2, H1 has no zeros on (0, α3

] other than the 2l − 1 prescribed. Combining the two
orthogonality conditions in (37) we obtain∫ α3

0
H1(τ )Q2n(τ )s1(

3
√
τ)

dτ

τ 2/3 dτ = 0.

This contradicts the fact that H1Q2n is real valued and has constant sign on [0, α3
]. Applying

(32) we conclude that Q2n has exactly 2n simple zeros on S0, 2n/3 of them are located on (0, α),
and the remaining zeros are rotations of the zeros on (0, α) by angles of 2π/3 and 4π/3.

Suppose now that n = 3l and d2n = 3 j + 1. We will reach a contradiction. In this case
Q2n(t) = t Q2n(t3), for some polynomial Q2n of degree j . From (33) and (34) we deduce that

0 =

∫ α3

0
τ k Q2n(τ )τ s1(

3
√
τ)

dτ

τ 2/3

=

∫ α3

0
τ k Q2n(τ )

3
√
τ f ( 3

√
τ)s1(

3
√
τ)

dτ

τ 2/3 , 0 ≤ k ≤ l − 1. (38)

The polynomial Q2n has N ≤ j sign change knots on (0, α3). Since d2n ≤ 2n, we have
j ≤ 2l − 1. Let P1, P2 be polynomials of degree at most l − 1, not both simultaneously zero,
such that H2(t) = P1(t)t + P2(t)

3
√

t f ( 3
√

t) has a zero at each point where Q2n changes sign on
(0, α3) and has a zero of order 2l −1− N at α3. The same argument used before but now applied
to H2 shows that Lemma 2.2 and (38) yield a contradiction. Therefore d2n = 3 j +1 is impossible
if n is a multiple of 3. Similarly one proves that the assumptions n = 3l and d2n = 3 j + 2 are
not compatible.

The cases n = 3l + 1 and n = 3l + 2 are handled in an identical manner, showing in the first
case that d2n is of the form 3 j + 2 and Q2n has 2l sign change knots on (0, α), and in the second
case by showing that d2n is of the form 3 j + 1 and Q2n has 2l + 1 sign change knots on (0, α).

The analysis for the polynomials Q2n+1 is similar. The details are left to the reader. �

Corollary 2.3. The polynomials Qn and the functions Ψn satisfy the symmetry conditions

Qn


e

2π i
3 z


= e
2π in

3 Qn(z), (39)
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Ψn


e

2π i
3 z


= e−
2π i
3 (1+2n)Ψn(z), (40)

for all n ≥ 0.

Proof. (39) follows from (32) and dn = n. (40) is an immediate consequence of (39) and the
definition of Ψn . �

Proof of Proposition 1.2. The initial conditions (7) are immediate to check. For n ≥ 1, we write

zQ2n = Q2n+1 + b2n Q2n + b2n−1 Q2n−1 + b2n−2 Q2n−2 + · · · + b1 Q1 + b0 Q0, (41)

and let us show that

b2n−3 = b2n−4 = · · · = b1 = b0 = 0, b2n = b2n−1 = 0. (42)

We prove (42) by induction. Let n ≥ 2. If we integrate (41) term by term with respect
to s1(t)dt , the orthogonality relations (5) imply that b0 = 0. The fact that b1 = 0 follows
now by integrating (41) term by term with respect to f (t)s1(t)dt . Assume now that 0 =

b0 = b1 = · · · = b2k = b2k+1 = 0 for some k ≤ n − 3. After multiplying (41) by
zk+1 and integrating the resulting equation first with respect to s1(t)dt , and then with respect
to f (t)s1(t)dt , we get b2k+2 = b2k+3 = 0 (observe that


S0

tk+1 Q2k+2(t)s1(t)dt ≠ 0 and
S0

tk+1 Q2k+3(t) f (t)s1(t)dt ≠ 0), so the first chain of equalities in (42) follows. The fact that
b2n = b2n−1 = 0 is immediate from (39).

Analogously one shows that for n ≥ 1, zQ2n+1 = Q2n+2 +a2n+1 Q2n−1, a2n+1 ∈ R, so (6) is
justified. The formulas (8) follow directly from (6). The positivity of the recurrence coefficients
is proved later in Proposition 3.6. �

3. The functions of second type Ψn and associated polynomials Qn,2

Proposition 3.1. The following formula holds:

Ψn(z) =

∫ α

0


1

t − z
+

e
2π in

3

e
2π i
3 t − z

+
e

4π in
3

e
4π i
3 t − z


Qn(t)s1(t)dt, z ∉ S0. (43)

In particular, for any integer k ≥ 0,

Ψ3k(z) = 3z2
∫ α

0

Q3k(t)s1(t)

t3 − z3 dt = z2
∫ α3

0

Q3k(
3
√
τ)s1(

3
√
τ)

τ − z3

dτ

τ 2/3 ,

Ψ3k+1(z) = 3
∫ α

0

t2 Q3k+1(t)s1(t)

t3 − z3 dt =

∫ α3

0

Q3k+1(
3
√
τ)s1(

3
√
τ)

τ − z3 dτ, (44)

Ψ3k+2(z) = 3z
∫ α

0

t Q3k+2(t)s1(t)

t3 − z3 dt = z
∫ α3

0

Q3k+2(
3
√
τ)s1(

3
√
τ)

τ − z3

dτ

τ 1/3 .

Proof. The definition of Ψn and the symmetry property (39) give directly (43). �

If we apply carefully the orthogonality conditions in Proposition 2.1 and the fact that dn = n,
we obtain:

0 =

∫ α3

0
τ k Q6l+1(

3
√
τ)s1(

3
√
τ)dτ, 0 ≤ k ≤ l − 1,
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0 =

∫ α3

0
τ k Q6l+3(

3
√
τ)s1(

3
√
τ)

dτ

τ 2/3 , 0 ≤ k ≤ l, (45)

0 =

∫ α3

0
τ k Q6l+5(

3
√
τ)s1(

3
√
τ)

dτ

τ 1/3 , 0 ≤ k ≤ l.

Consequently, we can improve the estimate at infinity Ψ2n+1(z) = O(1/zn+2) given in (9) to
Ψ2n+1(z) = O(1/zn+3). To see this, observe that from (45) we deduce:∫

Q6l+1(
3
√
τ)s1(

3
√
τ)

τ − z
dτ = O


1

zl+1


,

∫
Q6l+3(

3
√
τ)s1(

3
√
τ)

τ − z

dτ

τ 2/3 = O


1

zl+2


,∫

Q6l+5(
3
√
τ)s1(

3
√
τ)

τ − z

dτ

τ 1/3 = O


1

zl+2


.

If we take into account now the representations (44) of the functions Ψn , the claim is justified. In
conclusion, the following estimates are valid as z → ∞:

Ψ6l(z) = O(1/z3l+1), Ψ6l+2(z) = O(1/z3l+2), Ψ6l+4(z) = O(1/z3l+3),

Ψ6l+1(z) = O(1/z3l+3), Ψ6l+3(z) = O(1/z3l+4), Ψ6l+5(z) = O(1/z3l+5).
(46)

It is convenient to rewrite the orthogonality conditions in (31) in terms of the interval (−b3,

−a3). Applying the symmetry properties of Ψn (cf. (40)) and s2, we obtain:

Proposition 3.2. The functions Ψn satisfy:

0 =

∫
−a

−b
tνΨ2n(t)


1 + e

2π i
3 (ν−4n−1)

+ e
4π i
3 (ν−4n−1)


s2(t)dt, ν = 0, . . . , n − 1,

0 =

∫
−a

−b
tνΨ2n+1(t)


1 + e

2π i
3 (ν−n)

+ e
4π i
3 (ν−n)


s2(t)dt, ν = 0, . . . , n − 1.

In particular, for any integer l ≥ 0,

0 =

∫
−a3

−b3
τ kΨ6l+ j (

3
√
τ)s2(

3
√
τ)

dτ

τ 1/3 , 0 ≤ k ≤ l − 1, j = 0, 3,

0 =

∫
−a3

−b3
τ kΨ6l+2+ j (

3
√
τ)s2(

3
√
τ)dτ, 0 ≤ k ≤ l − 1, j = 0, 3,

0 =

∫
−a3

−b3
τ kΨ6l+1(

3
√
τ)s2(

3
√
τ)

dτ

τ 2/3 , 0 ≤ k ≤ l − 1,

0 =

∫
−a3

−b3
τ kΨ6l+4(

3
√
τ)s2(

3
√
τ)

dτ

τ 2/3 , 0 ≤ k ≤ l.

As a consequence of Proposition 3.2, we obtain:

Corollary 3.3. For each j ∈ {0, 1, 2, 3, 5}, the function Ψ6l+ j has at least l sign change knots in
the interval (−b,−a), and the function Ψ6l+4 has at least l + 1 sign change knots in the interval
(−b,−a). Therefore the functions Ψ6l+ j , j ∈ {0, 1, 2, 3, 5} have at least 3l zeros, counting
multiplicities, in C \ S0, and Ψ6l+4 has at least 3l + 3 zeros, counting multiplicities, in C \ S0.
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Observe that the function Ψn satisfies the property

Ψn(z) = −Ψn(z), z ∈ C \ S0. (47)

Let j ∈ {0, 1, 2, 3, 5} and assume that x1, . . . , xl are l distinct zeros of Ψ6l+ j in (−b,−a). It
follows from (40) that the points

e
2π i
3 x1, . . . , e

2π i
3 xl , e

4π i
3 x1, . . . , e

4π i
3 xl ,

are also zeros of Ψ6l+ j . Let

R1(z) :=

l∏
k=1

(z − xk)

l∏
k=1


z − e

2π i
3 xk

 l∏
k=1


z − e

4π i
3 xk


=

l∏
k=1

(z3
− x3

k ).

Assume further that Ψ6l+ j has more than 3l zeros in C \ S0, counting multiplicities. Then there
exists a point z0 ∈ C \ S0 such that the polynomial

R2(z) := R1(z)(z
3
− z3

0)

satisfies Ψ6l+ j/R2 ∈ H(C \ S0). If z0 ∈ R, then R2 is a polynomial in z3 with real coefficients.
If z0 ∉ R, then R2 may not have real coefficients, but the polynomial

R3(z) := R1(z)(z
3
− z3

0)(z
3
− z3

0)

is a polynomial in z3 with real coefficients, and Ψ6l+ j/R3 ∈ H(C \ S0) (here we use (47)).
In conclusion, we see that if Ψ6l+ j , j ∈ {0, 1, 2, 3, 5}, has more than 3l zeros in C \ S0,

counting multiplicities, then we can find a polynomial R6l+ j with real coefficients and degree at
least 3l + 3 satisfying:

R6l+ j (z) = R6l+ j


e

2π i
3 z

, z ∈ C, and

Ψ6l+ j

R6l+ j
∈ H(C \ S0). (48)

Similarly, if we assume that Ψ6l+4 has more than 3l + 3 zeros in C \ S0, counting multiplicities,
then there exists a polynomial R6l+4 with real coefficients and degree at least 3l + 6 such that
(48) holds for j = 4.

Proof of Proposition 1.3. Suppose that Ψ6l has more than 3l zeros in C \ S0, counting multi-
plicities. Let R6l be a polynomial with real coefficients and degree at least 3l + 3 satisfying (48).
By (46), Ψ6l(z)/R6l(z) = O(1/z6l+4) as z → ∞.

Let Γ be a Jordan curve surrounding S0 such that the zeros of R6l lie outside Γ . By Cauchy’s
theorem, Fubini’s theorem, and Cauchy’s integral formula, for ν = 0, . . . , 6l + 2,

0 =

∫
Γ

zν
Ψ6l(z)

R6l(z)
dz

=

∫
Γ

zν

R6l(z)

1
2π i

∫ α

0


1

t − z
+

1

e
2π i
3 t − z

+
1

e
4π i
3 t − z


Q6l(t)s1(t)dtdz

=

∫ α

0
tν

 1
R6l(t)

+
e2π iν/3

R6l


e

2π i
3 t
 +

e4π iν/3

R6l


e

4π i
3 t

 Q6l(t)s1(t)dt,
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and applying (48), we obtain

0 =

∫ α

0
t3k Q6l(t)

s1(t)

R6l(t)
dt, 0 ≤ k ≤ 2l.

Consequently, Q6l has at least 2l + 1 sign change knots in (0, α), contradicting Proposition 1.1.
This and Corollary 3.3 prove the claim for n = 6l. In the remaining cases we use the same ar-
gument. Indeed, if Ψ6l+ j , j ∈ {1, 2, 3, 5}, has more than 3l zeros in C \ S0 and Ψ6l+4 has more
than 3l +3 zeros in C\ S0, counting multiplicities, then we know (see the discussion after Corol-
lary 3.3) that we can select polynomials R6l+ j , 1 ≤ j ≤ 5 satisfying (48) such that, as z → ∞:

Ψ6l+1(z)

R6l+1(z)
= O


1

z6l+6


,

Ψ6l+2(z)

R6l+2(z)
= O


1

z6l+5


,

Ψ6l+3(z)

R6l+3(z)
= O


1

z6l+7


,

Ψ6l+4(z)

R6l+4(z)
= O


1

z6l+9


,

Ψ6l+5(z)

R6l+5(z)
= O


1

z6l+8


.

These estimates lead to the orthogonality conditions

0 =

∫ α

0
t3k+2 Q6l+1(t)

s1(t)

R6l+1(t)
dt =

∫ α

0
t3k+1 Q6l+2(t)

s1(t)

R6l+2(t)
dt, 0 ≤ k ≤ 2l,

0 =

∫ α

0
t3k Q6l+3(t)

s1(t)

R6l+3(t)
dt =

∫ α

0
t3k+2 Q6l+4(t)

s1(t)

R6l+4(t)
dt

=

∫ α

0
t3k+1 Q6l+5(t)

s1(t)

R6l+5(t)
dt, 0 ≤ k ≤ 2l + 1,

which contradict the number of zeros that the polynomials Q6l+ j , 1 ≤ j ≤ 5, have on (0, α)
(see Proposition 1.1). �

Recall that Qn,2 is defined as the monic polynomial whose zeros coincide with the finite zeros
of Ψn outside S0. The argument shown above proves the following:

Proposition 3.4. For each j ∈ {0, 1, 2, 3, 5}, deg(Q6l+ j,2) = 3l, and deg(Q6l+4,2) = 3l + 3.
Furthermore,

0 =

∫ α

0
t3k Q3l(t)

s1(t)

Q3l,2(t)
dt, 0 ≤ k ≤ l − 1, (49)

0 =

∫ α

0
t3k+2 Q3l+1(t)

s1(t)

Q3l+1,2(t)
dt, 0 ≤ k ≤ l − 1, (50)

0 =

∫ α

0
t3k+1 Q3l+2(t)

s1(t)

Q3l+2,2(t)
dt, 0 ≤ k ≤ l − 1. (51)

Proposition 3.5. The following formulas are valid for z ∈ C \ S0. If q is a polynomial of degree
at most 3k, then

q(z)Ψ3k(z)

Q3k,2(z)
=

∫ α

0

Q3k(x)s1(x)

Q3k,2(x)

 q(x)

x − z
+

q


e
2π i
3 x


e
2π i
3 x − z

+

q


e
4π i
3 x


e
4π i
3 x − z

 dx . (52)
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If deg q ≤ 3k + 2, then

q(z)Ψ3k+1(z)

Q3k+1,2(z)
=

∫ α

0

Q3k+1(x)s1(x)

Q3k+1,2(x)

 q(x)

x − z
+

e
2π i
3 q


e

2π i
3 x


e
2π i
3 x − z

+

e
4π i
3 q


e

4π i
3 x


e
4π i
3 x − z

 dx .

(53)

If deg q ≤ 3k + 1, then

q(z)Ψ3k+2(z)

Q3k+2,2(z)
=

∫ α

0

Q3k+2(x)s1(x)

Q3k+2,2(x)

 q(x)

x − z
+

e
4π i
3 q


e

2π i
3 x


e
2π i
3 x − z

+

e
2π i
3 q


e

4π i
3 x


e
4π i
3 x − z

 dx .

(54)

In particular, we have

Q3k(z)Ψ3k(z)

Q3k,2(z)
= 3z2

∫ α

0

Q2
3k(x)

Q3k,2(x)

s1(x)

x3 − z3 dx,

Q3k+1(z)Ψ3k+1(z)

Q3k+1,2(z)
= 3z

∫ α

0

Q2
3k+1(x)

Q3k+1,2(x)

xs1(x)

x3 − z3 dx, (55)

Q3k+2(z)Ψ3k+2(z)

Q3k+2,2(z)
= 3z3

∫ α

0

Q2
3k+2(x)

Q3k+2,2(x)

s1(x)

x(x3 − z3)
dx .

Proof. By (46) and Proposition 3.4, we know that if q is a polynomial of degree at most 3k, then

q(z)Ψ3k(z)

Q3k,2(z)
= O(1/z), z → ∞. (56)

For z ∈ C \ S0, let Γ be a Jordan curve surrounding S0 and oriented clockwise, so that z and the
zeros of Q3k,2 lie outside Γ . From (56) and (43) it follows that

q(z)Ψ3k(z)

Q3k,2(z)
=

1
2π i

∫
Γ

q(t)Ψ3k(t)

Q3k,2(t)

dt

t − z

=

∫ α

0
Q3k(x)s1(x)

1
2π i

∫
Γ

q(t)

Q3k,2(t)(t − z)

×


1

x − t
+

1

e
2π i
3 x − t

+
1

e
4π i
3 x − t


dtdx

=

∫ α

0

Q3k(x)s1(x)

Q3k,2(x)


q(x)

x − z
+

q(e
2π i
3 x)

e
2π i
3 x − z

+
q(e

4π i
3 x)

e
4π i
3 x − z


dx,

where in the last equality we used that Q3k,2(t) = Q3k,2


e

2π i
3 t


= Q3k,2


e

4π i
3 t


. This proves

(52). The proofs of (53)–(54) are identical. To obtain the first and second formulas in (55), we
replace q in formulas (52) and (53) by Q3k and Q3k+1, respectively. The third formula in (55)
follows from (54) by taking q(z) = Q3k+2(z)/z. �

Proposition 3.6. The recurrence coefficients {an}
∞

n≥2 that appear in (6) are all positive.
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Proof. To prove that a2n is positive it suffices to show that
 α

0 tn Q2n(t)s1(t)dt > 0 for all n ≥ 0.
Let n = 3l. Since deg(t3l Q6l,2) = 6l, by (49) we obtain∫ α

0
t3l Q6l(t)s1(t)dt =

∫ α

0
t3l Q6l(t)Q6l,2(t)

s1(t)

Q6l,2(t)
dt =

∫ α

0
Q2

6l(t)
s1(t)

Q6l,2(t)
dt > 0.

For n = 3l + 1, using (51) and deg(t3l+2 Q6l+2,2) = 6l + 2, we get∫ α

0
t3l+1 Q6l+2(t)s1(t)dt =

∫ α

0
t3l+2 Q6l+2,2(t)Q6l+2(t)

s1(t)

t Q6l+2,2(t)
dt

=

∫ α

0
Q2

6l+2(t)
s1(t)

t Q6l+2,2(t)
dt > 0.

Finally, for n = 3l + 2, applying (50) and deg(t3l+1 Q6l+4,2) = 6l + 4, we obtain∫ α

0
t3l+2 Q6l+4(t)s1(t)dt =

∫ α

0
t3l+1 Q6l+4,2(t)Q6l+4(t)

ts1(t)

Q6l+4,2(t)
dt

=

∫ α

0
Q2

6l+4(t)
ts1(t)

Q6l+4,2(t)
dt > 0.

It is easy to see that the functions Ψn satisfy the same recurrence relation (6). In particular,

tΨ2n+1(t) = Ψ2n+2(t)+ a2n+1Ψ2n−1(t).

Using Proposition 3.2, if we multiply the above relation by an appropriate power of t and inte-
grate, we obtain∫

−a

−b
t3lΨ6l+1(t)s2(t)dt = a6l+1

∫
−a

−b
t3l−1Ψ6l−1(t)s2(t)dt,∫

−a

−b
t3l+1Ψ6l+3(t)s2(t)dt = a6l+3

∫
−a

−b
t3lΨ6l+1(t)s2(t)dt,∫

−a

−b
t3l+2Ψ6l+5(t)s2(t)dt = a6l+5

∫
−a

−b
t3l+1Ψ6l+3(t)s2(t)dt.

On the other hand, it is easy to deduce from (55) that if t < 0, then

sign


Ψ3k(t)

Q3k,2(t)


= (−1)3k, sign


Ψ3k+1(t)

Q3k+1,2(t)


= (−1)3k,

sign


Ψ3k+2(t)

Q3k+2,2(t)


= (−1)3k+1.

(57)

Observe that since deg Q6l−1,2 = 3l − 3 and deg Q6l+1,2 = deg Q6l+3,2 = 3l, by the orthogo-
nality conditions satisfied by Ψ2n+1 and (57), we obtain:∫

−a

−b
t3l−1Ψ6l−1(t)s2(t)dt =

∫
−a

−b
Q6l−1,2(t)Ψ6l−1(t)t

2s2(t)dt

=

∫
−a

−b
Q2

6l−1,2(t)
Ψ6l−1(t)

Q6l−1,2(t)
t2s2(t)dt > 0,∫

−a

−b
t3lΨ6l+1(t)s2(t)dt =

∫
−a

−b
Q6l+1,2(t)Ψ6l+1(t)s2(t)dt

=

∫
−a

−b
Q2

6l+1,2(t)
Ψ6l+1(t)

Q6l+1,2(t)
s2(t)dt > 0,
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−a

−b
t3l+1Ψ6l+3(t)s2(t)dt =

∫
−a

−b
Q6l+3,2(t)Ψ6l+3(t)ts2(t)dt

=

∫
−a

−b
Q2

6l+3,2(t)
Ψ6l+3(t)

Q6l+3,2(t)
ts2(t)dt > 0.

This shows that a2n+1 > 0 for all n ≥ 1. �

4. Interlacing properties of the zeros of Qn and Ψn

Proposition 4.1. Let A, B ∈ R be two constants such that |A| + |B| > 0, and let

Yn(z) := AzΨn(z)+ BΨn+1(z), (58)

Tn(z) := AzQn(z)+ B Qn+1(z). (59)

Then, for every n ≥ 0, the function Yn has only simple zeros on (−∞, 0). Similarly, for every
n ≥ 0, the polynomial Tn has only simple zeros on (0, α).

Proof. From Proposition 3.2 it follows that

0 =

∫
−a3

−b3
τ kY6l+1(

3
√
τ)s2(

3
√
τ)dτ, 0 ≤ k ≤ l − 2,

0 =

∫
−a3

−b3
τ kY6l+4(

3
√
τ)s2(

3
√
τ)dτ, 0 ≤ k ≤ l − 1,

0 =

∫
−a3

−b3
τ kY6l+ j (

3
√
τ)s2(

3
√
τ)

dτ

τ 2/3 , 0 ≤ k ≤ l − 1, j = 0, 3,

0 =

∫
−a3

−b3
τ kY6l+2+ j (

3
√
τ)s2(

3
√
τ)

dτ

τ 1/3 , 0 ≤ k ≤ l − 1, j = 0, 3.

Consequently, for each j ∈ {0, 2, 3, 4, 5}, the function Y6l+ j has at least l sign change knots
in (−b,−a), and Y6l+1 has at least l − 1 sign change knots in (−b,−a). From (40) it follows

that for every n, Yn


e

2π i
3 z


= CnYn(z), where Cn denotes a constant. Therefore, the functions

Y6l+ j , j ∈ {0, 2, 3, 4, 5} have at least 3l zeros on S1, and Y6l+1 has at least 3l −3 zeros on S1. For
each 0 ≤ j ≤ 5, let R6l+ j denote the monic polynomial whose zeros coincide with the zeros of
Y6l+ j on ∪

2
k=0 exp(2π ik/3)(−∞, 0] \ {0}. Then R6l+ j satisfies (48), Y6l+ j/R6l+ j ∈ H(C \ S0),

and using (46) we deduce that as z → ∞:

Y6l(z)

R6l(z)
= O


1

z6l


,

Y6l+1(z)

R6l+1(z)
= O


1

z6l−1


,

Y6l+2(z)

R6l+2(z)
= O


1

z6l+1


,

Y6l+3(z)

R6l+3(z)
= O


1

z6l+3


,

Y6l+4(z)

R6l+4(z)
= O


1

z6l+2


,

Y6l+5(z)

R6l+5(z)
= O


1

z6l+4


.

Let Γ again denote a Jordan curve surrounding S0, such that the zeros of the polynomials R6l+ j
lie outside Γ . By (43),

0 =

∫
Γ

zν
Y6l(z)

R6l(z)
dz

=

∫ α

0
xνT6l(x)(1 + e2π i(ν+1)/3

+ e4π i(ν+1)/3)
s1(x)

R6l(x)
dx, ν = 0, . . . , 6l − 2,
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which is equivalent to

0 =

∫ α

0
x3k+2T6l(x)

s1(x)

R6l(x)
dx, 0 ≤ k ≤ 2l − 2. (60)

Similarly we obtain:

0 =

∫ α

0
x3k+1T6l+1(x)

s1(x)

R6l+1(x)
dx, 0 ≤ k ≤ 2l − 2,

0 =

∫ α

0
x3k T6l+5(x)

s1(x)

R6l+5(x)
dx, 0 ≤ k ≤ 2l, (61)

0 =

∫ α

0
x3k T6l+2(x)

s1(x)

R6l+2(x)
dx =

∫ α

0
x3k+2T6l+3(x)

s1(x)

R6l+3(x)
dx

=

∫ α

0
x3k+1T6l+4(x)

s1(x)

R6l+4(x)
dx, 0 ≤ k ≤ 2l − 1.

From (60) it follows that T6l has at least 2l − 1 sign change knots in (0, α). Since T6l


ze

2π i
3


=

e
2π i
3 T6l(z), we see that any zero of T6l in (0,∞)must be simple, otherwise T6l would have at least

6l +3 zeros, contradicting deg(T6l) ≤ 6l +1. Similarly, using (61) we show that the polynomials
T6l+ j , 1 ≤ j ≤ 5, have only simple zeros in (0,∞).

Now we prove that the functions Yn have only simple zeros in (−∞, 0). We know that Y6l has
at least l sign change knots in (−∞, 0). If we assume that Y6l has a zero of multiplicity ≥ 2, then
deg R6l ≥ 3l + 6, and so we would have

Y6l(z)/R6l(z) = O(1/z6l+6), z → ∞.

Reasoning as above, we arrive at the fact that deg T6l ≥ 6l + 3, which is impossible. Similarly
we see that the zeros of Y6l+ j , 1 ≤ j ≤ 5, contained in (−∞, 0), must be simple. �

Proof of Theorem 1.4. Let x ∈ (0, α) and assume that Qn(x) = Qn+1(x) = 0. Take
A = 1, B = −x Q′

n(x)/Q′

n+1(x). For this choice of A and B, the polynomial Tn defined by
(59) satisfies Tn(x) = T ′

n(x) = 0, contradicting Proposition 4.1.
Let x ∈ (0, α) be arbitrary but fixed. Take now A = Qn+1(x)/x and B = −Qn(x). For this

choice of A and B, we have Tn(x) = 0, therefore T ′
n(x) ≠ 0, or equivalently

Ln(x) :=
Qn+1(x)Qn(x)

x
+ Qn+1(x)Q

′
n(x)− Qn(x)Q

′

n+1(x) ≠ 0.

In particular, the sign of Ln is constant on (0, α). Evaluating Ln at two consecutive zeros of
Qn (Qn+1) on (0, α), we see immediately that there must be an intermediate zero of Qn+1 (Qn).

The same argument proves the interlacing property of the zeros of Ψn and Ψn+1.qed

Proposition 4.2. Let the roots of the polynomials Q3k+i , 0 ≤ i ≤ 2, in the interval (0, α), be
defined as follows:

x (3k+i)
1 < x (3k+i)

2 < x (3k+i)
3 < · · · < x (3k+i)

k−1 < x (3k+i)
k .

Then

x (3k)
1 < x (3k+1)

1 < x (3k)
2 < x (3k+1)

2 < · · · < x (3k)
k < x (3k+1)

k , (62)

x (3k+1)
1 < x (3k+2)

1 < x (3k+1)
2 < x (3k+2)

2 < · · · < x (3k+1)
k < x (3k+2)

k , (63)
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x (3k+3)
1 < x (3k+2)

1 < x (3k+3)
2 < x (3k+2)

2 < · · · < x (3k+2)
k < x (3k+3)

k+1 . (64)

Proof. If we write

Q3k−2(z) = b(3k−2)
1 z + · · · + z3k−2, Q3k(z) = b(3k)

0 + · · · + z3k,

Q3k+1(z) = b(3k+1)
1 z + · · · + z3k+1,

from (6) we obtain the relation b(3k)
0 − b(3k+1)

1 = a3kb(3k−2)
1 . Vieta formulas show that

b(3k)
0 = (−1)3k(x (3k)

1 · · · x (3k)
k )3, b(3k+1)

1 = (−1)3k(x (3k+1)
1 · · · x (3k+1)

k )3,

and similarly b(3k−2)
1 equals (−1)3k−1 times the product of all nonzero roots of Q3k−2. Since

a3k > 0 and the product of all nonzero roots of Q3k−2 is also positive, we deduce that
(x (3k)

1 · · · x (3k)
k )3 < (x (3k+1)

1 · · · x (3k+1)
k )3. This inequality and Theorem 1.4 imply (62). Similarly

we show that (x (3k+1)
1 · · · x (3k+1)

k )3 < (x (3k+2)
1 · · · x (3k+2)

k )3, which implies (63). Finally, (64)
follows directly from Theorem 1.4. �

5. Ratio asymptotics of the polynomials Qn and Qn,2

Let

Hn :=
QnΨn

Qn,2
. (65)

Notice that Hn is real valued on (−∞, 0) and has constant sign on this interval. Having in mind
the definitions (10)–(11), we have:

Proposition 5.1. Let l ≥ 0 be an arbitrary integer. Then the following orthogonality conditions
hold:

0 =

∫
−a3

−b3
τ k P6l+ j,2(τ )

|H6l+ j (
3
√
τ)|s2(

3
√
τ)

| 3
√
τ P6l+ j (τ )|

dτ, 0 ≤ k ≤ l − 1, j = 0, 3,

0 =

∫
−a3

−b3
τ k P6l+2+ j,2(τ )

|H6l+2+ j (
3
√
τ)|s2(

3
√
τ)

|τ 2/3 P6l+2+ j (
3
√
τ)|

dτ, 0 ≤ k ≤ l − 1, j = 0, 3,

0 =

∫
−a3

−b3
τ k P6l+1,2(τ )

|H6l+1(
3
√
τ)|s2(

3
√
τ)

|τ P6l+1(τ )|
dτ, 0 ≤ k ≤ l − 1,

0 =

∫
−a3

−b3
τ k P6l+4,2(τ )

|H6l+4(
3
√
τ)|s2(

3
√
τ)

|τ P6l+4(τ )|
dτ, 0 ≤ k ≤ l.

Proof. These orthogonality conditions follow immediately from Proposition 3.2. �

Proposition 5.2. Let k ≥ 0 be an arbitrary integer. Then the following orthogonality conditions
hold:

0 =

∫ α3

0
τ j P3k(τ )

s1(
3
√
τ)

P3k,2(τ )

dτ

τ 2/3 , 0 ≤ j ≤ k − 1.

0 =

∫ α3

0
τ j P3k+1(τ )

s1(
3
√
τ)

P3k+1,2(τ )

3
√
τdτ, 0 ≤ j ≤ k − 1.
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0 =

∫ α3

0
τ j P3k+2(τ )

s1(
3
√
τ)

P3k+2,2(τ )

3
√
τdτ, 0 ≤ j ≤ k − 1.

Proof. These orthogonality conditions follow immediately from (49)–(51). �

Observe that by Proposition 1.3, for each j ∈ {0, 1, 2, 3, 5}, P6l+ j,2 is a polynomial of degree
l, and P6l+4,2 has degree l + 1. By Proposition 1.1, for each k ≥ 0 and j ∈ {0, 1, 2}, P3k+ j has
degree k.

For each integer j ≥ 0 we let

K3 j :=

∫ α3

0
P2

3 j (τ )
s1(

3
√
τ)

P3 j,2(τ )

dτ

τ 2/3

−1/2

,

K3 j+1 :=

∫ α3

0
P2

3 j+1(τ )
s1(

3
√
τ) 3

√
τ

P3 j+1,2(τ )
dτ

−1/2

,

K3 j+2 :=

∫ α3

0
P2

3 j+2(τ )
s1(

3
√
τ) 3

√
τ

P3 j+2,2(τ )
dτ

−1/2

.

Similarly, we define for each integer j ≥ 0 the following constants:

K3 j,2 :=

∫
−a3

−b3
P2

3 j,2(τ )
|H3 j (

3
√
τ)|

| 3
√
τ P3 j (τ )|

s2(
3
√
τ)dτ

−1/2

,

K3 j+1,2 :=

∫
−a3

−b3
P2

3 j+1,2(τ )
|H3 j+1(

3
√
τ)|

|τ P3 j+1(τ )|
s2(

3
√
τ)dτ

−1/2

,

K3 j+2,2 :=

∫
−a3

−b3
P2

3 j+2,2(τ )
|H3 j+2(

3
√
τ)|

|τ 2/3 P3 j+2(τ )|
s2(

3
√
τ)dτ

−1/2

.

We need to introduce more notations. Let

κn := Kn, κn,2 :=
Kn,2

Kn
, (66)

consider the polynomials

pn := κn Pn, pn,2 := κn,2 Pn,2, (67)

and the functions

hn := K 2
n Hn . (68)

Finally, we introduce the following positive varying measures:

dν3 j (τ ) :=
s1(

3
√
τ)

P3 j,2(τ )

dτ

τ 2/3 , dν3 j+1(τ ) :=
s1(

3
√
τ) 3

√
τ

P3 j+1,2(τ )
dτ,

dν3 j+2(τ ) :=
s1(

3
√
τ) 3

√
τ

P3 j+2,2(τ )
dτ, dν3 j,2(τ ) :=

|h3 j (
3
√
τ)|

| 3
√
τ P3 j (τ )|

s2(
3
√
τ)dτ,

dν3 j+1,2(τ ) :=
|h3 j+1(

3
√
τ)|

|τ P3 j+1(τ )|
s2(

3
√
τ)dτ, dν3 j+2,2(τ ) :=

|h3 j+2(
3
√
τ)|

|τ 2/3 P3 j+2(τ )|
s2(

3
√
τ)dτ.

(69)
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Proposition 5.3. The polynomials pn and pn,2 are orthonormal polynomials with respect to the
measures dνn and dνn,2, respectively. This is, for every n ≥ 0, ‖pn‖L2(dνn)

= ‖pn,2‖L2(dνn,2)
= 1,

and ∫ α3

0
τ j pn(τ )dνn(τ ) = 0, for all j < deg pn,∫

−a3

−b3
τ j pn,2(τ )dνn,2(τ ) = 0, for all j < deg pn,2.

Proof. It follows immediately from Propositions 5.1 and 5.2. �

Using (55), it is easy to check that the functions hn have the following representations:

h3k(z) = z2
∫ α3

0

p2
3k(τ )

τ − z3 dν3k(τ ), h3k+1(z) = z
∫ α3

0

p2
3k+1(τ )

τ − z3 dν3k+1(τ ),

h3k+2(z) = z3
∫ α3

0

p2
3k+2(τ )

τ − z3 dν3k+2(τ ). (70)

Lemma 5.4. Assume that s1 > 0 a.e. on [0, α], and s2 > 0 a.e. on [−b,−a]. Then

p2
n(τ )dνn(τ )

∗
−→

1
π

dτ
(α3 − τ)τ

, τ ∈ [0, α3
], (71)

p2
n,2(τ )dνn,2(τ )

∗
−→

1
π

dτ
(−a3 − τ)(τ + b3)

, τ ∈ [−b3,−a3
]. (72)

Consequently, the following limits hold uniformly on closed subsets of C \ S0:

lim
k→∞

h3k(z) = −
z2

(z3 − α3)z3
,

lim
k→∞

h3k+1(z) = −
z

(z3 − α3)z3
, (73)

lim
k→∞

h3k+2(z) = −
z3

(z3 − α3)z3
,

where the branch of the square root is taken such that
√

x > 0 for x > 0.

Proof. Let us define the measures

dµ3k(τ ) =
s1(

3
√
τ)

τ 2/3 dτ, dµ3k+1(τ ) = dµ3k+2(τ ) = s1(
3
√
τ) 3

√
τdτ.

According to [5, Definition 2], for each i ∈ {0, 1, 2} and k ∈ Z, the system ({dµ3l+i },

{P3l+i,2}, k)l≥1 is strongly admissible on [0, α3
]. So by [5, Corollary 3],

lim
l→∞

∫ α3

0
f (τ )p2

3l+i (τ )
dµ3l+i (τ )

P3l+i,2(τ )
=

1
π

∫ α3

0
f (τ )

dτ
(α3 − τ)τ

,

for every f continuous on [0, α3
]. Since dν3l+i (τ ) = dµ3l+i (τ )/P3l+i,2(τ ), (71) follows. The

formulas (73) are a consequence of (71) and (70).
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Similarly, if we define the measures

dλ3k(τ ) =
|h3k(

3
√
τ)|

| 3
√
τ |

s2(
3
√
τ)dτ, dλ3k+1(τ ) =

|h3k+1(
3
√
τ)|

|τ |
s2(

3
√
τ)dτ,

dλ3k+2(τ ) =
|h3k+2(

3
√
τ)|

|τ 2/3|
s2(

3
√
τ)dτ,

then for each i ∈ {0, 1, 2} and each k ∈ Z, the system ({dλ3l+i }, {|P3l+i |}, k) is strongly
admissible on [−b3,−a3

], and (72) follows as before. �

For each i ∈ {0, . . . , 5}, we consider the families of rational functions
P6k+i+1(z)

P6k+i (z)


k
,


P6k+i+1,2(z)

P6k+i,2(z)


k
. (74)

By Theorem 1.4, these families are uniformly bounded on compact subsets of C \ [0, α3
] and

C \ [−b3,−a3
], respectively. Therefore, by Montel’s theorem there exists a sequence of integers

Λ ⊂ N so that for each i ∈ {0, . . . , 5},

lim
k∈Λ

P6k+i+1(z)

P6k+i (z)
= F (i)1 (z), z ∈ C \ [0, α3

], (75)

lim
k∈Λ

P6k+i+1,2(z)

P6k+i,2(z)
= F (i)2 (z), z ∈ C \ [−a3,−b3

], (76)

where the limits hold uniformly on compact subsets of the indicated regions. Our goal is to show
that we obtain the same limiting functions F (i)j , no matter which convergent subsequences we
take.

Taking into account the degree of Pn and Pn,2, from (75)–(76) we deduce: F (i)1 and 1/F (i)1

are analytic in C \ [0, α3
], F (i)2 and 1/F (i)2 are analytic in C \ [−b3,−a3

], and as z → ∞,

F (i)1 (z) = 1 + O(1/z), i ∈ {0, 1, 3, 4},F (i)1 (z) = z + O(1), i ∈ {2, 5},F (i)2 (z) = 1 + O(1/z), i ∈ {0, 1, 2}, (77)F (i)2 (z) = z + O(1), i ∈ {3, 5},F (4)2 (z) = 1/z + O(1/z2).

Given a Borel measurable functionw ≥ 0 defined on the interval [c, d] that satisfies the Szegő
condition

logw(t)
√
(d − t)(t − c)

∈ L1(dt),

let

S(w; z) := exp

d − c

4π


2z − c − d

d − c

2

− 1
∫ d

c

logw(t)
t − z

dt
√
(d − t)(t − c)


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denote the Szegő function on C \ [c, d] associated with w (see [16]). In particular, if w is
continuous at x ∈ [c, d] and w(x) > 0, then the limit

lim
z→x

|S(w; z)|2 =
1

w(x)
(78)

holds. We will indicate this below by writing |S(w; x)|2w(x) = 1.
Throughout this section we are always assuming that s1 > 0 a.e. on [0, α], and s2 > 0 a.e. on

[−b,−a]. If fn ∈ H(Ω),Ω ⊂ C, the notation

lim
n∈Λ fn(z) = F(z), z ∈ Ω , Λ ⊂ N,

stands for the uniform convergence of fn to F on each compact subset of Ω .
By Proposition 5.2 we have:

0 =

∫ α3

0
τ j P6k(τ )dν6k(τ ), 0 ≤ j ≤ 2k − 1,

0 =

∫ α3

0
τ j P6k+1(τ )g6k(τ )dν6k(τ ), 0 ≤ j ≤ 2k − 1,

where g6k(τ ) := τ P6k,2(τ )/P6k+1,2(τ ). Using (76),

lim
k∈Λ

g6k(τ ) =
τF (0)2 (τ )

, uniformly on [0, α3
].

Since deg(P6k) = deg(P6k+1), applying [5, Theorem 2] (result on relative asymptotics of
polynomials orthogonal with respect to varying measures), we obtain

lim
k∈Λ

P6k+1(z)

P6k(z)
=

S(0)1 (z)

S(0)1 (∞)
= F (0)1 (z), z ∈ C \ [0, α3

], (79)

where S(0)1 is the Szegő function on C\[0, α3
] associated with the weight τ/F (0)2 (τ ), τ ∈ [0, α3

].
By Proposition 5.2 we have:

0 =

∫ α3

0
τ j P6k+2(τ )dν6k+2(τ ), 0 ≤ j ≤ 2k − 1,

0 =

∫ α3

0
τ j P6k+3(τ )g6k+2(τ )dν6k+2(τ ), 0 ≤ j ≤ 2k,

where g6k+2(τ ) := P6k+2,2(τ )/(τ P6k+3,2(τ )). Let P∗

6k+2 be the monic polynomial of degree 2k
orthogonal with respect to the measure dν6k+3(τ ) = g6k+2(τ )dν6k+2(τ ). Since deg(P∗

6k+2) =

deg(P6k+2), again by [5, Theorem 2] we obtain

lim
k∈Λ

P∗

6k+2(z)

P6k+2(z)
=

S(2)1 (z)

S(2)1 (∞)
, z ∈ C \ [0, α3

],

where S(2)1 is the Szegő function on C \ [0, α3
] with respect to the weight 1/(τ F (2)2 (τ )).

Let φ1 denote the conformal mapping that maps C \ [0, α3
] onto the exterior of the unit circle

and satisfies φ1(∞) = ∞ and φ′

1(∞) > 0. Then, by [5, Theorem 1] (result on ratio asymptotics
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of polynomials orthogonal with respect to varying measures) we have

lim
k∈Λ

P6k+3(z)

P∗

6k+2(z)
=

φ1(z)

φ′

1(∞)
, z ∈ C \ [0, α3

].

Therefore, we conclude that

lim
k∈Λ

P3k+3(z)

P6k+2(z)
=

S(2)1 (z)

S(2)1 (∞)

φ1(z)

φ′

1(∞)
= F (2)1 (z), z ∈ C \ [0, α3

]. (80)

The same arguments used before show that

lim
k∈Λ

P6k+i+1(z)

P6k+i (z)
=

S(i)1 (z)

S(i)1 (∞)
= F (i)1 (z), z ∈ C \ [0, α3

], i ∈ {1, 3, 4}, (81)

lim
k∈Λ

P6k+6(z)

P6k+5(z)
=

S(5)1 (z)

S(5)1 (∞)

φ1(z)

φ′

1(∞)
= F (5)1 (z), z ∈ C \ [0, α3

], (82)

where S(1)1 , S(3)1 , S(4)1 , and S(5)1 are the Szegő functions on C \ [0, α3
] with respect to the weights

1/F (1)2 (τ ), τ/F (3)2 (τ ), 1/F (4)2 (τ ), and 1/(τ F (5)2 (τ )), respectively.
Applying now the orthogonality conditions from Proposition 5.1 and (73), we deduce:

lim
k∈Λ

P6k+i+1,2(z)

P6k+i,2(z)
=

S(i)2 (z)

S(i)2 (∞)
= F (i)2 (z), z ∈ C \ [−b3,−a3

], i ∈ {0, 1, 2}, (83)

lim
k∈Λ

P6k+i+1,2(z)

P6k+i,2(z)
=

S(i)2 (z)

S(i)2 (∞)

φ2(z)

φ′

2(∞)
= F (i)2 (z), z ∈ C \ [−b3,−a3

], i ∈ {3, 5}, (84)

lim
k∈Λ

P6k+5,2(z)

P6k+4,2(z)
=

S(4)2 (∞)

S(4)2 (z)

φ′

2(∞)

φ2(z)
= F (4)2 (z), z ∈ C \ [−b3,−a3

], (85)

where S(0)2 , . . . , S(5)2 , are the Szegő functions on C \ [−b3,−a3
] associated with the weights

1

|τ F (0)1 (τ )|
,

|τ |

|F (1)1 (τ )|
,

1

|F (2)1 (τ )|
,

1

|τ F (3)1 (τ )|
,

|F (4)1 (τ )|

|τ |
,

1

|F (5)1 (τ )|
,

respectively, and φ2 is the conformal mapping that maps C \ [−b3,−a3
] onto the exterior of the

unit circle that satisfies the conditions φ2(∞) = ∞ and φ′

2(∞) > 0.

Proposition 5.5. There exist positive constants c(l)k so that the functions F (l)k := c(l)k
F (l)k satisfy

the following boundary value conditions:

|F (l)1 (τ )|2
τ

F (l)2 (τ )
= 1, τ ∈ (0, α3

], l = 0, 3, (86)

|F (l)1 (τ )|2
1

F (l)2 (τ )
= 1, τ ∈ [0, α3

], l = 1, 4, (87)

|F (l)1 (τ )|2
1

τ F (l)2 (τ )
= 1, τ ∈ (0, α3

], l = 2, 5, (88)
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|F (l)2 (τ )|2
1

|τ F (l)1 (τ )|
= 1, τ ∈ [−b3,−a3

], l = 0, 3, (89)

|F (l)2 (τ )|2
|τ |

|F (l)1 (τ )|
= 1, τ ∈ [−b3,−a3

], l = 1, 4, (90)

|F (l)2 (τ )|2
1

|F (l)1 (τ )|
= 1, τ ∈ [−b3,−a3

], l = 2, 5. (91)

Proof. It follows from the relations (79)–(85), the definition of the Szegő functions S(i)j and (78),

that there exist positive constants ω(l)1 , ω
(l)
2 , such that

|F (l)1 (τ )|2
τF (l)2 (τ )

=
1

ω
(l)
1

, τ ∈ (0, α3
], l = 0, 3, (92)

|F (l)1 (τ )|2
1F (l)2 (τ )

=
1

ω
(l)
1

, τ ∈ [0, α3
], l = 1, 4, (93)

|F (l)1 (τ )|2
1

τ F (l)2 (τ )
=

1

ω
(l)
1

, τ ∈ (0, α3
], l = 2, 5, (94)

|F (l)2 (τ )|2
1

|τ F (l)1 (τ )|
=

1

ω
(l)
2

, τ ∈ [−b3,−a3
], l = 0, 3, (95)

|F (l)2 (τ )|2
|τ |

|F (l)1 (τ )|
=

1

ω
(l)
2

, τ ∈ [−b3,−a3
], l = 1, 4, (96)

|F (l)2 (τ )|2
1

|F (l)1 (τ )|
=

1

ω
(l)
2

, τ ∈ [−b3,−a3
], l = 2, 5, (97)

where

ω
(l)
1 = (S(l)1 (∞))2, for l = 0, 1, 3, 4,

ω
(l)
1 = (S(l)1 (∞)φ′

1(∞))2, for l = 2, 5,

ω
(l)
2 = (S(l)2 (∞))2, for l = 0, 1, 2, (98)

ω
(l)
2 = (S(l)2 (∞)φ′

2(∞))2, for l = 3, 5,

ω
(4)
2 = 1/(S(4)2 (∞)φ′

2(∞))2.

The positive constants c(l)k that satisfy the requirements are c(l)1 = [(ω
(l)
1 )

2ω
(l)
2 ]

1/3, c(l)2 =

[ω
(l)
1 (ω

(l)
2 )

2
]
1/3, l = 0, . . . , 5. �

In order to prove the uniqueness of the limiting functions F (i)j , we need to use Lemma 5.6.
More general versions of this result can be found in [4] (see Lemma 4.1) and [1] (see
Proposition 1.1), so we omit the proof.

Let us first introduce some notations. Assume that ∆1,∆2 are disjoint compact intervals
in R, and let C(∆i ) denote the space of real-valued continuous functions on ∆i . We write
u = (u1, u2)

t
∈ C if u1 ∈ C(∆2), u2 ∈ C(∆1). Given u1 ∈ C(∆2), let T2,1(u1) be the

harmonic function in C \ ∆2 that solves the Dirichlet problem with boundary condition
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T2,1(u1)(x) = u1(x), x ∈ ∆2,

and given u2 ∈ C(∆1), let T1,2(u2) denote the harmonic function in C \ ∆1 that solves the
Dirichlet problem with boundary condition

T1,2(u2)(x) = u2(x), x ∈ ∆1.

Consider the linear operator T : C −→ C defined as follows:

T =

[
0 T1,2

T2,1 0

]
,

and I : C −→ C the identity operator. The auxiliary result is the following

Lemma 5.6. If u ∈ C and (2I − T )(u) = 0, then u = 0.

Now we prove that the limiting functions do not depend on the sequence Λ ⊂ N for which
(75)–(76) hold.

Proposition 5.7. The limiting functions F (i)j are unique for every j ∈ {1, 2} and i ∈ {0, . . . , 5}.

Proof. For each fixed i ∈ {0, . . . , 5}, by Proposition 5.5 the functions log |F (i)1 |, log |F (i)2 | satisfy
2 log |F (i)1 (τ )| − log |F (i)2 (τ )| = log | fi (τ )|, τ ∈ (0, α3

],

− log |F (i)1 (τ )| + 2 log |F (i)2 (τ )| = log |gi (τ )|, τ ∈ [−b3,−a3
],

(99)

where fi (τ ), gi (τ ) equal 1/τ, 1, or τ , depending on the value of i . Assume that the functionsG(i)
1 ,

G(i)
2 satisfy

lim
k∈Λ′

P6k+i+1(z)

P6k+i (z)
= G(i)

1 (z), z ∈ C \ [0, α3
],

lim
k∈Λ′

P6k+i+1,2(z)

P6k+i,2(z)
= G(i)

2 (z), z ∈ C \ [−a3,−b3
],

for some other subsequence Λ′
⊂ N. As before, we can find positive constants d(i)1 , d(i)2 so that

the functions G(i)
j := d(i)j

G(i)
j satisfy the same system (99). If we define the functions

u1 := log |F (i)1 | − log |G(i)
1 |, u2 := log |F (i)2 | − log |G(i)

2 |, u = (u1, u2)
t ,

observe that u1 is harmonic in C \ [0, α3
], u2 is harmonic in C \ [−b3,−a3

], and they are also
bounded in the corresponding regions. Moreover,

2u1(τ )− u2(τ ) = 0, τ ∈ (0, α3
],

−u1(τ )+ 2u2(τ ) = 0, τ ∈ [−b3,−a3
].

(100)

Let ∆1 := [0, α3
],∆2 := [−b3,−a3

]. From (100) and the (generalized) maximum–minimum
principle for harmonic functions, we obtain that 2u1 − T1,2(u2) ≡ 0 on C \ ∆1 and 2u2 −

T2,1(u1) ≡ 0 on C \ ∆2. In particular, (2I − T )(u) = 0, so by Lemma 5.6 we get u1 = 0 on ∆2
and u2 = 0 on ∆1. Therefore T1,2(u2) ≡ 0 on C \∆1 and T2,1(u1) ≡ 0 on C \∆2, implying that
u1 ≡ 0 and u2 ≡ 0. From |F (i)j | = |G(i)

j | it easily follows that ci
j = d i

j and F (i)j = G(i)
j . �
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Proof of Theorem 1.5. The existence of the limits (12)–(13) follows from the normality of the
families (74) and Proposition 5.7. The polynomials Pn satisfy:

P3k(z) = P3k+1(z)+ a3k P3k−2(z),

P3k+1(z) = P3k+2(z)+ a3k+1 P3k−1(z),

z P3k+2(z) = P3k+3(z)+ a3k+2 P3k(z),

and so (12) implies that the following limits hold:

lim
k→∞

a6k+i = F (i−2)
1 (z)F (i−1)

1 (z)(1 − F (i)1 (z)), i ∈ {0, 1, 3, 4}, (101)

lim
k→∞

a6k+i = F (i−2)
1 (z)F (i−1)

1 (z)(z − F (i)1 (z)), i ∈ {2, 5}, (102)

where these relations are valid for every z ∈ C \ [0, α3
](F (−2)

1 = F (4)1 , F (−1)
1 = F (5)1 ).

We have:F (i−2)
1 (z)F (i−1)

1 (z)(1 − F (i)1 (z)) = −C (i)
1 + O(1/z), z → ∞, i ∈ {0, 1, 3, 4},F (i−2)

1 (z)F (i−1)
1 (z)(z − F (i)1 (z)) = −C (i)

0 + O(1/z), z → ∞, i ∈ {2, 5},

and so (14) follows from (101)–(102). The ratio asymptotics of Qn and Qn,2 is a direct
consequence of (12)–(13). �

Proposition 5.8. Assume that the hypotheses of Theorem 1.5 hold. Then the polynomials pn,

pn,2 defined in (67) satisfy for each i ∈ {0, . . . , 5}:

lim
k→∞

p6k+i+1(z)

p6k+i (z)
= κ

(i)
1
F (i)1 (z), z ∈ C \ [0, α3

], (103)

lim
k→∞

p6k+i+1,2(z)

p6k+i,2(z)
= κ

(i)
2
F (i)2 (z), z ∈ C \ [−b3,−a3

], (104)

uniformly on compact subsets of the indicated regions, where

κ
(i)
j =


ω
(i)
j , j = 1, 2,

and the constants ω(i)j are defined in (98). Consequently, for the leading coefficients κn, κn,2
defined in (66) we have:

lim
k→∞

κ6k+i+1

κ6k+i
= κ

(i)
1 , (105)

lim
k→∞

κ6k+i+1,2

κ6k+i,2
= κ

(i)
2 . (106)

In addition, the following limits hold uniformly on compact subsets of C \ (S0 ∪ S1):

lim
k→∞

Ψ6k+i+1(z)

Ψ6k+i (z)
=

1

ω
(i)
1

F (i)2 (z3)

z2F (i)1 (z3)
, i = 0, 3, (107)

lim
k→∞

Ψ6k+i+1(z)

Ψ6k+i (z)
=

1

ω
(i)
1

zF (i)2 (z3)F (i)1 (z3)
, i = 1, 2, 4, 5. (108)
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Proof. Using the same argument employed before and Theorems 1 and 2 from [5], we obtain

lim
k→∞

p6k+i+1(z)

p6k+i (z)
= S(i)1 (z), z ∈ C \ [0, α3

], i = 0, 1, 3, 4,

lim
k→∞

p6k+i+1(z)

p6k+i (z)
= S(i)1 (z)φ1(z), z ∈ C \ [0, α3

], i = 2, 5,

lim
k→∞

p6k+i+1,2(z)

p6k+i,2(z)
= S(i)2 (z), z ∈ C \ [−b3,−a3

], i = 0, 1, 2,

lim
k→∞

p6k+i+1,2(z)

p6k+i,2(z)
= S(i)2 (z)φ2(z), z ∈ C \ [−b3,−a3

], i = 3, 5,

lim
k→∞

p6k+5,2(z)

p6k+4,2(z)
= (S(4)2 (z)φ2(z))

−1, z ∈ C \ [−b3,−a3
],

so (103) and (104) follow. (105)–(106) are immediate consequences of (103)–(104).
Observe that by (65) we can write

Ψn+1

Ψn
=

κ2
n

κ2
n+1

hn+1

hn

Qn

Qn+1

Qn+1,2

Qn,2
,

so (105) together with Lemma 5.4 and Theorem 1.5 imply (107)–(108). �

Proof of Proposition 1.6. We first show that a(i) > 0 for all i . If a(0) = 0, then (101) impliesF (0)1 ≡ 1, and using (86) we obtain that F (0)2 (z) = z on C \ [−b3,−a3
], contradicting (77). If

a(1) = 0, then again by (101) we get F (1)1 ≡ 1, and so by (87) we have F (1)2 ≡ 1, contradicting

(90). If a(2) = 0, then from (102) it follows that F (2)1 (z) = z on C \ [0, α3
], and so (88) implies

that F (1)2 (z) = z, which is impossible. Similar arguments show that a(i) > 0 for i ∈ {3, 4, 5}.

Now we prove simultaneously that F (2)1 (z) = zF (0)1 (z) and F (0)2 = F (2)2 . Let

u1(z) := log |F (2)1 (z)| − log |zF (0)1 (z)|, u2(z) := log |F (2)2 (z)| − log |F (0)2 (z)|.

Then u1 is harmonic in C \ [0, α3
] and u2 is harmonic in C \ [−b3,−a3

]. By (89) and (91) we
see that u2 is bounded on C \ [−b3,−a3

]. Taking into account the definitions of the functions
S(0)1 and S(2)1 , the boundedness of u1 is equivalent to the boundedness of the expression

1
2π

∫ 2π

0
ℜ

[
eiθ

+ 1/φ1(z)

eiθ − 1/φ1(z)

]
log(1 + cos θ)dθ − log |z|, z ∉ [0, α3

],

which follows trivially from the identity

1
2π

∫ 2π

0
ℜ

[
eiθ

+ w

eiθ − w

]
log |1 + eiθ

|dθ = log |1 + w|, |w| < 1.

Now Proposition 5.5 implies that 2u1(τ )−u2(τ ) = 0 for τ ∈ (0, α3
], and −u1(τ )+2u2(τ ) =

0 for τ ∈ [−b3,−a3
]. As in the proof of Proposition 5.7, this yields u1 ≡ 0, u2 ≡ 0. Similarly

one proves the remaining relations in (16) and (19).
From (16), (14) and (15), it follows that a(0) = a(2) and a(3) = a(5). We have by (101)–(102)

that F (0)1 (z)F (1)1 (z)(z − F (2)1 ) = a(2), F (4)1 (z)F (5)1 (z)(1 − F (0)1 ) = a(0).
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Since a(0) = a(2) and F (2)1 (z) = zF (0)1 (z), we deduce that zF (0)1
F (1)1 = F (4)1

F (5)1 , or equivalentlyF (1)1
F (2)1 = F (4)1

F (5)1 . The other two relations in (17) follow immediately using this equality
and (16).

The relations in (20) are an easy consequence of (17) and (86)–(88). Now, (18) is obtained by
dividing appropriate relations from (101)–(102), one by another, and taking into account (17).
The equality a(0) + a(1) = a(3) + a(4) follows immediately from F (0)1

F (1)1 = F (3)1
F (4)1 .

We next show that the functions F (i)1 , i ∈ {0, . . . , 5}, are all distinct. If i ∈ {0, 1, 3, 4}, then

evidently F (i)1 ≠ F (2)1 and F (i)1 ≠ F (5)1 . If F (0)1 = F (1)1 , then (92) and (93) imply that

F (1)2 (τ )F (0)2 (τ )
=
ω
(1)
1

ω
(0)
1

1
τ
, τ ∈ (0, α3

],

which is contradictory since F (1)2 /F (0)2 is holomorphic outside [−b3,−a3
]. The same argument

proves that F (0)1 ≠ F (4)1 , F (1)1 ≠ F (3)1 , and F (3)1 ≠ F (4)1 . If F (0)1 = F (3)1 , then (92) implies thatF (0)2 = F (3)2 , which is impossible (cf. (77)). Similarly (using now (93) and (94)) we see thatF (1)1 ≠ F (4)1 and F (2)1 ≠ F (5)1 .

Now we show that the functions F (i)2 , i ∈ {0, 1, 3, 4}, are all different. If we assume thatF (0)2 = F (1)2 , then (95)–(96) imply that

|F (1)1 (τ )|

|F (0)1 (τ )|
=
ω
(1)
2

ω
(0)
2

τ 2, τ ∈ [−b3,−a3
].

It follows that F (1)1 (z) = z2F (0)1 (z), which is impossible. The other cases are justified just by
looking at the Laurent expansion at infinity.

By (18) we see that a(0) ≠ a(3) and a(1) ≠ a(4). Now we show that a(1) ≠ a(3). Applying
(101) for i = 0 and the relation F (1)1

F (2)1 = F (4)1
F (5)1 , we get

F (1)1
F (2)1 (1 − F (0)1 ) = a(0).

From this relation and (101) (for i = 4), we obtain

F (1)1 (1 − F (0)1 ) =
a(0)

a(4)
F (3)1 (1 − F (4)1 ).

Applying the first two equations from (18), we derive that

F (1)1 (1 − F (0)1 ) =
a(3)

a(1)
(1 − F (1)1 )(F (0)1 − 1)+

a(0)

a(1)
(1 − F (1)1 ). (109)

If we assume now that a(1) = a(3), then (109) yields (1 − F (0)1 )/(1 − F (1)1 ) = a(0)/a(1). But
from (101) we know that

(1 − F (0)1 )F (4)1

(1 − F (1)1 )F (0)1

=
a(0)

a(1)
,

hence F (4)1 = F (0)1 , which is contradictory. Therefore a(1) ≠ a(3), and so by (21) we also obtain
that a(0) ≠ a(4). �
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Corollary 5.9. The following relations hold:

ω
(0)
1 ω

(1)
1 = ω

(3)
1 ω

(4)
1 , ω

(0)
1 = ω

(2)
1 , ω

(3)
1 = ω

(5)
1 ,

ω
(0)
2 ω

(1)
2 = ω

(3)
2 ω

(4)
2 , ω

(0)
2 = ω

(2)
2 , ω

(3)
2 = ω

(5)
2 .

Proof. All these relations follow immediately from the relations established in Proposition 1.6
and the boundary value Eqs. (92)–(97) (multiply or divide appropriately these equations, one by
another). �

6. The Riemann surface representation of the limiting functions F(i)
j

We will give now the proof of Theorem 1.7. Before doing so, we need some definitions and
comments. Let

G(i, j)
1 := F (i)1 /F ( j)

1 , G(i, j)
2 := F (i)2 /F ( j)

2 , 0 ≤ i, j ≤ 5.

Recall that the conformal representation ψ of R onto C satisfies (23). As a consequence, we
have ψ(z) = ψ(z). This property implies in particular that

ψk : R \ (∆k ∪ ∆k+1) −→ R, k = 0, 1, 2, ∆0 = ∆3 = ∅,

and

ψk(x±) = ψk(x∓) = ψk+1(x±), x ∈ ∆k+1. (110)

So all the coefficients in the Laurent expansion at infinity of the branches ψk are real. Given a
function F that satisfies

F(z) = Czk
+ O(zk−1), C ∈ R \ {0}, z → ∞,

we use the symbol sign(F(∞)) to denote the sign of C (i.e., sign(F(∞)) = 1 if C > 0 and
sign(F(∞)) = −1 if C < 0).

The function ψ0ψ1ψ2 is analytic and bounded on C, so this function is constant. Let us denote
this constant by C (we will reserve in this section the letter C for this constant). So we have

(ψ0ψ1ψ2)(z) ≡ C, (ψ0ψ1ψ2)(z) ≡ 1, z ∈ C. (111)

Proposition 6.1. The following relations hold:

G(0,3)
1 (z) =

sign((ψ1ψ2)(∞))(ψ1ψ2)(z)

|C |2/3
, G(0,3)

2 (z) =
sign(ψ2(∞))ψ2(z)

|C |1/3
. (112)

Proof. By (86) and (89) we have

|G(0,3)
1 (τ )|2

1

G(0,3)
2 (τ )

= 1, τ ∈ (0, α3
], (113)

|G(0,3)
2 (τ )|2

1

|G(0,3)
1 (τ )|

= 1, τ ∈ [−b3,−a3
]. (114)
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Observe also that G(0,3)
1 and G(0,3)

2 are bounded on C \ ∆1 and C \ ∆2, respectively. Let us call
v1 and v2 the functions on the right-hand side of the relations (112), respectively. The function
v2 is positive on ∆1 = [0, α3

] since sign(v2(∞)) = 1. Using (110)–(111), for any x ∈ (0, α3),

|v1(x±)|
2

v2(x)
=

|ψ1(x±)|
2ψ2(x)2

sign(ψ2(∞))ψ2(x)|C |
=

|ψ0(x∓)‖ψ1(x±)‖ψ2(x)|

|C |

=
|ψ0(x±)‖ψ1(x±)‖ψ2(x)|

|C |
= 1,

i.e., v1 and v2 satisfy (113) on (0, α3). On the other hand, for x ∈ (−b3,−a3),

|v2(x±)|
2

|v1(x)|
=

|ψ2(x±)|

|ψ1(x±)|
= 1,

so v1 and v2 also satisfy (114) on (−b3,−a3). Finally, the same argument used to prove Propo-
sition 5.7 yields the validity of (112). �

Proof of Theorem 1.7. By Proposition 6.1 we have:

F (4)1 /F (1)1 = F (0)1 /F (3)1 = ψ1ψ2 = 1/ψ0, (115)F (0)2 /F (3)2 = ψ2. (116)

From the first relation in (18) and (115), simple algebraic manipulations show that

F (0)1 =
a(0) − a(3)

a(0)ψ0 − a(3)
, F (3)1 =

(a(0) − a(3))ψ0

a(0)ψ0 − a(3)
.

The representations of F (2)1 and F (5)1 follow immediately from the relations F (2)1 (z) = zF (0)1 (z)

and F (5)1 (z) = zF (3)1 (z). The relation F (1)1 /F (4)1 = ψ0 and (18) prove the representations of F (1)1

and F (4)1 .
Recall that

zΨn(z) = Ψn+1 + anΨn−2, n ≥ 2. (117)

Therefore, if we define the functions

U (i)(z) := lim
k→∞

Ψ6k+i+1(z)

Ψ6k+i (z)
, z ∈ C \ (S0 ∪ S1), 0 ≤ i ≤ 5,

(by Proposition 5.8 we know that such limits exist) then we know by (117) that

a(i) = U (i−2)(z)U (i−1)(z)(z − U (i)(z)), 0 ≤ i ≤ 5,

where we understand that U (−2)
= U (4),U (−1)

= U (5). In particular, applying (107) and (108)
we obtain for i = 0, 1, 4, 5,

a(0) =
1

ω
(4)
1 ω

(5)
1

F (5)2 (z)F (5)1 (z)

F (4)2 (z)F (4)1 (z)


z −

F (0)2 (z)

ω
(0)
1
F (0)1 (z)


, (118)

a(1) =
1

ω
(0)
1 ω

(5)
1

F (0)2 (z)F (0)1 (z)

F (5)2 (z)F (5)1 (z)


1 −

F (1)2 (z)

ω
(1)
1
F (1)1 (z)


, (119)
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a(4) =
1

ω
(2)
1 ω

(3)
1

F (2)2 (z)F (2)1 (z)

F (3)2 (z)F (3)1 (z)


1 −

F (4)2 (z)

ω
(4)
1
F (4)1 (z)


, (120)

a(5) =
1

ω
(3)
1 ω

(4)
1

F (3)2 (z)F (3)1 (z)

F (4)2 (z)F (4)1 (z)


z −

F (5)2 (z)

ω
(5)
1
F (5)1 (z)


, (121)

where these identities are valid for every z ∈ C\ ([−b3,−a3
]∪[0, α3

]). If we apply the relations
a(3) = a(5), F (5)1 = zF (3)1 , F (5)2 = F (3)2 , from (118) and (121) we obtain

z
a(0)

a(3)


1 −

1

ω
(5)
1

F (3)2 (z)F (5)1 (z)


=
ω
(3)
1

ω
(5)
1


z −

F (0)2 (z)

ω
(0)
1
F (0)1 (z)


.

Using (116) and substituting in this expression the functions F (0)1 and F (5)1 by their representa-
tions in terms of the branches ψk , we get

z


a(0)

a(3)
−
ω
(3)
1

ω
(5)
1


=
(a(0)ψ0(z)− a(3))

(a(0) − a(3))


a(0)

a(3)ψ0(z)
−
ω
(3)
1
ψ2(z)

ω
(0)
1

 F (3)2 (z)

ω
(5)
1

.

The factors on the right-hand side of this equation never vanish on C \ ([0, α3
] ∪ [−b3,−a3

]),
and so we can write

F (3)2 (z) =

z


a(0)

a(3)
−

ω
(3)
1

ω
(5)
1


ω
(5)
1 (a(0) − a(3))

(a(0)ψ0(z)− a(3))


a(0)

a(3)ψ0(z)
−

ω
(3)
1
ψ2(z)

ω
(0)
1

 .
If we move z to the left-hand side and evaluate at infinity we obtain

ω
(5)
1


a(0)

a(3)
−
ω
(3)
1

ω
(5)
1


=

a(0)

a(3)
, (122)

and so the Riemann surface representation for F (3)2 follows. This also proves the representation

for the functions F (5)2 , F (0)2 , and F (2)2 .
From (119) and (120) we derive the relation

a(1)

a(4)


1 −

F (4)2

ω
(4)
1
F (4)1


=
ω
(2)
1 ω

(3)
1

ω
(0)
1 ω

(5)
1


1 −

F (1)2

ω
(1)
1
F (1)1


.

From Corollary 5.9 we know that ω(2)1 ω
(3)
1 = ω

(5)
1 ω

(0)
1 . Since F (4)2 /F (1)2 = F (0)2 /F (3)2 = ψ2 andF (4)1 /F (1)1 = 1/ψ0 = ψ1ψ2, we get

a(1)

a(4)
− 1 =

F (4)2F (4)1


a(1)

a(4)ω(4)1

−

ψ1

ω
(1)
1


.

Evaluating at infinity we obtain the relation

ω
(1)
1 =

a(4)

a(4) − a(1)
, (123)
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and so we can write

F (4)2 =

F (4)1

(ψ1 − (ω
(1)
1 − 1)/ω(4)1 )

.

Therefore, the Riemann surface representation of F (4)2 follows from that of F (4)1 and the repre-

sentation of F (1)2 follows from the relation F (4)2 = ψ2F (1)2 .

Now from (122) and Corollary 5.9 we get ω(3)1 = ω
(5)
1 = a(0)/(a(0) − a(3)). If we evaluate

both sides of Eq. (121) at infinity we obtain a(5) = a(3) = (1 − 1/ω(3)1 )/(ω
(3)
1 ω

(4)
1 ), and so

ω
(4)
1 = (a(0) − a(3))/(a(0))2. Finally, from Corollary 5.9 and the above computations we deduce

that ω(0)1 = ω
(2)
1 = (a(4) − a(1))/(a(0)a(4)). �

Remark 6.2. Since ω(1)1 > 0, it follows from (123) that a(4) > a(1).

Proof of Proposition 1.8. It is straightforward to check that the function

χ(z) = ψ


−

a3

2
(1 + z)


− ψ(∞(0)), ∞

(0)
∈ R,

is a conformal representation of the Riemann surface S constructed as R (22) but formed by the
sheets

S0 := C \ [−µ,−1], S1 := C \ ([−µ,−1] ∪ [1, λ]), S2 := C \ [1, λ],

where λ and µ are defined in (24). χ also satisfies χ(z) = z + O(1) as z → ∞
(1), and has a

simple zero at ∞
(0)

∈ S . Observe that χ(∞(2)) = −ψ(∞(0)) (the reader is cautioned that in
this relation, ∞

(2)
∈ S and ∞

(0)
∈ R).

χ and S are the types of conformal mappings and Riemann surfaces analyzed in [11].
It follows from [11, Theorem 3.1] that χ(∞(2)) = 2/H(β), where H and β are described
in the statement of Proposition 1.8 (the uniqueness of β and γ is justified in [11]). So
χ(z) = ψ(−a3(1 + z)/2) + 2/H(β). It also follows from [11, Theorem 3.1] that the function
w = H(β)χ(z)− 1 is the solution of the algebraic equation

w3
− (H(β)z + Θ1 − Θ2 − h)w2

− (1 + Θ1 + Θ2)w + H(β)z − h = 0,

where Θ1,Θ2, and h are the constants described in the statement of Proposition 1.8. Simple
computations and a change of variable yield immediately that w = ψ(z) is the solution of
Eq. (25). �

7. The nth root asymptotics and zero asymptotic distribution of the polynomials Qn and
Qn,2

It is well known (see [14]) that if E ⊂ C is a compact set that is regular with respect to the
Dirichlet problem, and φ is a continuous real-valued function on E , then there exists a uniqueµ ∈ M1(E) satisfying the variational conditions

Vµ(z)+ φ(z)


= w, z ∈ supp(µ),
≥ w, z ∈ E,

for some constant w. The measure µ is called the equilibrium measure in the presence of the
external field φ on E , and w the equilibrium constant.
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Recall that we defined λ1 to be the positive, rotationally invariant measure on S0 whose
restriction to the interval [0, α] coincides with the measure s1(x)dx , and we defined λ2 to be the
positive, rotationally invariant measure on S1 whose restriction to the interval [−b,−a] coincides
with the measure s2(x)dx .

Lemma 7.1. Suppose that λ1, λ2 ∈ Reg. Then the following measures are also regular:

s1(
3
√
τ)

τ 2/3 dτ, s1(
3
√
τ) 3

√
τdτ, τ ∈ [0, α3

], (124)

s2(
3
√
τ)dτ,

s2(
3
√
τ)

3
√
τ

dτ,
s2(

3
√
τ)

τ 2/3 dτ, τ ∈ [−b3,−a3
]. (125)

Proof. Let πn be the nth monic orthogonal polynomial associated with λ1, i.e., πn is the monic
polynomial of degree n that satisfies∫

S0

πn(t)tkdλ1(t) = 0, 0 ≤ k ≤ n − 1. (126)

It is immediate to check that πn(e
2π i
3 z) = e

2π in
3 πn(z). We deduce from this property and (126)

that the polynomials

π3k(
3
√
τ),

π3k+1(
3
√
τ)

3
√
τ

,
π3k+2(

3
√
τ)

τ 2/3 ,

are precisely the monic orthogonal polynomials of degree k associated, respectively, with the
measures

s1(
3
√
τ)

τ 2/3 dτ, s1(
3
√
τ)dτ, s1(

3
√
τ)τ 2/3dτ. (127)

We also have:∫
S0

|π3k(t)|
2dλ1(t) =

∫ α3

0
(π3k(

3
√
τ))2

s1(
3
√
τ)

τ 2/3 dτ,∫
S0

|π3k+1(t)|
2dλ1(t) =

∫ α3

0


π3k+1(

3
√
τ)

3
√
τ

2

s1(
3
√
τ)dτ,∫

S0

|π3k+2(t)|
2dλ1(t) =

∫ α3

0


π3k+2(

3
√
τ)

τ 2/3

2

s1(
3
√
τ)τ 2/3dτ.

So taking into account (see [13, Theorem 5.2.5]) that

cap(supp(λ1)) = cap(supp(ρ))1/3,

where cap(A) denotes the logarithmic capacity of A, and ρ is any of the three measures in (127),
the regularity of λ1 implies the regularity of the three measures in (127).

Let ln denote the nth monic orthogonal polynomial associated with the measure dρ1(τ ) :=

s1(
3
√
τ) 3

√
τdτ , and let Tn be the nth Chebyshev polynomial (see [13], page 155) for the set

E := supp(ρ1). We have∫
l2
n(τ )dρ1(τ )

1/2

≤

∫
T 2

n (τ )dρ1(τ )

1/2

≤ ‖Tn‖Eρ1(E)
1/2,
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where ‖Tn‖E denotes the supremum norm of Tn on E , and so by [13, Corollary 5.5.5] we obtain

lim sup
n→∞

‖ln‖
1/n
2 ≤ lim

n→∞
‖Tn‖

1/n
E = cap(supp(ρ1)). (128)

If we call ln the nth monic orthogonal polynomial associated with the measure dρ2(τ ) :=

s1(
3
√
τ)τ 2/3dτ , we have∫ l2

n(τ )dρ2(τ )

1/2

≤ α1/2
∫

l2
n(τ )dρ1(τ )

1/2

,

and so the regularity of ρ2 and (128) imply the regularity of ρ1. Similar arguments show that the
measures in (125) are regular. �

Proof of Theorem 1.10. Recall that if P is a polynomial, we indicate by µP the associated
normalized zero counting measure. Let j ∈ {0, . . . , 5} be fixed, and assume that for some
subsequence Λ ⊂ N we have:

µP6k+ j

∗
−→ µ1 ∈ M1(∆1), µP6k+ j,2

∗
−→ µ2 ∈ M1(∆2).

Consequently,

lim
k∈Λ

1
2k

log |P6k+ j (z)| = −Vµ1(z), z ∈ C \ ∆1, (129)

lim
k∈Λ

1
4k

log |P6k+ j,2(z)| = −
1
4

Vµ2(z), z ∈ C \ ∆2, (130)

uniformly on compact subsets of the indicated regions.
We know by Proposition 5.2 that there exists a fixed measure dρ supported on ∆1 (dρ is one

of the measures in (124)) such that

0 =

∫
∆1

τ j P6k+ j (τ )
dρ(τ)

P6k+ j,2(τ )
, 0 ≤ j < deg(P6k+ j ). (131)

We know by Lemma 7.1 that the measure dρ is regular. If we apply [7, Lemma 4.2] (taking, in
the notation of [7], dσ = dρ, φ2k = 1/P6k+ j,2 and φ = −(1/4)Vµ2 ), we obtain from (130) and
(131) that µ1 is the equilibrium measure in the presence of the external field φ = −(1/4)Vµ2 ,
hence

Vµ1(τ )−
1
4

Vµ2(τ )


= w1, τ ∈ supp(µ1),

≥ w1, τ ∈ ∆1,
(132)

and

lim
k∈Λ

∫
∆1

P2
6k+ j (τ )dν6k+ j (τ )

1/4k

= e−w1 , (133)

where the measure dν6k+ j is defined in (69).
By Proposition 5.1, there exists a fixed measure dη (dη is one of the measures in (125))

supported on ∆2 such that

0 =

∫
∆2

τ j P6k+ j,2(τ )
|h6k+ j (

3
√
τ)|

|P6k+ j (τ )|
dη(τ), 0 ≤ j < deg(P6k+ j,2). (134)
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The function h6k+ j is defined in (68). We also know by Lemma 7.1 that dη is regular. Taking
into account the representations (70) and the fact that pn is orthonormal with respect to dνn (see
(67) and Proposition 5.3), it follows that there exist positive constants C1,C2 such that

C1 ≤ |h6k+ j (
3
√
τ)| ≤ C2 for all τ ∈ ∆2.

So applying again [7, Lemma 4.2] (now take dσ = dη, φk(τ ) = |h6k+ j (
3
√
τ)|/|P6k+ j (τ )| and

φ = −Vµ1 ), we get from (134) and (129) that µ2 is the equilibrium measure in the presence of
the external field φ = −Vµ1 , and so

Vµ2(τ )− Vµ1(τ )


= w2, τ ∈ supp(µ2),

≥ w2, τ ∈ ∆2,
(135)

and

lim
k∈Λ

∫
∆2

P2
6k+ j,2(τ )dν6k+ j,2(τ )

1/2k

= e−w2 , (136)

where the measure dν6k+ j,2 is defined in (69).
By (132) and (135), the vector measure (µ1, µ2) solves the equilibrium problem determined

by the interaction matrix (27) on the intervals ∆1,∆2. Since the solution to this equilibrium
problem must be unique, (26) follows. (133) and (136) imply (29). Finally, (28) is an immediate
consequence of (26). �

Proof of Proposition 1.12. By Theorem 1.5 we know that the following limit holds:

lim
k→∞

Q6(k+1)(z)

Q6k(z)
=

5∏
i=0

F (i)1 (z3), z ∈ C \ S0.

Therefore we obtain that

lim
k→∞

|Q6k(z)|
1/k

=

5∏
i=0

|F (i)1 (z3)|, z ∈ C \ S0,

and by Corollary 1.11 it follows that

e−
1
3 Vµ1 (z3)

=

5∏
i=0

|F (i)1 (z3)|1/6 z ∈ C \ S0.

So the first relation in (30) is proved. The same argument justifies the other relation. �
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