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Abstract

For a system of two measures supported on a starlike set in the complex plane, we study the asymptotic
properties of the associated multiple orthogonal polynomials Q, and their recurrence coefficients. These
measures are assumed to form a Nikishin-type system, and the polynomials Q, satisfy a three-term
recurrence relation of order three with positive coefficients. Under certain assumptions on the orthogonality
measures, we prove that the sequence of ratios {Q,11/Qxn} has four different periodic limits, and we
describe these limits in terms of a conformal representation of a compact Riemann surface. Several relations
are found involving these limiting functions and the limiting values of the recurrence coefficients. We also
study the nth root asymptotic behavior and zero asymptotic distribution of Q.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction and statement of main results

This work was motivated by recent investigations of Aptekarev et al. [2] on asymptotic
properties of monic polynomials Q,, generated by the higher-order three-term recurrence relation

20n = On+1 + @y Qn—p, n=p, peN, a, >0, (D
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with initial conditions

Qj(z)zzly JZO,,p (2)

In [2], strong asymptotics of O, was studied by assuming that the recurrence coefficients satisfy
&S]
Z|an—a|<oo, a>0. 3)
n=p
An important element in the asymptotic analysis of the polynomials Q, is the starlike set
- p
So = | Jexp@rik/(p + 1[0, 0], &= [(p+ 1)/p?/PTD1a"/PTD.

k=0

In fact, [2, Theorem 7.2] asserts that

lim QZ—(Z) = Fy(z), uniformly on compact subsets of C \ §0,
n—o00 wy (Z)
where w(z) is the unique branch of the algebraic equation 1£p+1 —zw? 4+ a = 0 that is

meromorphic at infinity and has an analytic continuation in C \ Sp.

We remark that notable families of polynomials satisfy (1) in the constant coefficients
case, for example the classical monic Chebyshev polynomials of the second kind U,(x) =
sin((n + 1) cos~!(x/2))/ sin(cos~ ' (x/2)) for the segment [—2,2] (p = 1,a, = 1 for all n).
It was shown by He and Saff [9] that the Faber polynomials associated with the closed domain
bounded by the (p + 1)-cusped hypocycloid with parametric equation

1
z =exp(if) + —exp(—pif), 0<6 <2m, p=>2,
p

are also generated by the recurrence relation (1) with constant coefficients a, = a = 1/p, and
their zeros are contained in Syp. Many other properties of the zeros of these Faber polynomials
were obtained in [9,6].

Using operator theoretic techniques, in [3] it was proved that the polynomials Q,, generated
by (1)—(2) are in fact multiple orthogonal polynomials with respect to a system of p measures
supported on

P
U exp(2rik/(p + 1))[0, c0).
k=0

Moreover, if (3) holds then the orthogonality measures have a specific hierarchy structure; they
form a Nikishin-type system (see Section 8 and Theorem 9.1 in [2]). This system is the system
of spectral measures of the banded Hessenberg operator (with only two nonzero diagonals)
associated with (1).

In this paper we study, among other topics, ratio and nth root asymptotics of multiple
orthogonal polynomials associated with a Nikishin-type system of two measures supported on a
starlike set, starting from assumptions on these orthogonality measures. For simplicity we assume
that these measures are given by weights. Under similar assumptions, analogous results can be
obtained for general measures. We introduce next the Nikishin-type system.
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Let

2
So = | exp(@rik/3)[0,a]. 0 < < oo.
k=0

We emphasize that « is arbitrary here. Assume that s7 is a complex-valued function defined on
So, such that

s1>0 on(0,a), s € L0, ),
o1 <e%z) =5, 28\ {0, @ et a, e%a} .

Set

—a ;
f(Z)::zz/ ij()t3dt, 0<a<b<oo,
—b —

where s, is a non-negative integrable function defined on [—b, —a]. Note that f is analytic in
C\ Si, where

2
S = exp(@rik/3)[—b, —al.
k=0

We may assume that s, = 0 on (—o00,0] \ [—b, —a], and we extend s, to the set UI%:O
exp(2mik/3)(—oo0, 0] through the symmetry property

2mi

$2 (eTz) = e%sz(z), z€ Ui=o exp(2mik/3)(—o0, 0].

Then
L 2T s
f(z)—3fS1t_Zdt— 3/_173 (23_1)12/3&, zeC\ . 4)

The Nikishin-type system is then the system of measures {s; (¢)dt, f(¢)s1(¢)d¢} defined on Sy.
Let {Q,}72, be the sequence of monic polynomials of lowest degree that satisfy the following
conditions:

Q2 (D" s1(1)dt = 0, k=0,....n—1,
So
/ Q2 (O f(1)s1(1)dt = 0, k=0,...,n—1,
; )
Qont1 (DFs1(1)dt = 0, k=0,...n,
So

/ Q2n+1(t)tkf(t)s1(t)dt =0, k=0,...,n—1.
So

These are the polynomials whose algebraic and asymptotic properties we investigate.

Proposition 1.1. The degree of each polynomial Q,, is maximal, i.e., deg Q,, = n. Moreover, if
n = 3j, then Q, has exactly j simple zeros on the interval (0, o). If n = 3j + 1, then Q, has
a simple zero at the origin and j simple zeros on (0, ). Finally, if n = 3j + 2, then Q, has a
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double zero at the origin and j simple zeros on (0, o). The remaining zeros of Q, are located
on the rays exp(2mi/3)(0, o), exp(4mi/3) (0, ), and are rotations of the zeros on (0, o).

Proposition 1.2. The monic polynomials Q,, satisfy the following three-term recurrence relation

20n = Ony1+anQn2, n=2, ap €R, (6)
where

Qi(=2z/, j=012 (7
The coefficients a,, are given by the formulas

a0y — Jo 1" Q2u(t)s1(1)dt Jo 1" Qony1 (1) f (1)s1(£)ds ®

T amsid T T 00, 0 f s (dt

Moreover, a, > 0 foralln > 2.

Propositions 1.1 and 1.2 are proved in Section 2. Let

W, (z) == L0} ) s1(t)dt.

S() -

The functions ¥, (usually called functions of second type) satisfy:

7, € H(C\ Sp),
Uy, (2) = O(1/2"h, 7 — 00, 9)
Uont1(z) = O(1/7"2), 7 — oc.

It is important for our analysis to determine the exact number of zeros of ¥, outside Sy, and their
location. The following result, proved in Section 3, gives the answers to these questions.

Proposition 1.3. For each j € {0, 1,2, 3, 5}, the function W ; has exactly 31 simple zeros in
C\ So, of which 1 zeros are located in (—b, —a), and the remaining 2l zeros are rotations of these
I zeros by angles of 2m /3 and 41 /3; We 4 ; has no other zeros in C\ So. The function W14 has
exactly 31 + 3 simple zeros in C \ Sy, of which | + 1 zeros are located in (—b, —a), and the
remaining 21 + 2 zeros are rotations of these | + 1 zeros by angles of 2 /3 and 41w /3; Wei14 has
no other zeros in C \ Sp.

Let us define Q2 as the monic polynomial whose zeros coincide with the zeros of ¥, in
C\ So.

The following result asserts that for consecutive values of n, the zeros of Q,, interlace, and
the same is true for the zeros of Q, 2.

Theorem 1.4. For every n > 0, the polynomials Q, and Q,+1 do not have any common zeros
in (0, @). Moreover, there is exactly one zero of Q,4+1 between two consecutive zeros of Q in
(0, @). Conversely, there is exactly one zero of Q, between two consecutive zeros of Qpn+1 in
O, a).

Additionally, for every n > 0, the functions ¥, and W,+1 do not have any common zeros in
(—=b, —a). There is exactly one zero of W,+1 between two consecutive zeros of ¥, in (—b, —a),
and vice versa.
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Theorem 1.4 is proved in Section 4. We can determine exactly how the zeros of O, interlace,
thanks to the fact that the recurrence coefficients a, are all positive (see Proposition 4.2 in
Section 4).

We next describe the ratio asymptotics of the polynomials O, and O, 2, and the limiting
behavior of the recurrence coefficients a,. By Propositions 1.1 and 1.3, for some polynomials P,
and P, » we may write:

03(t) = Pk(th),  Q341(1) = tPy41(2?),  Qmg2(r) = T2 Pyga(e?),  (10)
0n2(7) = Pya(7d). (11)

Theorem 1.5. Assume that s1 > 0 a.e. on [0, «] and s3 > 0 a.e. on [—b, —a). Then, for each
i €{0,...,5}, the following limits hold:

Poivi+1(2) =@ 3
o _F 0 12
A e (@) (@), z€C\[0,a7], (12)
Poi+i+1,2(2) =) 3 43
——— = F,(2), z€C\[~a’, =b7], 13
k=00 Pepyi2(z) 2 @ \ (13

where convergence is uniform on compact subsets of the indicated regions. Moreover (cf. (6)),

(i) .
) —C,’, forie{0,1,3,4},
lim ages = | Ol JoTEE } (14)
k— 00 —CO , forl S {2, 5},
where
FO(g) = 1+ Cf.)/z +0(1/z%), forie{0,1,3,4}, (15)
! 24+ Cy +0(1/2),  forie(2,5),

is the Laurent expansion at oo of F 1('). Consequently, the limits

Qi1 @) _ FPE), zeC\So, i€{0,1,3,4],
k=00 Qek+i(2)

Oskrit1(@)  F' (@)
koo Qerri(z) 22

Oék+i+1,2(2)
k=00 Qek+i,2(2)

hold uniformly on compact subsets of the indicated regions.

zeC\ S, i {25}

=R, zeC\S.ie(0,....5),

We also describe in Proposition 5.8 (Section 5) the ratio asymptotic behavior of the functions
of second type ¥,, as well as the ratio asymptotic behavior of the polynomials p,, p, > defined
in (67) (these polynomials are “orthonormal versions” of the polynomials P,, P, » defined in
(10)—(11), see Proposition 5.3) and their leading coefficients.

Several relations can be established among the limiting functions F 1(’), 1?2('), and the limiting
values of the recurrence coefficients (see also the boundary value properties described in
Proposition 5.5).

Let us define

a® = lim agryi, 0<i <5.
k—o00
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Proposition 1.6. The following relations among the functions F ;i) are valid:

FP@=F"@. F2@=F@. (16)
F(O)F(l) F(3)F(4) F(l)F(2) F(4)F(5) F(Z)F(3) F(5)F(0) (17)
3 4 5

1_F1():£ 1—F1(>:£ z—FlU(z):ﬁ a8)

I FO ~ a® I—FD ~ a® —FOr  a®

~(0 2 ~3 ~(5

R’ =F?, FE’=F, (19)

F(O)F(l) F(3)F(4) F(I)F(Z) F(4)F(5) 172(2) f2(3) — 1“52(5) fZ(O). (20)
Furthermore, the functions F(l), i € {0,...,5}, are all distinct, and the functions I?(i),i €

{0, 1, 3, 4}, are also distinct. '
Foreveryi € {0,...,5}, a® > 0, and the following relations hold:

d® — @ OO O ) G @) @1

The following inequalities also hold:

a® £a®, 4O L@ O 2O D g @

In fact, we will show that a® > a1 and therefore (21) implies that @ > a® (see
Remark 6.2). Theorem 1.5 and Proposition 1.6 are proved in Section 5.
We next describe the limiting functions F ]@ in terms of a conformal representation of a

compact Riemann surface. Let A; := [0, @3], and A, := [—b3, —a®]. Consider the three-sheeted
Riemann surface

R =RoUR1URy,
formed by the consecutively “glued” sheets
Ro ::C\Al, R1 :=@\(A1UA2), R> Z=@\A2. (22)

Since R has genus zero, there exists a unique conformal representation v of R onto C satisfying:

{WZ) = —2z/a* + 0(1), z— ooV eRy, (23)

V() =B/z+0(1/7%), z— o® eR,y, B#0.

Here —a? is the right endpoint of A,. Let {wk}%zo denote the branches of .

Finally, given an arbitrary function H(z) that has in a neighborhood of infinity a Laurent
expansion of the form H(z) = CzF + 0(zF1), C # 0,k € Z, we denote by H the function
H/C.

Theorem 1.7. The following representations are valid:

=0) _ a(O)N_ a® =) _ (0(4): aMyyrg F(z)(z) _ Z(a~(0) —a®)
1 aOy —a®’ 1 a®yy —a®’ 1 a®yo(z) —a®’
©) _ 0N @ _ o _ 03y
~ a a ~ a a ~ zla a Ve
F1(3) _( )Vo @ _ FO ) = ( Y¥o(z)

a®yy—a® "’ LT a®ygy —a’ ! T aOy(z) —a®
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a©@® — a®)z90(2)9(2)
@® — a® PG P2(2) /o) @O Py (z) —a®)’
a©® @O — a(3))zfﬁo(z)
@® — a® PP P2(2) /0 ") @O Py (z) — a®)’

O =2
E%@) = FK2 () =

€ =S
) =F)k) =

~) a® _ 4
b = T —ain M )y’
Vo(aWyo —a') (Y1 — (0" = D/wy)
@ _ 40
~ a —da
Y

T @90 - )@ — @ - D/

The constants a)il) are the reciprocals of the right-hand sides in the boundary value Egs. (92)—

(94). They can be written in terms of the limiting values a® as follows:

4 1 0 4
SO _ o _ 4P —a? O e a? S a?
I I 0@ I T L0 Z 00 1T om0
w  a® —a®
(,01 = —(a(o))2

Using Theorem 3.1 from [11], we can easily describe the cubic algebraic equation solved by
Y. The coefficients of this equation can be computed exclusively in terms of the endpoints of the
intervals Ay and As,.

Proposition 1.8. Let

2b° 203
)\.=?—1, /J,=a—3+1, (24)

and let B and y be the unique solutions of the algebraic system

{2(/3+V)(3—/3)/—ﬂ—y)(3—ﬂy+ﬁ+y)+(k—u)(/3—7/)3 =0,
G4+ B -y =4G+ By’ U —BY)Q+B+1)Q2—B— ),

satisfying the conditions —1 <y < f < 1. Then w = ¥ () is the solution of the cubic equation

S 3+h+6,-61] ,
v +[a3+1+ H(B) }w
4z 2 24+2h+ 6, —36,; 26,
_ —0, 25
[a3H(/3)+H(ﬁ)+ H(p) }w H(p) ()
where

B Oz 6z 1 B-y)?

H(Z)—h-i—z-i-:-i-l_i_z, h—4(ﬂ+)’)<2,3)’_ 1__ﬂ)/)’

1 1
01 = Z(l -l -1 - —y), 6, = Z(l +od+d)d+ (1 +y),
c and d are the solutions of the equation
R
1= By
satisfying c < —1,d > 1.

X+ (B+y)x+ 3=0,
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Remark 1.9. Using (25) and Theorem 1.7, it is easy to deduce that

3
a’ o
a0 g Y% @ o
4H(B)

Theorem 1.7 and Proposition 1.8 are proved in Section 6. We now describe the results on nth
root asymptotics and zero asymptotic distribution for the polynomials Q, and Q, ». First, we
introduce certain definitions and notations.

Given a compact set £ C C, let M (E) denote the space of all probability Borel measures
supported on E. If P is a polynomial of degree n, we indicate by p p the associated normalized
Zero counting measure, i.e.,

1
Mp = ; Z Oy,
P(x)=0

where §; is the Dirac measure with unit mass at x (in the sum the zeros are repeated according
to their multiplicity). If u € M (E), let

Vi (z) = flog

du(t),
B wu(r)

and for a sequence {u,} C M(E), uy N w refers to the convergence of w, in the weak-star
topology to u.

Let E1, E> be compact subsets of C, and let M = [c; «] be a real, positive definite, symmetric
matrix of order two. Given a vector measure & = (i1, w2) € Mi(E1) x M1(E>), we define the
combined potential

2
WE =Y eV, =12,
k=1

and the constants
wjf = inf{W;‘(x) cx€Ej}, j=12

It is well known (see [12, Chapter 5]) that if E, E; are regular with respect to the Dirichlet
problem, and c;;x > 0 in case E; N Ex # (, then there exists a unique vector measure
= (L, ) € Mi(E1) x M{(E,) satisfying the properties W;L(x) = a)}‘ for all x €
supp(#£;), j = 1,2. The measure i is called the vector equilibrium measure determined by
the interaction matrix M on the system of compact sets (Eq, E3), and a)'lu a)g are called the
equilibrium constants.

Let A1 be the positive, rotationally invariant measure on Sy whose restriction to the interval
[0, @] coincides with the measure s1(x)dx, and let Ap be the positive, rotationally invariant
measure on S; whose restriction to the interval [—b, —a] coincides with the measure s (x)dx.

Let Reg denote the space of regular measures in the sense of Stahl and Totik (see definition
in [15, pg. 61]). The zero asymptotic distribution and nth root asymptotics for the polynomials
P, and P, > can be described as follows:

Theorem 1.10. Assume that the measures A1 and Ay are in the class Reg, and suppose that
supp(Xr1) and supp(r2) are regular for the Dirichlet problem. Then

p, — T € Mi(AD,  pp,, — Hy € Mi(dy), (26)



1154 A. Lépez Garcita / Journal of Approximation Theory 163 (2011) 1146—1184
where ft = (L1, [Lp) is the vector equilibrium measure determined by the interaction matrix
1 —1/4
/ @)
—1/4 1/4
on the system of intervals (A, Ay). Therefore, the limits

lim [P0/ = =3V, e\ A
n—>0oo

(28)
lim [P, 2(2)]/" = V2@, zeC\ A,
n—oo
hold uniformly on compact subsets of the indicated regions. Moreover,
o3 1/n -~
. 2 — 2t
lim </ P, (‘E)d\}n(‘[)> =e 391,
n—oo 0
(29)

4T
3

1/n
P,,z,z(f)dvn,z(r)) =e 3“2,

—da
lim /
n—>0oo 7b3

where (a)'f , a)g“ ) is the corresponding vector of equilibrium constants, and the varying measures
dv, and dv, > are defined in (69).

Corollary 1.11. Under the same assumptions of Theorem 1.10, let @ = (@, ,) be the
vector equilibrium measure determined by the interaction matrix (27) on the system of intervals

[0, &3], [=b3, —a?], and let (a)f, a)g) be the corresponding vector of equilibrium constants.
Consider the probability measures 91 € M1([0, «]) and v, € M ([—b, —al), defined as
follows:

91(E) = (EY), Ecl0,al, 9(E) =M(E*, ECI[-b,—al,

where E3 = (x3 : x € E}. If we denote by Zg, the set of all roots of Qn on (0, @), and by Zg,,
the set of all roots of Q.2 on (—b, —a), then

—ZB—)I?], Z(S—>l92

X€Zg, XEZQ 2
The limits

lim |0, ()" =e 3V @) zeC\ s,
n—oo

lim [Q,2(2)|"/" =e —sVRE eC\ Sy,
n— oo

hold uniformly on compact subsets of the indicated regions. Finally, we have

s A\ o
, ) 151(1) VK _ 20l
kll)rrgo (/0 Q3k+1(t)—Q3k+1,2(t)dt> =ec 1,

. « s1(t) kL
lim f 0?2 (t)—dt) — e 200,
k—>°<>< 0 K 05400(0)
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lim < - 0% (1) 'h”(t”sz(r)dt)l/n:e—éw&‘
n—oo \ J_, =720, ’

where the functions h, are defined in (68) (see also (70)).

The following proposition provides a link between the results on ratio and nth root
asymptotics.

Proposition 1.12. Under the same assumptions of Theorem 1.5, the following relations hold:
_ 1S .
Vi@ =33 loglF{"@I. zeC\[0.e’]

5i:() (30)
Vi) == log|Fy @),  zeC\[-b’, —a’],
i=0

where (L1, [Ly) is the vector equilibrium measure determined by the interaction matrix (27) on
the system of intervals [0, a3, [-b3, —ad].

Theorem 1.10 and Proposition 1.12 are proved in Section 7. Corollary 1.11 follows immedi-
ately from Theorem 1.10, so we omit its proof.

2. The polynomials Q,,

Observe that the functions ¥, satisfy the orthogonality conditions

0= / t' Uopri(®)so(t)dt, v=0,...,n—1,i=0,1. (31
N
This follows directly from the definition of ¥5,;, (4) and (5), since

Y —x¥ +xV

f 1 U (D2 (1)t = / Orisin) [ T (e
S1 So M X —1

= f Qon+i () (py(x) = 3x” f(x))s1(x)dx,
So
where p, is a polynomial of degree at most n — 2.

Proposition 2.1. Let Q,, be the monic polynomial of smallest degree satisfying (5). If d, =
deg Q,,, then

27 2idy I
0, (%) =0, 0u0) = 00D, (32)
Furthermore, for each) <k <n — 1,
o . .
0= f t* Q2 (1) (1 + T EFTDm)/3  Amilhtdan) 3y g, (1)dt, (33)
0
o . .
0= / tk an(t)(l + e2711(/(-‘,—2-‘,—d2n)/3 + e47r1(k+2+d2,,)/3)s] (t)f(t)dt, (34)
0

o . .
0 — f tk QZn-‘,—](t)(l + 627T1(k+2+d2n+|)/3 + e4ﬂl(k+2+d2n+1)/3)sl (t)f(t)dt, (35)
0



1156 A. Lépez Garcita / Journal of Approximation Theory 163 (2011) 1146—1184

and for each 0 < k < n,

o . .
0= / t* Qo1 (1) (1 4 e EF )3 4 edmithtdunc) 3y, (1)ds. (36)
0

2mi

Proof. It is easy to check that Q,(z), O, (e 3 Z) / e% and Q,(z) satisfy the same orthogo-

nality conditions. By the uniqueness of the definition of Q,, these polynomials must be equal to
each other, so (32) holds. If we write (5) in terms of [0, o], we obtain (33)—(36). [

Lemma 2.2. Let ny, ny be non-negative integers, and assume that Py, P> are polynomials, not
both identically equal to zero, such that deg Py < n1—1 and deg P> < ny — 1. Then the functions

Hi(t) == Pi(t) + (Ot f (1), t>0,
Hy(t) = Pi(t)t + Py(t)V1 f(N/1), >0,

have at most n1 + no — 1 zeros on (0, 00), counting multiplicities.

Proof. Let o be a finite positive measure with compact support in R, and let

50 = / do (x)

7—x

Lemma 5 in [8] asserts that {1,0} forms an AT system on any closed interval A C R
disjoint from Co(supp(o)), the convex hull of supp(c). This means that for any multi-index
(n1,ny) € Zi, and any pair of polynomials 7, 7y with degm; < ny — 1,degmy < np — 1,
not both identically equal to zero, the function 7r; + 7,0 has at most ny + ny — 1 zeros on A,
counting multiplicities. By (4) we know that Hy(¢t) = t(Py(t) + P»(¢)5(¢)), where o denotes
now the measure (s2(J/7)/ 372/ 3)d'l: supported on [—b3, —a3], so the assertion concerning Hj is
valid.

Let n; > no, and suppose that there exist polynomials P;, P>, not both identically equal to
zero, such that Hj has at least n1 + n2 zeros on (0, 0o), counting multiplicities. We may assume
that P, #£ 0. Let T be a polynomial of degree nj + n; that vanishes at n; + ny zeros of Hy on
(0, 00). Hp can be analytically extended onto C \ [—b3, —a3],

3

H P P —a S d 1

1) _ P 2P 2(J7) dr s s
Tz T@ 3T@ Jp» z-1 3 Znatl

By a standard argument this implies that

—a* 2t Py (1)s52(J/7)
0=
/,bz T(t)t2/3

dr, 0<v=<ny—1,

contradicting the fact that deg P, < np — 1. If n1 < np, we use again this argument by
contradiction, but now we divide Hy(z) by T(z)o(z) instead of T'(z), and use the fact that
1/0(z) = I(z) + 11(z), where I(z) is a polynomial of degree one and w is a measure of constant
sign supported on [—b>, —a?] (see the Appendix of [10]). [

Proof of Proposition 1.1. Assume first that n = 3/, d», = 3. Then (33)—(34) reduce to

0= / ) 3 Qo (1)s1(1)dr = / ) P} Qo ()tf (t)s1()dr, 0<k<I—1.
0 0
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From (32) and the assumption da, = 3, we deduce that Q2,(7) = ézn (#3), for a polynomial
0>, of degree j. Therefore,

0{3

a3

- | rkézn(wéﬁf(f/?)sl(%)%, 0<k=i-1. @)
0

Suppose that ézn has N < 2[ sign change knots on (0, «3). Let Pj, P, be polynomials of
degree at most [ — 1, (P, P) # (0,0), such that H (1) = Py(t) + P2(t)~/t f (/1) has a zero
at each point where an changes sign on (0, « 3), and a zero of order 21 — 1 — N at o3. By
Lemma 2.2, H; has no zeros on (0, a3] other than the 2/ — 1 prescribed. Combining the two
orthogonality conditions in (37) we obtain

/ H10) Do (091 (/D) 55 =

This contradicts the fact that H; ézn is real valued and has constant sign on [0, &>]. Applying
(32) we conclude that 05, has exactly 2n simple zeros on Sy, 2n/3 of them are located on (0, «),
and the remaining zeros are rotations of the zeros on (0, ) by angles of 27r/3 and 47/3.

Suppose now that n = 3/ and dy, = 3j + 1. We will reach a contradiction. In this case
QO (t) = l‘an (#3), for some polynomial Qz,, of degree j. From (33) and (34) we deduce that

o dr
0= [ G905
0 T

(13

~ d
=f0 0 (VT f WO () 5. 0=k =i-1. (38)

The polynomial ézn has N < j sign change knots on (0, a3) Since d», < 2n, we have
J < 21 — 1. Let Py, P, be polynomials of degree at most / — 1, not both simultaneously zero,
such that Hy(¢) = P1(t)t + P> ()t tf (1) has a zero at each point where an changes sign on
(0, &) and has a zero of order 2/ — 1 — N at &>. The same argument used before but now applied
to H, shows that Lemma 2.2 and (38) yield a contradiction. Therefore d,, = 3+ 1 is impossible
if n is a multiple of 3. Similarly one proves that the assumptions n = 3/ and dp,, = 3j + 2 are
not compatible.

The cases n = 3/ + 1 and n = 3] + 2 are handled in an identical manner, showing in the first
case that d,, is of the form 3 + 2 and Q», has 2/ sign change knots on (0, «), and in the second
case by showing that d», is of the form 3 + 1 and Q,, has 2/ + 1 sign change knots on (0, «).

The analysis for the polynomials Q5,4 is similar. The details are left to the reader. [

Corollary 2.3. The polynomials Q, and the functions W, satisfy the symmetry conditions

0, (ezT z) — 5" 0,(2), (39)
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7, (e%z) — e 30 g (), (40)
foralln > 0.

Proof. (39) follows from (32) and d, = n. (40) is an immediate consequence of (39) and the
definition of ¥,,. [

Proof of Proposition 1.2. The initial conditions (7) are immediate to check. For n > 1, we write

202n = Q241 + b2, Q2n + b24—1024—1 + b24—2024—2 + - - + b1 Q1 + bo Qo, (41)

and let us show that
b3 =by_4=---=by =by=0, by = b1 =0. (42)

We prove (42) by induction. Let n > 2. If we integrate (41) term by term with respect
to s1(¢)dt, the orthogonality relations (5) imply that by = 0. The fact that by = 0 follows
now by integrating (41) term by term with respect to f(¢)s;(¢)dz. Assume now that 0 =
by = by = -+ = by = byy1 = 0 for some k < n — 3. After multiplying (41) by
Z¥*1 and integrating the resulting equation first with respect to s1(r)dr, and then with respect
to f(t)s1(¢)dt, we get bogio = byyz = 0 (observe that fSo 1 Qoo (1)s1(1)dt # 0 and
/. 5o L Qo 13(2) £ (1)s1(t)dr # 0), so the first chain of equalities in (42) follows. The fact that
by, = by,—1 = 0 is immediate from (39).

Analogously one shows that forn > 1, 202,41 = Qon+2 +a2u+102n—1, @2n+1 € R, s0 (6) is
justified. The formulas (8) follow directly from (6). The positivity of the recurrence coefficients
is proved later in Proposition 3.6. [

3. The functions of second type ¥, and associated polynomials Q, >

Proposition 3.1. The following formula holds:

2xin 4min

o 1 e s e
WH(Z) = /(‘) (l’ + 2 + 4i ) Qn(t)sl (t)dt7 < ¢ SO' (43)

2 e3t—z e3t—z

In particular, for any integer k > 0,

T3 (2) = 327 ’ wdf _ 2 « O3 (J0)s1(J7) de
0

—-z* 0 T—273 7273
a t2 t t o3 3 3
1 () = 3/ Q3k3+1( )381( ) 4 — Q3k+l(ﬁ)§l(ﬁ) ar. 44)
0 > —z 0 T—2Z
Fyan(@) = 32 /“ 105k a0 “ Qa2 (Y51 (J7) dr
* 0 13 —23 0 T—23 T3

Proof. The definition of ¥, and the symmetry property (39) give directly (43). O

If we apply carefully the orthogonality conditions in Proposition 2.1 and the fact that d,, = n,
we obtain:
o3

0=/ % Qa1 (YD)s1(JT)der, 0<k<I-1,
0
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o dr
02/ TkQ61+3(\3/?)Sl(\3/?)m, 0<k=<l (45)
0

3

« dr
0=/(; TkQ61+5(x3/?)Sl(x3/?)T17, 0<kx<l

Consequently, we can improve the estimate at infinity ¥,,1(z) = O(1/z"1?) given in (9) to
Pa,41(z) = O(1/2"3). To see this, observe that from (45) we deduce:

Q61+1(3/?)S1(3/?)d _of Q61+3(JT)s1(J7) dr o]
Tz i ) T—z 23 42 )
Oe1+5(JT)s1(J7) dr —0( 1 >
T—72 3 42 )

If we take into account now the representations (44) of the functions ¥, the claim is justified. In
conclusion, the following estimates are valid as z — oo:

Vel (2) = 01/, Wea(e) = 0(1/2%72),  Wepa(x) = 01/,

1) = O/, Wgua@) = 01/, Wgas(z) = 01723+, 40

It is convenient to rewrite the orthogonality conditions in (31) in terms of the interval (—b3,
—a®). Applying the symmetry properties of @, (cf. (40)) and s,, we obtain:

Proposition 3.2. The functions W, satisfy:

—da . .
0= f 1° Wy (1) (1 T Vi e4T(V_4”_1)> s(dt, v=0,....n—1,
—b

—da . .
0= / 1" o i1 (1) (1 feF-m 4 e“T“"”) sy, v=0,....n—1.
—b

In particular, for any integer | > 0,
—a’ dr
0=/ B (D, 0=k=I—1,j =03,
b3 T
3

—da
=/ B (SDs2(YDdT, 0<k<I—1, j=0,3,
_b3

o

B
dr
0=be U (VDD g 0=k<i-1,
—a’ X dr
0=/b3 4D Sy 0=k <L

As a consequence of Proposition 3.2, we obtain:

Corollary 3.3. Foreach j € {0, 1, 2, 3, 5}, the function e ; has at least | sign change knots in
the interval (—b, —a), and the function We;4+4 has at least | + 1 sign change knots in the interval
(—=b, —a). Therefore the functions Ye i, j € {0,1,2,3,5} have at least 3l zeros, counting
multiplicities, in C\ So, and g4 has at least 31 4 3 zeros, counting multiplicities, in C \ Sp.
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Observe that the function ¥, satisfies the property

U,2)=—-¥,(z), z€C\Sp. an
Let j € {0, 1,2, 3,5} and assume that xi, ..., x; are [ distinct zeros of Wy ; in (—b, —a). It
follows from (40) that the points
27 2ri 4ri 4ri
€3 Xt,...,€3 Xxy, e3 xy,...,€3 Xxy,

are also zeros of Wg4 ;. Let

! I , ! _ I
Ri@=[]c-x]] (z - e%xk) [ (z - e%xk> =[] -=D.
k=1 k=1 k=1 k=1

Assume further that g, ; has more than 3/ zeros in C \ Sy, counting multiplicities. Then there
exists a point zg € C \ Sy such that the polynomial

Ry (2) == Ri(2)(2* — z3)

satisfies W1 j/Ro € H (C\ Sp).Ifzo € R, then Ry is a polynomial in z3 with real coefficients.
If zo € R, then R, may not have real coefficients, but the polynomial

R3(2) == Ri(2)(2® — 20)(* = 75)

is a polynomial in z3 with real coefficients, and Yei+j/R3 € H (@\ So) (here we use (47)).

In conclusion, we see that if ey, j € {0, 1,2, 3,5}, has more than 3!/ zeros in C \ Sp,
counting multiplicities, then we can find a polynomial Re;; with real coefficients and degree at
least 3/ 4 3 satisfying:

Yolrj H(C\ Sp). (48)

2ri
Re1+j(z) = Reiyj (e 3 z), zeC, and
61+

Similarly, if we assume that ¥e;+4 has more than 3/ 4 3 zeros in C \ Sy, counting multiplicities,
then there exists a polynomial Rg;4+4 with real coefficients and degree at least 3/ + 6 such that
(48) holds for j = 4.

Proof of Proposition 1.3. Suppose that Wg has more than 3/ zeros in C \ Sy, counting multi-
plicities. Let R¢; be a polynomial with real coefficients and degree at least 3/ + 3 satisfying (48).
By (46), Y6(2)/Rei(2) = O(1/z%*) as z — oc.

Let I" be a Jordan curve surrounding Sp such that the zeros of Rg; lie outside I'. By Cauchy’s
theorem, Fubini’s theorem, and Cauchy’s integral formula, for v =0, ..., 6/ + 2,

v,
0:/1”—61(Z)d2
r  Re(z)
/Zvlfa L 06 (1)1 (1)drd
= 5 = = 61 (1)s1()dedz
rRa@2miJo \t—z oFi_; Fr—;

_/a ) 1 N e27Tiv/3 N e47111)/3
0 R (1) R (e%o Re; (e?o

Qe (t)s1(t)dt,
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and applying (48), we obtain

_ 3k 51(7)
0_/0 Q(t)R()t, 0<k=<2l.

Consequently, Q¢ has at least 2/ + 1 sign change knots in (0, «), contradicting Proposition 1.1.
This and Corollary 3.3 prove the claim for n = 6/. In the remaining cases we use the same ar-
gument. Indeed, if ¥, j € {1,2, 3,5}, has more than 3/ zeros in C \ Sp and We/ 14 has more
than 3/ + 3 zeros in C\ Sy, counting multiplicities, then we know (see the discussion after Corol-
lary 3.3) that we can select polynomials Re;+j, 1 < j < 5 satisfying (48) such that, as z — oo:

Pei1+1(2) 1 Po1+2(2) 1 Po1+3(2) 1
=0\ 35 ) =0\ 45 ) =0\ g7 )
Rei+1(2) ot Rei+2(2) FAns Rei+3(2) Al
Ugi+4(2) 1 Wei+5(2) 1
=0\ 39 ) =0\ s )
Rei+4(2) 20 Re1+5(2) Al
These estimates lead to the orthogonality conditions

o t o t
0= / 2001 (10— _gr = / 06— _qr o<k <,
0 0

Rei+1(1) Rei+2(0)
* s1(1) YN s1(1)
0= / % Qo143 (1) ————dt = / 2 Q6114 (t) ———
0, * Rei+3(1) 0 * Rei+4(8)
t
= / t3k+lQ61+5(t)£dt, 0<k=<2l+1,
0 Rei+5(1)

which contradict the number of zeros that the polynomials Qg4 j,1 < j < 5, have on (0, o)
(see Proposition 1.1). [

Recall that O, » is defined as the monic polynomial whose zeros coincide with the finite zeros
of ¥, outside Sp. The argument shown above proves the following:

Proposition 3.4. For each j € {0, 1, 2, 3,5}, deg(Qe1+j,2) = 3I, and deg(Qe+4,2) = 31 + 3.
Furthermore,

0= t t l(t) d, 0<k<l—1, 49
/ Q3l( )Q . (l) 1 =K = ( )
0= k —l(t) d, 0 k l—l, 50

/ t Q3[+1(l‘) . (t) t <k < ( )
0= t 1 42(1 —SI(I) dt, O0<k<l-1. 51

Proposition 3.5. The following formulas are valid for z € C\ Sy. If q is a polynomial of degree
at most 3k, then

q(z2) Y3 (2) “ Qap(x)s1(x) q(x) ( .3 ) (e%x)
- ‘ 2zi i dx. (52)
3 X eT z

Ox%.22)  Jo Oxn2(x) x—Z e
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If degq < 3k + 2, then

(@) P3p+1(2) Y O3p1(x)s1(x) q(x)+e q(e x) ¢ q(e x) d

= : + : X.
O3k+1,2(2) 0  O3k+120x) \x—z eFx - eFx—z
(53)
If degq < 3k + 1, then
q(2) V3k42(2) _ “ Q3k2(x)s1(x) [ g(x) n g (e* x) n € q (e ‘ x) dr
O3142,2(2) 0 O3k+2.2(x) X =z eFx—; Ty —; '
(54)
In particular, we have
Q@ ¥sk(@) _ 5 5 [ 050 i)
03,2(2) 0 O3x2(x)x3 =23
Q3t+1(2) ¥3k41(2) _ ¢ 0% () xs1(x) dr (55)
O3k+1,2(2) 0 Q31 2(x)x3 -3
03142(2) Y3k42(2) _ 3.3 ¢ Q%Hz(X) 51(x)
O3r+42,2(2) 0 O3ks22(x) x(x3 —23)

Proof. By (46) and Proposition 3.4, we know that if ¢ is a polynomial of degree at most 3k, then

q(z) U3x(2)
O3k,2(2)

For z € C\ Sy, let I" be a Jordan curve surrounding Sy and oriented clockwise, so that z and the
zeros of Q32 lie outside I'. From (56) and (43) it follows that

q(z) Y3 (2) _ 1 [ q@ () dr
O31,2(2) 21 Jr Qaa(t) t—z

e R (O
B /o QSk(x)sl(x)Zni r Qa2 —2)

1 1 1
X + 2mi + 4mi dtd'x
X—1 3 x—t esx—t

[ Qi) (q(x) RUICEEIN q(e%’“x))dx,

=0(/z), z— oo. (56)

0 Q3k,2(x) X =2 e%x—z e%x—z

where in the last equality we used that Q3 2(f) = Q32 (e%t> = Q3,2 (e%t) This proves
(52). The proofs of (53)—(54) are identical. To obtain the first and second formulas in (55), we
replace g in formulas (52) and (53) by Q3 and Q3j+1, respectively. The third formula in (55)
follows from (54) by taking ¢(z) = Q3r4+2(2)/z. U

o]

> that appear in (6) are all positive.

Proposition 3.6. The recurrence coefficients {a,}
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Proof. To prove that ay, is positive it suffices to show that foa " Q2,(t)s1(t)dt > Oforalln > 0.
Let n = 3l. Since deg(t3l Qs1,2) = 61, by (49) we obtain

51(7)
1,2(7)
For n = 31 + 1, using (51) and df:g(ty"’2 Qe6142,2) = 6] + 2, we get

d_

fo 1 Qe (1)s1(1)dt = fo t3lQ61(l)Q61,2() )

/ISZ+IQ6I+2(I)S1(f)dl / 3’HQ61+22(I)Q61+2(I)L
0 tQe1+2,2(1)

/ Q6[+2(t 1() dr > 0.

1Q61+2,2(1)
Finally, for n = 3[ + 2, applying (50) and deg(t3“rl Qel+4,2) = 6l + 4, we obtain

/ 2 Q6144 ()s1(1)dr = / P Qmm(r)Qw(r)ﬂ
0 Qe1+4,2(1)

ts1(1)
> 0.
/ QarsO G i

It is easy to see that the functions ¥, satisfy the same recurrence relation (6). In particular,

W 41(t) = Yopp2(t) + azng1 You—1(1).

Using Proposition 3.2, if we multiply the above relation by an appropriate power of ¢ and inte-
grate, we obtain

—a
/b 13 W11 (1)s2()de =a6l+1/ P g (1)s2(n)dr,

—a
—b

/ 2 W s(1)sa(0)dt = a61+5/ ' W3 ()52 (1) dt.

On the other hand, it is easy to deduce from (55) that if # < O, then

. IZ0) % . ( V3p+1(1) ) 3k
= _1 5 U = _1 )
Slgn(Qy(,z(t)) =D Sen O3k+1,2(8) =D
. W3jei2(1) 3k+1
— | =(-1 .
Hen ( Q3k+2,2(t)> =D

Observe that since deg Q¢/—1,2 = 31 — 3 and deg Q¢/+1,2 = deg Qg;4+3,2 = 3/, by the orthogo-
nality conditions satisfied by ¥»,41 and (57), we obtain:

(67

/b f3lilw6l—1(t)52(l‘)dl = , Qe1—12(1) !P61_1(t)t2s2(t)dt
- Vo1 (1)
=/, Q%,,l,z(t)ﬁ 2s53(t)dr > 0,
/b 3 W1 (Ds2()dt = , Qe1+1,2(8) Yer+1(t)s2(t)dt
a 2
= 021 ()2 ar > 0,

b 0 Qei1,2(1)
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—a

—a
/ B U 520dt = [ Qrsa(t) Tras (s (0t
—b

Y B Wi 43(1)
o Qév3.2() Oe1+3,2(1)

This shows that ap,, 11 > Oforalln > 1. O

tsp(t)dr > 0.

4. Interlacing properties of the zeros of 0, and ¥,

Proposition 4.1. Let A, B € R be two constants such that |A| + |B| > 0, and let
Yn(2) = Az ¥y (2) + B ¥n1(2), (58)
T (z) == AzQn(2) + BQn+1(2). (59)
Then, for every n > 0, the function Y, has only simple zeros on (—o0, 0). Similarly, for every

n > 0, the polynomial T, has only simple zeros on (0, «).

Proof. From Proposition 3.2 it follows that
3

—d
0=/ Y1 (VD2 (JT)dr, 0<k<I-2,
_b3

3
—d
0= / HFYea (VD (JD)de, 0<k <i—1,
,bS
3

- dr .
= /bS TkY6l+j(\3/;)S2(\3/?)ms 0<k=<l-1,j=0,3,

()

3

" |
0=f sz (SO0 . 0k =l—1, j=0.3.
—p3 T

Consequently, for each j € {0, 2, 3, 4, 5}, the function Y4 ; has at least [ sign change knots
in (—b, —a), and Yg;41 has at least [ — 1 sign change knots in (—b, —a). From (40) it follows

2mi
that for every n, Y, (eT z) = C,Y,(z), where C, denotes a constant. Therefore, the functions

Yer+j, j €10,2,3,4, 5} have at least 3/ zeros on Sy, and Ye41 has at least 3/ —3 zeros on Sy. For
each 0 < j <5, let Rg/+; denote the monic polynomial whose zeros coincide with the zeros of
Yei4j on U%ZO exp(2mik/3)(—o0, 0]\ {0}. Then R¢;4 ; satisfies (48), Yei4j/Rei+j € H(C\ So),
and using (46) we deduce that as z — oo:

Yei(2) 1 Yei+1(2) 1 Yei42(2) 1
=0l5): =0\ 5= ) =0\ g5 )
Re1(2) z Rei+1(2) 7%= Re142(2) A
Ye14+3(2) 1 Yei14+4(2) 1 Ye145(2) 1
=0\ 53 ) =0\ ) =0\ g5 )
Re143(2) ARl Rei+4(2) A Rei+5(2) FALRs
Let I' again denote a Jordan curve surrounding Sp, such that the zeros of the polynomials Re;+ j
lie outside I'. By (43),

Y,
0= / ZV—6I(Z) dz
r Re(2)
o 2ri(v1)/3 |, Ari(v+1)/3y S1(0)
= | x"Tq(x)(1+e +e y——dx, v=0,...,60—2,
0 Rei (x)
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which is equivalent to

o
0= f 1S g o<k <a—2. (60)
0 Rei (x)

Similarly we obtain:

o
0= f 2T )= G 0<k<2u—2,
0 Re+1(x)

o
0=/ PTas 2N gy o<k <, 61
0 Rey5(x)

o o
0= kT X —sl(x) dx :/ x3k+2T, X —sl(x) dx
/o a2 )R61+2(x) 0 3l )R6l+3(x)

o
= [ )Y g o<k <21,
+
0 Rei+4(x)

From (60) it follows that Tg; has at least 2/ — 1 sign change knots in (0, ). Since Tg; (ze%) =

e% Ts1(z), we see that any zero of Tg; in (0, co) must be simple, otherwise Tg; would have at least
6l 4 3 zeros, contradicting deg(7g;) < 6]+ 1. Similarly, using (61) we show that the polynomials
Tei+j, 1 < j <5, have only simple zeros in (0, 00).

Now we prove that the functions Y, have only simple zeros in (—oo, 0). We know that Yg; has
at least / sign change knots in (—o00, 0). If we assume that Yg; has a zero of multiplicity > 2, then
deg Rg; > 31 + 6, and so we would have

Ye1(2)/Rei(z) = O(1/257%), 7 — o0.

Reasoning as above, we arrive at the fact that deg Tg; > 6/ + 3, which is impossible. Similarly
we see that the zeros of Yg;1j, 1 < j <5, contained in (—o0, 0), must be simple. [

Proof of Theorem 1.4. Let x € (0,«) and assume that Q,(x) = Q,4+1(x) = 0. Take
A=1B = —-xQ), (x)/Q;ZH(x). For this choice of A and B, the polynomial 7}, defined by
(59) satisfies 7, (x) = T, (x) = 0, contradicting Proposition 4.1.

Let x € (0, o) be arbitrary but fixed. Take now A = Q,41(x)/x and B = —Q,,(x). For this
choice of A and B, we have T, (x) = 0, therefore T, (x) # 0, or equivalently

Loy = 210 0n ()
X

+ Qnr1() 0, (x) = 0 (x) Q)4 (x) # 0.

In particular, the sign of L, is constant on (0, ). Evaluating L, at two consecutive zeros of

0, (Qn+1) on (0, @), we see immediately that there must be an intermediate zero of Q41 (Qy).
The same argument proves the interlacing property of the zeros of ¥, and ¥,,41.qed

Proposition 4.2. Let the roots of the polynomials Q3k+i, 0 < i < 2, in the interval (0, o), be
defined as follows:

xEAD _ BhH)  GD _ BkD) Gl

—1
Then

x§3k) < x?k—H) x(3k)

<x®0 < (BED G0 Ok

<x7 <X , (62)

x§3k+1) < x{3k+2) < x§3k+1) < x§3k+2) - < x/£3k+1) < x/E3k+2)7 (63)
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x§3k+3) < x{3k+2) - x§3k+3) -y §3k+2) - x]£3k+2) - x}gf;rs). (64)

Proof. If we write
Q3-2() = b Pz 4. 4 2 Q3 (2) = b(()Sk) +o 2K,
O341(2) = bz o g 3

(3k) Gk+1) _
b — b =

from (6) we obtain the relation b b(3k_2). Vieta formulas show that

b(3k) (— 1)3k( (3k) x}g3k))3’ b(3k+1) (— 1)3k( Gk+1) x1§3k+1))3,

and similarly bi3 - equals (=131 times the product of all nonzero roots of Q3;_>. Since
asr > 0 and the product of all nonzero roots of Qs;_» is also positive, we deduce that
(x(3k) e (3k))3 (x; (Gk+1) 'x,£3k+1))3 This inequality and Theorem 1.4 imply (62). Similarly
we show that (x(3k+1) . x,£3k+1))3 (x(3k+2) . x,§3k+2))3, which implies (63). Finally, (64)
follows directly from Theorem 1.4. [

5. Ratio asymptotics of the polynomials Q, and Q>

Let

H, = % (65)

Qn,2
Notice that H,, is real valued on (—oo, 0) and has constant sign on this interval. Having in mind
the definitions (10)—(11), we have:

Proposition 5.1. Let [ > 0 be an arbitrary integer. Then the following orthogonality conditions
hold:

3

—a B
0= / ok Py o) O WO gy g3,
—b3 | /T P4 (T)]
—a3 3
H .
0= f ¥ Py o) 0 i*’(ﬁ)'si(ﬁ) dr, 0<k<I—1,j=0,3
—b3 |T2/3 Pei 12+ (J/ T
—a3 3 3
H 3 3
0 =/ rkP61+1,2(r)| 6l+1(«/?)|52(\/?)dt’ O<k<i—1.
—p3 It Pi+1(T)]
—a3 3 3
H,
0 2/ TkP6l+4,2(T)| 6l+4(x/?)|52(\/?)d7:’ 0<k<l
—b3 |7 Poi+a(T)]

Proof. These orthogonality conditions follow immediately from Proposition 3.2. [

Proposition 5.2. Let k > 0 be an arbitrary integer. Then the following orthogonality conditions
hold:
3

> s1(J/7) dt .
= P <j<k-1.
0 /0 T 3k()Pk ) 2 0<j=<

3

0=/ ]P3k+1(T)L¢_)de 0<j<k-—1.
0

P3jy1,2(7)
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3

o 3
02/ TJP3k+2(T)M«3/?dt, 0<j<k-1
0 P3i42,2(T)

Proof. These orthogonality conditions follow immediately from (49)-(51). O

Observe that by Proposition 1.3, for each j € {0, 1, 2, 3, 5}, Pg;+j 2 is a polynomial of degree
[, and Pg;14,2 has degree [ + 1. By Proposition 1.1, for each k > O and j € {0, 1, 2}, P3j; has
degree k.

For each integer j > 0 we let

~1)2
o /“3 p2 (I dT /
R W/ P3jo(t) 23 '

3 -1/2
o 51(31')377

P3jy12(7)
3 —-1/2
o s1(J1) 7
K342 = / P§j+2(r)ﬂdr :
0 P3j122(7)
Similarly, we define for each integer j > 0 the following constants:
i \Hs (3 -1/2
3] (ﬁ)' 3
K3ja = / P2, WOl i)
! ( NN
a3 s —1/2
|H3j11 (VO 5
K3ji10 = / Py (1) —I— 5 (J1)dr ;
o ( T e Py (o)
& \Hyi4a (3 -1/2
3j+2(J0)] 5
K3ji20 = / Py (1) — 2= (JT)de
a ( L TPy (1)
We need to introduce more notations. Let
K2
kn = Ky, Kn2 = Ki: > (66)
consider the polynomials
Dn = Kn Py, Pn2 = Kn,ZPn,Zs (67)
and the functions
hy = K?H,. (68)
Finally, we introduce the following positive varying measures:
s1(J1) dt s1(J1) 7
dvsj(7) = ki S dujp() = SVOVT
P3ja(T) T P3j112(7)
51(JT)JT lh3; (YOI,
dv3jia(r) = ————dr, dvsjo(t) = —=———s(J7)dr, (69)
. Psj12(7) ’ |/ P3; ()]
lh3jr1 (VO 5 1h3j4+2(J/7) 3
dvsjy1,2(1) = ———5(J1)dr, dvsj20(1) = 3 ————5(JT)dt.
" T P3j41(7)] " 723 Psj42(7)]
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Proposition 5.3. The polynomials p, and py 2 are orthonormal polynomials with respect to the
measures dv, and dvy, 2, respectively. This is, for everyn > 0, | pall 12@qy,) = I1Pn2ll L2y, ) = 1

and
3

o .
/ t/ pu(T)dvp(v) =0, forall j < deg pn,
0

3

—a
/ . / ppa(t)dv,2(t) =0, forall j < deg pyo.
—b

Proof. It follows immediately from Propositions 5.1 and 5.2. [

Using (59), it is easy to check that the functions 4, have the following representations:

h3i(z) =Z2/ p3k( )dV3k(T) h3k41(2) =Z/ p3k+—1()dv 3k+1(T),
0o T— 0 T—23

o P3k+2(f)

hka(z) = 2° /O dvaeqa(0). (70)

Lemma 5.4. Assume that s1 > 0 a.e. on [0, «], and 5o > 0 a.e. on [—b, —a]. Then

2 * 1 dT 3
d n T € O, s 71
p"(f)v(f)_)n\/m T €[0,a’] (71)
Pho(D)dva(1) —> 1 &r . Tel[-b -dl. (72)

TV(=a? = 0)(t +b3)

Consequently, the following limits hold uniformly on closed subsets of C\ So:

2
lim ha(z) = — ,
Jim oy (2) = ~ ey
. z
lim h3541(2) = ——————" (73)
k—o00 (ZS _ Ol3)13
3
lim & S —
Jim h3e12(2) T

where the branch of the square root is taken such that \/x > 0 for x > 0.

Proof. Let us define the measures

dus () = “(zf Ve, duseer (1) = duseaa () = 51 (YD) Jdr,

According to [5, Definition 2], for each i € {0,1,2} and k € Z, the system ({du3;4i},
{P31+i2}, k)1>1 is strongly admissible on [0, a3]. So by [5, Corollary 3],

dM3z+z (r)

o dr
1 gy —————
m / f(‘L’)[)g,l_H( ) 2(1_) /(.) f("-')m

for every f continuous on [0, « 3]. Since dv34i(t) = dusiyi(t)/ Paryi2(t), (71) follows. The
formulas (73) are a consequence of (71) and (70).
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Similarly, if we define the measures

3 3
By = DL (mrar, i) = POl (e

/7l i
h 1)
drsesa(r) = %n(\%)dn

then for each i € {0, 1,2} and each k € Z, the system ({dAz;+}, {| P3i+il}, k) is strongly
admissible on [—b3, —a3], and (72) follows as before. [

Foreachi € {0, ..., 5}, we consider the families of rational functions
{ Peojvi+1(2) } ’ { Peoj+i+1,2(2) } ' (74)
Per+i(z) Jy Por+in(2) i

By Theorem 1.4, these families are uniformly bounded on compact subsets of C \ [0, «*] and
C\ [-b?, —a?], respectively. Therefore, by Montel’s theorem there exists a sequence of integers
A C N so that foreachi € {0, ..., 5},

Poi+i+1(2)  =am) 3

OkHir Y _ F , C\ [0, a’], I8
keA Peryi(2) @ ze Al )
. Pekvit1.2(2) =@ 343
lim —————— =F,’(z), z€C\[-a’,-D"], (76)

keA  Peryi2(2)

where the limits hold uniformly on compact subsets of the indicated regions. Our goal is to show

that we obtain the same limiting functions F;'), no matter which convergent subsequences we
take.

Taking into account the degree of P, and P, , from (75)~(76) we deduce: F," and 1/F"
are analytic in C \ [0, ], fz(i) and 1/1;2(1‘) are analytic in C \ [-5, —a’], and as z — 00,
Fl(i)(z) =140(/z), i€{0,1,3,4},
Ff”(z) =z+0(), i€f{25)
Fz(i)(z) =14+0(/z), ie{0,1,2}, 77)
F@) =z+0(1), iel3,5)
Y@ =1/2+ 00/,
Given a Borel measurable function w > 0 defined on the interval [c, d] that satisfies the Szegd
condition

log w(?)

It - A 1
d—0—o) €L,

let

R e (Zz—c—d Z_I/dlogw(t) de
w; ) = exp - d—c . t—z (d—-1)t—oc)
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denote the Szeg6 function on C \ [c, d] associated with w (see [16]). In particular, if w is
continuous at x € [c, d] and w(x) > 0, then the limit

lim |S(w; 2)|> = b (78)
X w(x)

holds. We will indicate this below by writing |.S(w; ) Pwx) = 1.
Throughout this section we are always assuming that s; > O a.e. on [0, «], and s, > O a.e. on
[—b, —al. If f, € H({2), 2 C C, the notation

lim f,(z) = F(z), ze€ R, ACN,
ne/

stands for the uniform convergence of f, to F' on each compact subset of (2.
By Proposition 5.2 we have:

l¥3
0=/ o Pee(tdvee (1), 0 < j <2k — 1,
0
3

o
0= fo o P (1) gee (1 dvge (1), 0 < j < 2k — 1,

where gex (7) = T Pe,2(1t)/ Pok+1,2(t). Using (76),

lim ggx () = ,  uniformly on [0, a3].
ke

T
E2@
Since deg(Per) = deg(Per+1), applying [5, Theorem 2] (result on relative asymptotics of

polynomials orthogonal with respect to varying measures), we obtain

0
Poj+1(2) Sf ()
m _

ked Per(z) 5 (c0) =F "), z€C\[0,a’], (79)

where Sfo) is the Szeg6 function on C\ [0, &3] associated with the weight t/Fz(O)(t), T € [0, &3].
By Proposition 5.2 we have:
1)13
0= / v Paan(Mdvgeia (), 0<j <2k — 1,
0
3

o
0= [0 7/ Pjy3(7) gok42(T)dver42(t), 0 < j <2k,

where gex+2(T) = Pek+2.2(7)/ (T Psk+3.2(7)). Let Pﬁ*k 4 be the monic polynomial of degree 2k
orthogonal with respect to the measure dvei+3(t) = gek+2(T)dverr2(7). Since deg(Pg‘k +2) =
deg(Pek+2), again by [5, Theorem 2] we obtain

o Pan® _ 57@)

= , zeC\[0,a%],
ked Poria(x) 5% (00) \

where S%z) is the Szeg6 function on C\ [0, @] with respect to the weight 1/(t Fz(z)(t)).
Let ¢; denote the conformal mapping that maps C \ [0, ®] onto the exterior of the unit circle
and satisfies ¢ (c0) = 0o and ¢i (00) > 0. Then, by [5, Theorem 1] (result on ratio asymptotics
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of polynomials orthogonal with respect to varying measures) we have

Pei13(2) _ 1(2)
ked PG ,(z)  ¢1(00)

Therefore, we conclude that

z€C\ [0, ).

i P3y3(z) sz)(z) $1(2)
im = ;
ked Pocia(z) 5@ (00) ¢ (00)

= FP@, zeC\[0,a’]. (80)

The same arguments used before show that

Poyi+1(2) 51 (2)
keA  Pok+i(2) Sfi)(oo)

=FP), zeT\[0,e’], i€{l,3,4}, 381

Pek+6(z) S ¢1(2) _

- _FOu. C\ (0.0, »
ked Pocts(@) S (o) $1(00) ! (@), z€C\[0,a’] (82)

where S {1), SF’), 554), and st) are the Szegd functions on @\ [0, a3] with respect to the weights
l/fz(l)(t), t/fz(S)(t), 1/f2<4)(r), and 1/(1'1?2(5)(1')), respectively.
Applying now the orthogonality conditions from Proposition 5.1 and (73), we deduce:
Pek+i+1,2(2) 53 (@)
keA  Pejcti,2(2) 537 (00)

Poini () _ 8@ $22) _
keA  Pejcti,2(2) 53 (00) #3(00)

=F"@), zeC\[-b’,—d’], ie{0,1,2}, (83)

@), zeC\[-b' —d’) i€ (3,5}, (84

Por+52(2) 559 (00) ¢} (00)

keA Popran(z) sz 20 =FY@). zeC\[-P -d%, (85)
where Séo), cees Sés), are the Szeg functions on C \ [—5>, —a?] associated with the weights
1 7| 1 1 IFP (1)) 1
FOo1 1F @l 1FP@) k@) i ER o

respectively, and ¢» is the conformal mapping that maps C \ [—b>, —a>] onto the exterior of the
unit circle that satisfies the conditions ¢, (00) = oo and ¢>é(oo) > 0.

Proposition 5.5. There exist positive constants c,(f) so that the functions Fk(l) = c,((l) F,fl) satisfy

the following boundary value conditions:

' @P——=1, te@’]1=03, (86)
F, ()
YN S 3
|F1 (7:)| (l) - 17 TE [0,“ ]’ l - 1745 (87)
F, ()
YN 3 g
|F1 (t)| _17 Te(()’a ]7 1_2757 (88)

]
th()(r)
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1
IR @P—5— =1, tel-b -’ 1=03, (89)
TF @)
@R — 1, cel—bh—all 1= 1.4, (90)
7@
1
IR @OP—F5— =1, tel-b’ —a’l =25 D
A @)

Proof. It follows from the relations (79)—(85), the definition of the Szegd functions S;i) and (78),

that there exist positive constants wgl), a)g), such that

0,2 T 1 3 _

R @l <p— = —. 1€’ 1=0,3, 92)
F, () o

~ 1 1

Y OP=5—=—5 tel0al =14, (93)
F, (1) o

=02 L1 37 7

F@P —5—=—. t1€0.d’ 1=25 (94)
() o

=) 2 33

IFVO))P—e—— = —, 1e[-b, —d’],1=0,3, (95)

U ROl o)

~0, 2 |7l 1 33

|F2 (T)| T:T, TE[—b ,—da ], 121,4, (96)
|[F (D) w,

1 (@)= re[=b —d®), 1=2,5, ©7)

where
o’ = (8¥(c0))?, forl =0,1,3,4,
<” = (5 (c0)¢| (00))?,  forl =2,5,
<’> = (P (00))?, forl=0,1,2, (98)
<’> = (Y (c0)gy(00))?,  forl =3,5,
<“> 1/(S<‘”<oo><z>2<oo>>2
The positive constants ck that satisfy the requirements are c%l) = [(wgl))za)g)]l/ 3
[ @213 1=0,...,5. O

O]
’ C2

In order to prove the uniqueness of the limiting functions F, we need to use Lemma 5.6.
More general versions of this result can be found in [4] (see Lemma 4.1) and [1] (see
Proposition 1.1), so we omit the proof.

Let us first introduce some notations. Assume that Ay, A; are disjoint compact intervals
in R, and let C(4;) denote the space of real-valued continuous functions on A;. We write
u = (ul,uz)' e Cif uyp € C(Az),uz S C(A]). Given uy € C(Az), let T2,1(u1) be the
harmonic function in C \ A; that solves the Dirichlet problem with boundary condition
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Tr1(u))(x) =ui(x), x e Ay,

and given up € C(Ay), let T1 2(u2) denote the harmonic function in C \ A that solves the
Dirichlet problem with boundary condition

Ti2(u2)(x) = uz(x), xe€ Ay

Consider the linear operator 7 : C —> C defined as follows:

| 0 Ty
r=ln, ¥

and / : C — C the identity operator. The auxiliary result is the following

Lemma 5.6. [fu e C and 21 — T)(u) =0, thenu = 0.

Now we prove that the limiting functions do not depend on the sequence A C N for which
(75)-(76) hold.

Proposition 5.7. The limiting functions I?;i) are unique for every j € {1,2}andi € {0, ..., 5}.

Proof. Foreach fixedi € {0, ..., 5}, by Proposition 5.5 the functions log |F1(i)|, log |F2(i)| satisfy

99)

2log|F{" (1)) — log |Fy"(1)] = log | fi(D)]. 7 € (0,a%],
—log |[F{ (@) + 2log |[Fy” (0)] = log |gi ()|, T €[, —a’],

where f;(7), gi(t) equal 1/7, 1, or 7, depending on the value of i. Assume that the functions
é?), 5;') satisfy
Pok+i+1(2)
keA' Peryi(2)
Pok+i+1,2(2)
keA Pe+i2(2)

= GY)(Z), zeC\[0,a?],
=GV, zeC\[-d* b,

for some other subsequence A’ C N. As before, we can find positive constants d @ , dg) so that

the functions Gg.i) = d](.i)éy) satisfy the same system (99). If we define the functions

up =log |F"] = 101GV, up =1log|F"| —10g|G|,  w= (ur,ua),

observe that «; is harmonic in C \ [0, @3], uy is harmonic in @\ [—b3, —a3], and they are also
bounded in the corresponding regions. Moreover,

{2u1(1’) —ur(t) =0, T1e(0,a], (100)

—ui(t) +2uz(x) =0, T e[-b, —a’].

Let Ay == [0, &3], Ay := [—b>, —a?]. From (100) and the (generalized) maximum—minimum
principle for harmonic functions, we obtain that 2u; — T12(u2) = 0 on C \ Ay and 2uy —
Tr1(u)) =0 on C \ A,. In particular, (21 — T))(u) = 0, so by Lemma 5.6 we get u; = 0 on Ay
and up = 0 on Ay. Therefore T 2(u2) = 0 on C\ A and T5.1(u1) =0on C\ A, implying that
uy = 0and up = 0. From |F|”| = |G| it easily follows that ¢, = d’ and F{" = G\’ O
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Proof of Theorem 1.5. The existence of the limits (12)—(13) follows from the normality of the
families (74) and Proposition 5.7. The polynomials P, satisfy:

P3(2) = P341(2) + azp Par—2(2),
P311(2) = P3pa2(2) + azgs1P3k—1(2),
2P3142(2) = P3k43(2) + azks2 P3r(2),

and so (12) implies that the following limits hold:

Jim agey; = FIP2F @0 -FP@), ie{0,1,3,4), (101)
— 00
Jim agesi = BV @QF V@G- V@), ie25), (102)

where these relations are valid for every z € C \ [0, a3](Fl(_2) = F1(4)’ Fl(_l) = Fl(s)).
We have:

FIPF V)0 -FP@)=-c”+00/2), z— o0, i€{0,1,3,4}
F'P@F @6 -F@)=-C +0/2), z— 00, ie{25),

and so (14) follows from (101)—(102). The ratio asymptotics of Q, and Q2 is a direct
consequence of (12)—(13). O

Proposition 5.8. Assume that the hypotheses of Theorem 1.5 hold. Then the polynomials p,,
Dn.2 defined in (67) satisfy for eachi € {0, ..., 5}:

Pok+i+1(2) _ kDFD @), zeC\ 0, (103)
k=00 pek+i(2)
Pok+i+1,2(2) _ KDED @), zeC\[-b —d], (104)

k=00 pe+i,2(2)
uniformly on compact subsets of the indicated regions, where
@) _ @) -
Kj =Jw;’, j=1,2,
and the constants a)y) are defined in (98). Consequently, for the leading coefficients kp, kn 2
defined in (66) we have:

lim SokHi+l _ G (105)
k=00  Kej+i
lim SSkHF12 _ K2(i). (106)

k=00 K6k+i,2

In addition, the following limits hold uniformly on compact subsets of C\ (So U S1):

i Yokti+1@ 1 ()
koo Usiti(@) ol 2F0(3)

i=0,3, (107)

Por+i+1(2) szz(l)(f)
k—oo  Wer4i(z) wii) ﬁl(i)(f)

, 1=1,2,4,5. (108)
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Proof. Using the same argument employed before and Theorems 1 and 2 from [5], we obtain

Dék+i+1(2)

k=00 pej4i(2)
Pok+i+1(2)

k=00 pek+i(2)
Pék+i+1,2(2)

k=00 pek+i,2(2)
Pék+i+1,2(2)
k=00 pek+i,2(2)

Dek+5,2(2)

k—00 pek+4,2(2)
so (103) and (104) follow. (105)—(106) are immediate consequences of (103)—(104).

Observe that by (65) we can write

=57, zeC\[0,0%,i=0,1,3,4,

= 5P @)¢i1(z), ze€C\[0,0%], i =2,5,
=591, zeC\[-b,—-d%], i=0,1,2,

= SP@a(z), zeC\[-b* —d’], i =3,5,

= (5 @) zeC\[-b. —d’],

le/n-i-l o K,% hn+1 On Qn+1,2
!pn KY%—H hn Qn+l Qn,2 ’

so (105) together with Lemma 5.4 and Theorem 1.5 imply (107)—(108). O

Proof of Proposition 1.6. We first show that ) > 0 for all i. If a® = 0, then (101) implies

F, FO = = 1, and using (86) we obtain that F, FO )(z) =zonC\ [— b3, —a3, contradicting (77). If

a(l) = 0, then again by (101) we get F( ) =1, and so by (87) we have F( ) =1, contradicting

(90). If a® = 0, then from (102) it follows that F.>’(z) = z on C \ [0, &*], and so (88) implies

that Fz(l) (z) = z, which is impossible. Similar arguments show that a® > 0fori € {3,4,5).
Now we prove simultaneously that F 1(2) () = zF} FO (z) and F, FO =F, FP  Let

ui(z) =1og|[FP @) —log|zFO @), ua(z) == log |F? (2)| — log |F\” (2)].

Then u; is harmonic in C \ [0, &®] and 3 is harmonic in C \ [-b*, —a?]. By (89) and (91) we
see that uy is bounded on C \ (b3, —d?]. Taking into account the definitions of the functions
S§0) and S 52), the boundedness of u is equivalent to the boundedness of the expression

12 [+ 1/¢1(2)
2 Jo 7 Le? — 1/¢1(2)

which follows trivially from the identity

}log(l +cos0)dd —log|z|, z &[0, ]

1 2 X e19 +w
— N T
21 Jo | et

i|10g|1+e‘9|d9—10g|1+w| lw| < 1.

Now Proposition 5.5 implies that 2u1(t) —uz(tr) = Ofor t € (0, o], and —u (1) +2us(t) =
0 for T € [—b>, —a’]. As in the proof of Proposition 5.7, this yields u; = 0, uy = 0. Similarly
one proves the remaining relations in (16) and (19).

From (16), (14) and (15), it follows that @ = a® and a® = a®. We have by (101)—(102)
that

PR 0= =a®  FP0FR @0 -F" =
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Since a©® = a¢® and F 1(2) (z) = zF, F© (2), we deduce that zF, (O)F M =F, F& F, F® or equivalently

~

F I(I)F 1(2) =F 1(4) ﬁl(s). The other two relations in (17) follow immediately using this equality
and (16).

The relations in (20) are an easy consequence of (17) and (86)—(88). Now, (18) is obtained by
dividing appropriate relations from (101)—(102), one by another, and taking into account (17).
The equality a @ + ™ = a® + a® follows immediately from F| (O)F O (3)F @,

We next show that the functions Fl( ), i €{0,...,5}, are all distinct. If i € {0, 1, 3, 4}, then
evidently F; F® # F| F® and Fi F® # F, FO I Fi FO =F| (1) , then (92) and (93) imply that

1 (1
E'@) o1

- =—L__ €0,
0 0 b 9 9
Fz()(r) a)i)f

which is contradictory since F (1)/ F O ig holomorphic outside [—5%, —a?]. The same argument
proves that F” % F&V FD F(” and FO # FY 11 FO = F“> then (92) implies that
Fz(o) = F2(3), which is impossible (cf. (77)). Similarly (using now (93) and (94)) we see that
FO 2 B and 7O 2 O,

Now we show that the functions 172([), i € {0,1, 3,4}, are all different. If we assume that
F® = F", then (95)(96) imply that

() )
F ' (7) w
o= e el )
FO@I o)

It follows that f](l)(z) = sz}(o) (z), which is impossible. The other cases are justified just by
looking at the Laurent expansion at infinity.
By (18) we see that @ # ¢® and aV # a™®. Now we show that a'¥ # a® . Applying
(101) for i = 0 and the relation F(I)F(z) F(4)F(5) we get
1) =@ =0
FVFP - F%) =

From this relation and (101) (for i = 4), we obtain

FO - Oy ¢ 4)F(3>(1_F<4>)

al
Applying the first two equations from (18), we derive that

©
FOQ - FO) = (1)(1 FNEY =1+ (= F). (109)

If we assume now that ¢ = a®, then (109) yields (1 — F”)/(1 — F\") = a©/a™®. But
from (101) we know that

1= FNHED 4O
(1— f(l))f(O) ROk

hence F; F& =F, F© which is contradictory. Therefore a1 # a®, and so by (21) we also obtain
that a(o) #* a(4). O
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Corollary 5.9. The following relations hold:

CUiO)a)gl) — w§3)w§4)’ in) — w§2)’ w?) — wES)’

V0 =P 06 =0®, o =,

Proof. All these relations follow immediately from the relations established in Proposition 1.6
and the boundary value Egs. (92)—(97) (multiply or divide appropriately these equations, one by
another). [

6. The Riemann surface representation of the limiting functions F;i)

We will give now the proof of Theorem 1.7. Before doing so, we need some definitions and
comments. Let
G =FO/r?, {7 =FP/FY, 0<ij<5

Recall that the conformal representation v of R onto C satisfies (23). As a consequence, we
have 1/ (z) = ¥ (z). This property implies in particular that

Y R\ (A UApp) — R, k=0,1,2, Ag= A3 =0,

and

Yi(x1) = Yp(xg) = Y1 (x1),  x € Agyq. (110)

So all the coefficients in the Laurent expansion at infinity of the branches v are real. Given a
function F that satisfies

F(z) = CZ 4+ 0™, C eR\ {0}, z— oo,

we use the symbol sign(F (oco)) to denote the sign of C (i.e., sign(F(oc0)) = 1 if C > 0 and
sign(F(c0)) = —1if C < 0).

The function o1 is analytic and bounded on C, so this function is constant. Let us denote
this constant by C (we will reserve in this section the letter C for this constant). So we have

W1y =C,  Poviva)@) =1, zeC. (111)

Proposition 6.1. The following relations hold:

sign((Y1¥2)(00)) (¥192)(2) sign(y2(00))¥2(2)

0.3),  _ ©0,3)\ _
G] (Z) - |C|2/3 ’ G2 (Z) - |C|1/3 (112)
Proof. By (86) and (89) we have
1
'GEM)(”'ZG(TR) =1, ted), (113)
2 T
|G§O’3)(t)|2 1, tel[-b,—a]. (114)

G ()]
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Observe also that G§0’3) and G§0’3) are bounded on C \ A; and C \ A,, respectively. Let us call
v1 and v; the functions on the right-hand side of the relations (112), respectively. The function
vy is positive on A} = [0, 3] since sign(va(00)) = 1. Using (110)—(111), for any x € (0, o),

i D) PYa)? o) 1Y ) [ ()]
vw(x)  sign((co)Ynr(x)|Cl IC|
o)l () 192 ()|
B IC]
i.e., v1 and v, satisfy (113) on (0, o). On the other hand, for x € (=5, —a?),

vz (x4)]? _ [ (x+)] _
[v1 (x)] [¥1 (1)

so vy and v also satisfy (114) on (—b3, —a?). Finally, the same argument used to prove Propo-
sition 5.7 yields the validity of (112). [

=1,

Proof of Theorem 1.7. By Proposition 6.1 we have:
FY/RD = B VR = g = 1, (115)
0 3
FO/EP = . (116)
From the first relation in (18) and (115), simple algebraic manipulations show that
~0 _ a¥ —a? ~3 _ @ —a®)y,
Ol EPON L7 400, —a®

The representations of ﬁ @ and F 1(5) follow immediately from the relations 17 @ () = zf O (2)
and F, 1(5) (z) = zF| F® (z). The relation F| F /F; F® 1//0 and (18) prove the representations of F; F
and F 1(4).

Recall that

2V (2) = Ypy1 +an ¥y, n=2. 117)
Therefore, if we define the functions

v, .
UD() = lim ok+i+1(2)

eC\(SouUS, 0<i <5,
k—oo  Weryi(z)

(by Proposition 5.8 we know that such limits exist) then we know by (117) that
aV =U"PUIPN ) -UP@R), 0<i<s,

where we understand that U2 = U® UD = U® | In particular, applying (107) and (108)
we obtain fori =0, 1,4, 5,

RS RN C)) 7-(0)
o__1 Bof (z)( R ) a18)
4) (5 5 (4 0) (0
oYl FY@ FP@ ' o"F@
7O\ 7O 7 (1)
o1 BoRe (1_ ISE) ) (119)
0) (S 0 =5 1) =1
0”0 F @) F () o\"FV (2)
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=2\ 5O ~(4)
=1 T @h @ (1— h @ ) (120)
() ()F()(Z) F()(Z) wg)Fl()(Z)
=5
o] BPoRo( B a2
0P FO () 7O () oD FO ()

where these identities are valid for every z € C\ ([— b3, —a1ul0, &3]). If we apply the relations
a® =a® F® = FP FP = £, from (118) and (121) we obtain

v <1 ! Ff)(z)) _of (Z B )
3 5) =G5 NG T 0) =0 :
a® wi ) Fl( )(Z) wi ) wi )Fl( )(Z)
Using (116) and substituting in this expression the functions F 1(0) and F 1(5) by their representa-
tions in terms of the branches ¥, we get

z (a«)) “’%3)> _ @90() —a?) ( a® w?)%(z)) @

a® " @ —a®)  \a%) o0 o

The factors on the right-hand side of this equation never vanish on C \ ([0, a3l U=b3, —a?)),
and so we can write

o o\ 5, 0 3
(%5 - ) of”@® -

3) 7 :
OMA G) a® 0¥
@G0 ~a) (s - 4

=3
@ =

If we move z to the left-hand side and evaluate at infinity we obtain
(3)
o® a® @\ _ & (122)
L\ a3 55) TGN
and so the Riemann surface representation for FZ(S) follows. This also proves the representation

for the functions FZ(S), fz(o), and 1?2(2).
From (119) and (120) we derive the relation

1 @) (2) (3) (D
ﬁ 1 ) s B Y P ) _
a® w§4) F1(4) §0) (5) a)(l) Fl(l)
From Corollary 5.9 we know that a)(z) §3) = w§5) %O). Since f2(4) / ;:2(1) (0) /F, FS I/f2 and
4 1
FP7FY = 1790 = 192, we get

~ ~
a) BV a®
a® FO\ g w<4) il)

Evaluating at infinity we obtain the relation

ey
RPN

1 _

o (123)
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and so we can write
}?(4)

W — @ = 1)/

Therefore, the Riemann surface representation of F2<4) follows from that of F, 1(4) and the repre-

sentation of F, FED follows from the relation F, F9 w F, FO.

Now from (122) and Corollary 5.9 we get w(3) = a)is) = a(o)/ @@ — a®). If we evaluate

both sides of Eq. (121) at infinity we obtain a(S) =a® = (1 - 1/w§3))/(a)§3) (4)) and so
(4)

@ _
F,”" =

= (a © _ a(3)) /(a (0))2 Finally, from Corollary 5.9 and the above computations we deduce
that w(O) (2) =@® —aM)/@Va®). O

Remark 6.2. Since a)il) > 0, it follows from (123) that a® > oD,

Proof of Proposition 1.8. It is straightforward to check that the function
3

x@) =y (—%(1 +z)> — (), o eRr,

is a conformal representation of the Riemann surface S constructed as R (22) but formed by the
sheets

So=C\[-p,—11, S =C\(—u, —1TU[LAD, S :=C\I[1, Al

where A and p are defined in (24). x also satisfies x(z) = z+ O(1) as z — oo and has a
simple zero at 00 e 8. Observe that x(00®) = —y(00®) (the reader is cautioned that in
this relation, c0® € S and co© ¢ R).

x and S are the types of conformal mappings and Riemann surfaces analyzed in [11].
It follows from [11, Theorem 3.1] that x (c0®) = 2/H(B), where H and § are described
in the statement of Proposition 1.8 (the uniqueness of B and y is justified in [11]). So
x () = ¥ (—a>(1 +2)/2) + 2/H(B). It also follows from [11, Theorem 3.1] that the function
w = H(B)x(z) — 1 is the solution of the algebraic equation

w = (HPB)z+ 61 — O —)w? — (1 + 61 + O)w + H(B)z —h = 0,

where O, ©,, and h are the constants described in the statement of Proposition 1.8. Simple
computations and a change of variable yield immediately that w = ¥ (z) is the solution of
Eq.(25). O

7. The nth root asymptotics and zero asymptotic distribution of the polynomials @, and

Qn,z

It is well known (see [14]) that if E C C is a compact set that is regular with respect to the
Dirichlet problem, and ¢ is a continuous real-valued function on E, then there exists a unique
L € M (E) satisfying the variational conditions

Vit {2 T E e

for some constant w. The measure [ is called the equilibrium measure in the presence of the
external field ¢ on E, and w the equilibrium constant.
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Recall that we defined A; to be the positive, rotationally invariant measure on Sy whose
restriction to the interval [0, o] coincides with the measure s1(x)dx, and we defined XA, to be the
positive, rotationally invariant measure on S; whose restriction to the interval [—b, —a] coincides
with the measure s (x)dx.

Lemma 7.1. Suppose that A1, Lo € Reg. Then the following measures are also regular:

3
%dr, s1(J1)Jrdr, 1 el0,e’], (124)
T

3 3
s2(J/7)dr, Szg/f) dr, Sz‘;#

Proof. Let 7, be the nth monic orthogonal polynomial associated with A1, i.e., 7w, is the monic
polynomial of degree n that satisfies

dr, tel[-b3, —a’). (125)

/ nn(t)t_kdkl(t)zo, 0<k<n-1. (126)
So

It is immediate to check that 7, (e%z) = emf%rrn (z). We deduce from this property and (126)
that the polynomials

3 3
3 (V7), n3ktql/(?ﬁ)’ 773k4r—§/(;/?)’

are precisely the monic orthogonal polynomials of degree k associated, respectively, with the
measures

Sl:z#df’ Sl(%)df, Sl(e/?)fz/?)df. (127)

We also have:

[ imsoranm = [ wu@m S,
So 0 T

o3 3 2
fs T340 (1) A (1) = /O (”‘%@) s1(J/7)dr,
0

ol 3 2
/s |”3k+2(t)|2dll(t)=[) <mi§—§3ﬁ> s1(JT)r*de.
0

So taking into account (see [13, Theorem 5.2.5]) that

cap(supp(x1)) = cap(supp(p))'/?,

where cap(A) denotes the logarithmic capacity of A, and p is any of the three measures in (127),
the regularity of A1 implies the regularity of the three measures in (127).

Let [, denote the nth monic orthogonal polynomial associated with the measure dp;(t) =
51(J7)Jtdr, and let T, be the nth Chebyshev polynomial (see [13], page 155) for the set
E := supp(p1). We have

1/2 1/2
(/ l,%(r)dm(r)) 5(/ T,%(r)dm(r)) < Tullep1(E)'/?,
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where || T, || g denotes the supremum norm of 7;, on E, and so by [13, Corollary 5.5.5] we obtain

. 1 . 1
limsup (11,115 < lim (| 7,1}/" = cap(supp(p1)). (128)
n—00 n—0o0
If we call I, the nth monic orthogonal polynomial associated with the measure dpy(7) =
s1(J7)r*3dr, we have

1/2 172
(f E(r)dpz(w) §a1/2</ z,%(r)dm(r)) ,

and so the regularity of p, and (128) imply the regularity of p;. Similar arguments show that the
measures in (125) are regular. [

Proof of Theorem 1.10. Recall that if P is a polynomial, we indicate by wp the associated
normalized zero counting measure. Let j € {0,...,5} be fixed, and assume that for some
subsequence A C N we have:

M Pery - w1 € Mi(4y), M Psiyjn = ny € M(A4A).
Consequently,
1

lim — log | Pek+ = —VHi(z), C\ Ay, 129
ey 0g | Pek+j (2)| (), zeC\ A (129)
li ! log | P (2)| 1V"Z( ) eC\A (130)
im — lo ; == , ,

red 4 g | Fok+j,2(2 1 b4 Z )

uniformly on compact subsets of the indicated regions.
We know by Proposition 5.2 that there exists a fixed measure dp supported on A; (dp is one
of the measures in (124)) such that

dp(7)

—, 0<j <deg(Pegri). (131)
Pek+j,2(T) / BTGkt

0= [ tPus@
Ay

We know by Lemma 7.1 that the measure dp is regular. If we apply [7, Lemma 4.2] (taking, in
the notation of [7], do = dp, ¢ = 1/ Pex+j,2 and ¢ = —(1/4)V#2), we obtain from (130) and

(131) that w1 is the equilibrium measure in the presence of the external field ¢ = —(1/4)V#2,
hence
1 =wi, T €supp(ur)
M1 N v4 %) ’ )
VHI(T) 4V (r){Z wi. TeA. (132)
and
1/4k
li P2, (Ddveit =e™¥1, 133
lim (/A1 6k-+j (T)dVek+ j (r)> e (133)

where the measure dvei ; is defined in (69).
By Proposition 5.1, there exists a fixed measure dn (dn is one of the measures in (125))
supported on A; such that

|hek+j (/)]

dn(r), 0<j < deg(Poit2)- (134)
| ot (7] A

0= / ! Poitj2(7)
Ap
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The function hey 4 j is defined in (68). We also know by Lemma 7.1 that dn is regular. Taking
into account the representations (70) and the fact that p,, is orthonormal with respect to dv, (see
(67) and Proposition 5.3), it follows that there exist positive constants C1, C; such that

Ci < |h6k+j(3/?)| < C, forallt € A,.

So applying again [7, Lemma 4.2] (now take do = dn, ¢r(r) = |h6k+j(\3/?)|/|P6k+j(t)| and
¢ = —VH), we get from (134) and (129) that u, is the equilibrium measure in the presence of
the external field ¢ = —V#1, and so

Vi (7) — VHI(T) {; 33 ; g 2‘;"(“2)’ (135)
and
1/2k
lim ( fA 2 Pékf,,z(r)dvﬁkﬂ,z(r)) =e "2, (136)

where the measure dve ;2 is defined in (69).

By (132) and (135), the vector measure (141, i42) solves the equilibrium problem determined
by the interaction matrix (27) on the intervals A, Aj. Since the solution to this equilibrium
problem must be unique, (26) follows. (133) and (136) imply (29). Finally, (28) is an immediate
consequence of (26). [

Proof of Proposition 1.12. By Theorem 1.5 we know that the following limit holds:

5

O6k+1)(2) F0) (3 C\ S
oo Oaca) Oek(2) H @, zeCid.

Therefore we obtain that
5
I VE=TTIFP ). zeC\ S,
Jim 106@)1V* = [TIF7@)1. 2 C\ S
and by Corollary 1.11 it follows that

_ 5 )
SV S [TIFPEHIVS zeC\ s,
i=0

So the first relation in (30) is proved. The same argument justifies the other relation. [
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