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Abstract

We prove the relative asymptotic behavior for the ratio of two sequences of multiple orthogonal
polynomials with respect to the Nikishin systems of measures. The first Nikishin system N (σ1, . . . , σm) is
such that for each k, σk has a constant sign on its compact support supp(σk) ⊂ R consisting of an interval
∆̃k , on which |σ ′k | > 0 almost everywhere, and a discrete set without accumulation points in R \ ∆̃k . If
Co(supp(σk)) = ∆k denotes the smallest interval containing supp(σk), we assume that ∆k ∩∆k+1 = ∅,
k = 1, . . . ,m − 1. The second Nikishin system N (r1σ1, . . . , rmσm) is a perturbation of the first by means
of rational functions rk , k = 1, . . . ,m, whose zeros and poles lie in C \ ∪m

k=1 ∆k .
c© 2009 Published by Elsevier Inc.
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1. Introduction

Let σ1, σ2 be two finite Borel measures, whose supports supp(σ1), supp(σ2) are compact sets
contained in non intersecting intervals ∆1,∆2, respectively, of the real line R. Set

d〈σ1, σ2〉(x) =
∫

dσ2(t)

x − t
dσ1(x) = σ̂2(x)dσ1(x).

This expression defines a new measure whose support coincides with that of σ1. Whenever we
find it convenient, we use the differential notation of a measure.
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Let Σ = (σ1, . . . , σm) be a system of finite Borel measures on the real line with compact
support. ∆k denotes the smallest interval containing the support of σk . Assume that ∆k∩∆k+1 =

∅, k = 1, . . . ,m − 1. By definition, S = (s1, . . . , sm) = N (Σ ) is called the Nikishin system
generated by Σ if

s1 = σ1, s2 = 〈σ1, σ2〉, . . . , sm = 〈σ1, 〈σ2, . . . , σm〉〉 = 〈σ1, σ2, . . . , σm〉.

Such systems were introduced by Nikishin in [1]. Here, we use the notation presented in [2]
which is compact and clarifying.

In the sequel, (σ1, . . . , σm) will always denote a system of measures such that for each
k = 1, . . . ,m, σk has a constant sign on its compact support (the sign may depend on k). We
will write (s1, . . . , sm) = N ∗(σ1, . . . , σm), if additionally for each k = 1, . . . ,m, supp(σk) ⊂ R
consists of an interval ∆̃k , on which |σ ′k | > 0 almost everywhere, and a discrete set without
accumulation points in R \ ∆̃k . Finally, (̃s1, . . . , s̃m) = N (p1σ1, . . . , pmσm), denotes a Nikishin
system where the pk, k = 1, . . . ,m, are monic polynomials with complex coefficients whose
zeros lie in C \ ∪m

k=1 ∆k .
Let (s1, . . . , sm) = N (σ1, . . . , σm) and Qn (resp. Q̃n) be the monic polynomial of smallest

degree (not identically equal to zero) such that

0 =
∫

xνQn(x)dsk(x), ν = 0, . . . , nk − 1, k = 1, . . . ,m, (1)

0 =
∫

xν Q̃n(x)d̃sk(x), ν = 0, . . . , nk − 1, k = 1, . . . ,m, (2)

where n = (n1, . . . , nm) ∈ Zm
+. Set |n| = n1 + · · · + nm .

In the general theory of orthogonal polynomials, E.A. Rakhmanov’s theorem on ratio
asymptotic behavior occupies a significant place (see [3,4], and for a simplified proof [5]) as
well as its extension given by Denisov in [6]. In [7] (see also [8]), we studied the ratio asymptotic
behavior of sequences of multiple orthogonal polynomials with respect to a Nikishin system of
measures with a constant sign extending to this setting the Rakhmanov–Denisov theorem (see
Proposition 3.2). In this paper, we find the relative asymptotic behavior of sequences formed by
quotients of the form Q̃n/Qn.

The subject of relative asymptotic behavior of sequences of orthogonal polynomials begins
with [9] by A. A. Gonchar in which he establishes the relative asymptotic behavior of the
denominators of diagonal Padé approximants associated with functions of the form

∫
(z −

x)−1dσ(x) + r(z) and the orthogonal polynomials of the measure σ which is assumed to be
supported on an interval ∆ of the real line on which σ ′ > 0 almost everywhere. Here, r denotes
a rational function with complex coefficients whose zeros and poles lie in C \∆. This turns out
to be a key ingredient in his proof of the convergence of the sequence of Padé approximants
to such meromorphic Markov type functions. In a series of papers [10–12], Maté–Nevai–Totik
extended Szegő’s theory of orthogonal polynomials, comparing the asymptotic behavior of two
sequences of orthogonal polynomials corresponding to two measures — σ and gdσ — under
appropriate assumptions on the measure σ and the weight g (see also [5,13]). A typical example
of the application of this type of result in the present context is Corollary 4.2, where we extend
the Rakhmanov–Denisov theorem given in [7] to the case of Nikishin systems generated by
measures perturbed by rational weights with complex coefficients.

Given the collection of polynomials (p1, . . . , pm), we define

Zm
+(~; p1, . . . , pm) = {n ∈ Zm

+ : j < k ⇒ nk + deg(p j+1 · · · pk) ≤ n j + 1}.
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In particular,

Zm
+(~) = {n ∈ Zm

+ : j < k ⇒ nk ≤ n j + 1}.

A point z0 ∈ C is said to be a 1 attraction point of zeros of a sequence of functions {ϕn},n ∈
Λ ⊂ Zm

+, if for each sufficiently small ε > 0 there exists N such that for all n ∈ Λ, |n| > N , the
number of zeros (counting multiplicity) of ϕn in {z : |z − z0| < ε} is 1. A set E is an attractor
of the zeros of {ϕn},n ∈ Λ, if for each ε > 0 there exists N0 such that |n| > N0,n ∈ Λ, implies
that all the zeros of ϕn lie in the ε neighborhood of E . Our main result states:

Theorem 1.1. Let S = N ∗(σ1, . . . , σm) and Λ ⊂ Zm
+(~; p1, . . . , pm) be a sequence of distinct

multi-indices such that for all n ∈ Λ, n1 − nm ≤ C, where C is a constant. Then

lim
n∈Λ

Q̃n(z)

Qn(z)
= F(z; p1, . . . , pm), K ⊂ C \ supp(σ1), (3)

uniformly on each compact subset K of C \ supp(σ1), where F is analytic and never vanishes in
C \ ∆̃1. For all sufficiently large |n|,n ∈ Λ, deg Q̃n = |n|, supp(σ1) is an attractor of the zeros
of {Q̃n},n ∈ Λ, and each point in supp(σ1) \ ∆̃1 is a 1 attraction point of zeros of {Q̃n},n ∈ Λ.
When the coefficients of the polynomials pk, k = 1, . . . ,m, are real, the statements remain valid
for Λ ⊂ Zm

+(~).

An expression for F(z; p1, . . . , pm) is given in (42) at the end of the proof of Theorem 1.1
in Section 4. In the sequel, any limit following the notation used in (3) stands for uniform
convergence on each compact subset of the indicated region.

This paper is organized as follows. Sections 2 and 3 contain auxiliary results needed for the
proof of Theorem 1.1. Section 4 is dedicated to its proof and deriving several consequences.
For example, we show that the same result is valid if we modify the measures in the initial
system by rational functions instead of polynomials. These results allow us to extend the
Rakhmanov–Denisov theorem on ratio asymptotic behavior to the sequence {Q̃n},n ∈ Λ. In
Sections 5 and 6 we study the relative asymptotic behavior of an associated system of second
type functions and their zeros.

2. Some lemmas

Obviously, Zm
+(~; p1, . . . , pm) ⊂ Zm

+(~). If n ∈ Zm
+(~), it is well known that there exists

a unique polynomial Qn of degree ≤ |n| satisfying the orthogonality relations expressed in (1).
Moreover, Qn has exactly |n| simple zeros which lie in the interior of ∆1 (for example, see [2]).

Let us express the orthogonality relations (2) satisfied by the polynomials Q̃n in terms of the
measures in the initial system.

Lemma 2.1. For each k = 1, . . . ,m, we have

s̃k = p1lk,1s1 + p1 p2lk,2s2 + · · · + (p1 · · · pk)lk,ksk, (4)

where lk, j is a polynomial of degree deg lk, j ≤ deg(p j+1 · · · pk) − 1, j < k, and lk,k ≡ 1. In
particular, if n ∈ Zm

+(~; p1, . . . , pm), then

0 =
∫

xν Q̃n(x)(p1 · · · pk)(x)dsk(x), ν = 0, . . . , nk − 1, k = 1, . . . ,m. (5)
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Proof. To prove (4), we proceed by induction on m, the number of measures which generate
the system. For m = 1, (4) is trivial, since s̃1 = p1σ1 = p1s1. Assume that (4) is true for any
Nikishin system with m − 1 ≥ 1 generating measures and let us prove it when the number of
generating measures is m.

Fix k ∈ {1, . . . ,m}. By definition,

s̃k = 〈p1σ1, . . . , pkσk〉 = 〈p1σ1, 〈p2σ2, . . . , pkσk〉〉.

Consider the Nikishin system N (p2σ2, . . . , pkσk) which has at most m−1 generating measures.
By the induction hypothesis, there exist polynomials h2, . . . , hk, deg h j ≤ deg(p j+1 · · · pk) −

1, hk ≡ 1, such that

〈p2σ2, . . . , pkσk〉 = p2h2σ2 + · · · + (p2 · · · pk)hk〈σ2, . . . , σk〉.

Inserting this relation above, we have

s̃k = 〈p1σ1, p2h2σ2〉 + · · · + 〈p1σ1, (p2 · · · pk)hk〈σ2, . . . , σk〉〉. (6)

Given two measures σα, σβ , and a polynomial h, notice that

d〈σα, hσβ〉(x) =
∫
(h(t)∓ h(x))dσβ(t)

x − t
dσα(x)

= h∗(x)dσα(x)+ h(x)d〈σα, σβ〉(x),

where deg h∗ = deg h − 1. Making use of this property in each term of (6), it follows that

s̃k = p1[(p2h2)
∗
+ · · · + (p2 · · · pkhk)

∗
]σ1 + (p1 p2)h2〈σ1, σ2〉 + · · ·

+ (p1 · · · pk)hk〈σ1, . . . , σk〉,

which establishes (4).
Using (4) and the orthogonality relations (2) satisfied by Q̃n, it follows that for each k ∈

{1, . . . ,m} and ν = 0, . . . , nk − 1,

0 =
∫

xν Q̃n(x)d̃sk(x) =
k∑

j=1

∫
xνlk, j (x)Q̃n(x)(p1 · · · p j )(x)ds j (x). (7)

In the rest of the proof we assume that n ∈ Zm
+(~; p1, . . . , pm). When k = 1 the last formula

reduces to (5). Suppose that (5) holds up to k − 1, 1 ≤ k − 1 ≤ m − 1, and let us show that it is
also satisfied for k.

Let j ∈ {1, . . . , k − 1} and 0 ≤ ν ≤ nk − 1, then

ν + deg lk, j ≤ nk − 1+ deg(p j+1 · · · pk)− 1 ≤ n j − 1.

Therefore, according to the induction hypothesis∫
xνlk, j (x)Q̃n(x)(p1 · · · p j )(x)ds j (x) = 0,

and (7) reduces to (5) for the index k. With this we conclude the proof. �

Lemma 2.2. Let n ∈ Zm
+(~; p1, . . . , pm). Then, for each k = 1, . . . ,m,

0 =
∫

xν Q̃n(x)(p1 · · · pm)(x)dsk(x), ν = 0, . . . , nk − deg(pk+1 · · · pm)− 1. (8)
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Proof. In place of xν we can put in (5) any polynomial of degree ≤ nk − 1. So, replacing xν by
xν(pk+1 · · · pm) we obtain (8). �

Our next objective is to express the multiple orthogonal polynomials of the perturbed system
in terms of multiple orthogonal polynomials of the initial system.

Let n ∈ Zm
+(~; p1, . . . , pm) and consider the multi-indices

n j = (n1 − deg(p2 · · · pm)+ j, n2 − deg(p3 · · · pm), . . . , nm), j ≥ 0.

It is easy to verify that

n j ∈ Zm
+(~), j ≥ 0.

Therefore, deg Qn j = |n j | and all its |n j | simple zeros lie on ∆1. Moreover, for each j ≥ 0 and
k = 1, . . . ,m,

0 =
∫

xνQn j (x)dsk(x), ν = 0, . . . , nk − deg(pk+1 · · · pm)− 1. (9)

Lemma 2.3. Let n ∈ Zm
+(~; p1, . . . , pm) and set Rn = Q̃n p1 · · · pm . There exist unique

constants λn, j , j = 0, . . . , N, such that

Rn =

N∑
j=0

λn, j Qn j , N = deg(p1 p2
2 · · · p

m
m ). (10)

If j ′ is such that deg Rn = deg Qn j ′
then λn, j ′ = 1 and λn, j = 0, j ′+1 ≤ j ≤ N. In particular,

λn,N = 1 if and only if deg Q̃n = |n|.

Proof. Since deg Rn ≤ |n|+deg(p1 · · · pm), and {Qn j }, j = 0, . . . , N , has representatives of all
degrees from |n| − deg(p2 p2

3 · · · p
m−1
m ) up to |n| + deg(p1 · · · pm), there exists a unique system

of constants λn, j , j = 0 . . . , N , such that

deg

(
Rn −

N∑
j=0

λn, j Qn j

)
≤ |n| − deg(p2 p2

3 · · · p
m−1
m )− 1.

From (8) and (9) it follows that

Rn −

N∑
j=0

λn, j Qn j ≡ 0,

which is (10). The rest of the statements follow because Rn is monic. �

Let n ∈ Zm
+(~; p1, . . . , pm). Define recursively the functions

Rn,0(z) = Rn(z), Rn,k(z) =
∫

Rn,k−1(x)

z − x
dσk(x), k = 1, . . . ,m. (11)

In deriving (8), we lost some orthogonality relations. We will recover them in the form of analytic
properties of the functions Rn,k, k = 0, . . . ,m − 1.
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Lemma 2.4. Fix n ∈ Zm
+(~; p1, . . . , pm). The following relations take place:

If z1 is a zero of p1 · · · pm of multiplicity τ1, then

Ω (i)
n (z1) =

(
Rn

Qn0

)(i)
(z1) = 0, i = 0, . . . , τ1 − 1. (12)

If zk is a zero of pk · · · pm, k = 2, . . . ,m, of multiplicity τk , then

R(i)n,k−1(zk) = 0, i = 0, . . . , τk − 1. (13)

Proof. The zeros of p1 · · · pm lie in C \∆1, and those of Qn0 in ∆1. Therefore, Ωn has a zero at
z1 of multiplicity greater or equal to τ1 which implies (12).

For simplicity, first we will prove (13) for k = 2. By definition

Rn,1(z) =
∫

Rn(x)

z − x
dσ1(x).

Therefore, for each i ≥ 0,

R(i)n,1(z) = (−1)i i !
∫

Rn(x)

(z − x)i+1 dσ1(x), z ∈ C \∆1.

If z2 is a zero of p2 · · · pm of multiplicity τ2, using (5) with k = 1 we have that

0 =
∫
(p2 · · · pm)(x)

(z2 − x)i+1 Q̃n(x)p1(x)dσ1(x) =
(−1)i R(i)n,1(z2)

i !
, i = 0, . . . , τ2 − 1,

which is (13) for k = 2. The proof of the general case uses basically the same arguments.
Consider the functions

Φn,k(z) =
∫

Rn(x)

z − x
dsk(x), k = 1, . . . ,m.

Notice that Φn,1 = Rn,1. For each i ≥ 0,

Φ(i)
n,k(z) = (−1)i i !

∫
Rn(x)

(z − x)i+1 dsk(x), k = 1, . . . ,m.

It is easy to verify that for each k = 2, . . . ,m,

Φn,k(z)+ (−1)k Rn,k(z) =
∫
· · ·

∫
Rn(x1)(x1 − xk)dσ1(x1) · · · dσk(xk)

(z − x1)(x1 − x2) · · · (xk−1 − xk)(z − xk)
.

Taking x1 − xk = x1 − x2 + · · · + xk−1 − xk , it follows that

Rn,k(z) = (−1)k−1Φn,k(z)+
k−1∑
l=1

(−1)l−1ϑ̂l,k(z)Φn,l(z), z ∈ C \

(
m⋃

l=1

∆l

)
, (14)

where ϑl,k = 〈σk, σk−1, . . . , σl+1〉. If zk is a zero of pk · · · pm of multiplicity τk (≤ τk−1 ≤

· · · ≤ τ2), using (5) we obtain that for each l = 2, . . . , k and i = 0, . . . , τk − 1,

0 =
∫
(pl · · · pm)(x)

(zk − x)i+1 Q̃n(x)(p1 · · · pl−1)(x)dsl−1(x) =
(−1)iΦ(i)

n,l−1(zk)

i !
. (15)

Now, (13) is a consequence of (14) (with k replaced by k − 1), and (15). With this we conclude
the proof. �
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3. Known asymptotic properties

For each n ∈ Zm
+(~), define recursively the functions

Ψn,0(z) = Qn(z), Ψn,k(z) =
∫

Ψn,k−1(x)

z − x
dσk(x), k = 1, . . . ,m. (16)

In Proposition 1 of [2] it was proved that for each n = (n1, . . . , nm) ∈ Zm
+(~), k = 1, . . . ,m,

and k ≤ k + r ≤ m,∫
Ψn,k−1(t) tνd〈σk, . . . , σk+r 〉(t) = 0, ν = 0, . . . , nk+r − 1.

From here, the authors deduce that Ψn,k−1, k = 1, . . . ,m, has exactly Nn,k = nk + · · · + nm
zeros in C \∆k−1, that they are all simple, and lie in the interior of ∆k . Let Qn,k be the monic
polynomial of degree Nn,k whose simple zeros are located at the points where Ψn,k−1 vanishes
on ∆k and let Qn,m+1 ≡ 1. In Proposition 2 (see also Proposition 3) of [2] the authors show that∫

xνΨn,k−1(x)
dσk(x)

Qn,k+1(x)
= 0, ν = 0, . . . , Nn,k − 1, k = 1, . . . ,m. (17)

Set

Hn,k(z) :=
Qn,k−1(z)Ψn,k−1(z)

Qn,k(z)
, k = 1, . . . ,m + 1,

(Hn,1(z) ≡ 1). It is well known (see (50) in [14]) and easy to verify that

Hn,k+1(z) =
∫ Q2

n,k(x)

z − x

Hn,k(x)dσk(x)

Qn,k−1(x)Qn,k+1(x)
, k = 1, . . . ,m. (18)

From (17), we have that for each multi-index n = (n1, . . . , nm) ∈ Zm
+(~) there exists an

associated system of polynomials

{Qn,k}
m
k=1, deg Qn,k =

m∑
α=k

nα =: Nn,k, Qn,0 ≡ Qn,m+1 ≡ 1.

For each k = 1, . . . ,m, they satisfy the full system of orthogonality relations∫
xνQn,k(x)

Hn,k(x)dσk(x)

Qn,k−1(x)Qn,k+1(x)
= 0, ν = 0, . . . , Nn,k − 1, (19)

with respect to varying measures. Notice that Hn,k and Qn,k−1 Qn,k+1 have a constant sign on
∆k .

Let εn,k be the sign of the measure Hn,k(x)dσk(x)/Qn,k−1(x)Qn,k+1(x) on supp(σk). For
each k = 1, . . . ,m, set

Kn,k =

(∫
Q2

n,k(x)
εn,k Hn,k(x)dσk(x)

Qn,k−1(x)Qn,k+1(x)

)−1/2

. (20)

Take

Kn,0 = 1, κn,k =
Kn,k

Kn,k−1
, k = 1, . . . ,m.
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Define

qn,k = κn,k Qn,k, hn,k = K 2
n,k−1 Hn,k, k = 1, . . . ,m. (21)

From (19)∫
xνQn,k(x)

εn,khn,k(x)dσk(x)

Qn,k−1(x)Qn,k+1(x)
= 0, ν = 0, . . . , Nn,k − 1, k = 1, . . . ,m,

and, with the notation introduced above, it follows that qn,k is orthonormal with respect to the
varying measure

εn,khn,k(x)dσk(x)

Qn,k−1(x)Qn,k+1(x)
= dρn,k(x).

In Lemma 3.3 of [7] (see also Corollary 3 in [13]) we proved

Proposition 3.1. Let S = N ∗(σ1, . . . , σm) and Λ ⊂ Zm
+(~) be a sequence of multi-indices such

that for all n ∈ Λ, n1 − nm ≤ C, where C is a constant. Then, for each fixed k = 1, . . . ,m, we
have

lim
n∈Λ

εn,khn,k+1(z) =
1

√
(z − bk)(z − ak)

, K ⊂ C \ supp(σk), (22)

where [ak, bk] = ∆̃k . The square root is taken so that
√
(z − bk)(z − ak) > 0 for z = x > bk .

supp(σk) is an attractor of the zeros of {Qn,k},n ∈ Λ, and each point of supp(σk) \ ∆̃k is a 1
attraction point of zeros of {Qn,k},n ∈ Λ.

In the proof of our main result, we use the asymptotic behavior of the polynomials Qn,k, k =
1, . . . ,m, and the functions Ψn,k, k = 1, . . . ,m, when n runs through a sequence of multi-indices
Λ ⊂ Zm

+(~). In order to describe these asymptotic formulas we need to introduce some notions.
Consider the (m + 1)-sheeted Riemann surface

R =
m⋃

k=0

Rk,

formed by the consecutively “glued” sheets

R0 := C \ ∆̃1, Rk := C \ {∆̃k ∪ ∆̃k+1}, k = 1, . . . ,m − 1, Rm = C \ ∆̃m,

where the upper and lower banks of the slits of two neighboring sheets are identified. Fix
l ∈ {1, . . . ,m}. Let ψ (l), l = 1, . . . ,m, be a single valued rational function on R whose divisor
consists of a simple zero at the point ∞(0)

∈ R0 and a simple pole at the point ∞(l)
∈ Rl .

Therefore,

ψ (l)(z) = C1/z +O(1/z2), z→∞(0), ψ (l)(z) = C2z +O(1), z→∞(l),

where C1 and C2 are constants different from zero. Since the genus of R equals zero, such
a single valued function on R exists and it is uniquely determined except for a multiplicative
constant. We denote the branches of the algebraic function ψ (l), corresponding to the different
sheets k = 0, . . . ,m of R by

ψ (l) := {ψ
(l)
k }

m
k=0.
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We normalize ψ (l) so that

m∏
k=0

|ψ
(l)
k (∞)| = 1, C1 ∈ R\{0}. (23)

Certainly, there are two ψ (l) verifying this normalization.

Since the product of all the branches
∏m

k=0 ψ
(l)
k is a single valued analytic function in C

without singularities, by Liouville’s Theorem, it is constant, and because of the normalization
introduced above, this constant is either 1 or −1. Since ψ (l) is such that C1 ∈ R \ {0}, then

ψ (l)(z) = ψ (l)(z), z ∈ R.

In fact, let φ(z) := ψ (l)(z). φ andψ (l) have the same divisor; consequently, there exists a constant
C such that φ = Cψ (l). Comparing the leading coefficients of the Laurent expansion of these
functions at∞(0), we conclude that C = 1.

Given an arbitrary function F(z)which has, in a neighborhood of infinity, a Laurent expansion
of the form F(z) = Czk

+O(zk−1),C 6= 0, and k ∈ Z, we denote

F̃ := F/C.

(For simplicity in writing, we write F̃ (l)k instead of the more appropriate F̃ (l)k .) C is called the
leading coefficient of F . When C ∈ R \ {0}, sg(F(∞)) represents the sign of C .

In terms of the branches of ψ (l), the symmetry formula above means that for each k =
0, 1, . . . ,m

ψ
(l)
k : R \ (∆̃k ∪ ∆̃k+1) −→ R (24)

(∆̃0 = ∆̃m+1 = ∅); therefore, the coefficients (in particular, the leading one) of the Laurent
expansion at∞ of these branches are real numbers and sg(ψ (l)k (∞)) is defined. It also expresses
that

ψ
(l)
k (x±) = ψ

(l)
k (x∓) = ψ

(l)
k+1(x±), x ∈ ∆̃k+1.

For any fixed multi-index n = (n1, . . . , nm), set

nl
:= (n1, . . . , nl−1, nl + 1, nl+1, . . . , nm).

In [7] (see also [8]) the authors prove

Proposition 3.2. Let S = N ∗(σ1, . . . , σm) and Λ ⊂ Zm
+(~) be a sequence of multi-indices

such that for all n ∈ Λ and some fixed l ∈ {1, . . . ,m}, we have that nl
∈ Zm

+(~) and
n1 − nm ≤ C, where C is a constant. Let {qn,k = κn,k Qn,k}

m
k=1,n ∈ Λ, be the system of

orthonormal polynomials defined in (21) and {Kn,k}
m
k=1,n ∈ Λ, the values given by (20). Then,

for each fixed k = 1, . . . ,m, we have

lim
n∈Λ

κnl ,k

κn,k
= κ

(l)
k , (25)

lim
n∈Λ

Knl ,k

Kn,k
= κ

(l)
1 · · · κ

(l)
k , (26)
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and

lim
n∈Λ

qnl ,k(z)

qn,k(z)
= κ

(l)
k F̃ (l)k (z), K ⊂ C \ supp(σk), (27)

where

κ
(l)
k =

c(l)k√
c(l)k−1c(l)k+1

, c(l)k =

{
(F (l)k )′(∞), k = 1, . . . , l,
F (l)k (∞), k = l + 1, . . . ,m,

(28)

(c(l)0 = c(l)m+1 = 1) and

F (l)k := δk,l

m∏
ν=k

ψ (l)ν , (29)

with δk,l = sg
(∏m

ν=k ψ
(l)
ν (∞)

)
.

4. Proof of Theorem 1.1

When l = 1, it is possible to find an algebraic function ψ (1) satisfying

m∏
k=0

ψ
(1)
k (∞) = 1, C1 ∈ R \ {0}. (30)

Let (a, b)k denote the interval (a, b) on the sheet Rk . We distinguish two cases. Suppose
that ∆̃1 = [a1, b1] is to the left of ∆̃2 = [a2, b2]. Take ψ (1) verifying (23) with C1 =

limz→∞ zψ (1)0 (z) > 0. Because of (24), the restriction of ψ (1) to (−∞, a1]0 ∪ (−∞, a1]1
establishes a bicontinuous bijection onto the interval (−∞, 0) of the real line. It follows that
ψ
(1)
1 (x)→−∞, x →−∞, x ∈ R, which means that C2 > 0, and ψ (1)k (∞) > 0, k = 2, . . . ,m.

Therefore,
∏m

k=0 ψ
(1)
k (∞) > 0. If ∆̃1 is to the right of ∆̃2, take ψ (1) satisfying (23) with C1 < 0.

Now, the restriction of ψ (1) to [b1,+∞)0 ∪ [b1,+∞)1 establishes a bicontinuous bijection onto
(−∞, 0). It follows that ψ (1)1 (x) → −∞, x → +∞, x ∈ R, which means that C2 < 0, and

ψ
(1)
k (∞) > 0, k = 2, . . . ,m. Again,

∏m
k=0 ψ

(1)
k (∞) > 0.

Throughout the rest of the paper, when ∆̃1 is to the left of ∆̃2, we will select ψ (1) so that
sg(ψ (1)k (∞)) = 1, for all k = 0, . . . ,m. If ∆̃1 is to the right of ∆̃2, we will take ψ (1) so that

sg(ψ (1)0 (∞)) = sg(ψ (1)1 (∞)) = −1 and sg(ψ (1)k (∞)) = 1, for all k = 2, . . . ,m.
In general, for any l ∈ {1, . . . ,m} and ψ (l) verifying (23), we know that

m∏
ν=0

ψ (l)ν (∞) ∈ {−1, 1}.

Let Λ ⊂ Zm
+(~; p1, . . . , pm) be an infinite sequence of distinct multi-indices such that

n1 − nm ≤ C,n ∈ Λ. According to (25)–(29), for each fixed j ≥ 0,

lim
n∈Λ

Qn j+1(z)

Qn j (z)
= F̃ (1)1 (z) =

sg(ψ (1)0 (∞))

c(1)1 ψ
(1)
0 (z)

=: ϕ0(z), K ⊂ C \ supp(σ1). (31)

(Notice that (30) implies that
∏m
ν=0 ψ

(1)
ν (z) ≡ 1.)
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Using (10),

Ωn =
Rn

Qn0

=

N∑
j=0

λn, j
Qn j

Qn0

, N = deg(p1 p2
2 · · · p

m
m ).

Set

λ∗n =

(
N∑

j=0

|λn, j |

)−1

.

At least one of the numbers in the sum is 1 so λ∗n is finite. Define

λ∗nΩn =

N∑
j=0

λ∗n, j

Qn j

Qn0

,

N∑
j=0

|λ∗n, j | = 1. (32)

Because of (31) and (32), the family {λ∗nΩn},n ∈ Λ, is normal in C \ supp(σ1), and any
convergent subsequence {λ∗nΩn},n ∈ Λ′ ⊂ Λ, converges to

lim
n∈Λ′

λ∗nΩn(z) = pΛ′(ϕ0(z)) =
N∑

j=0

λ jϕ
j
0 (z), K ⊂ C \ supp(σ1).

That is, pΛ′(w) is a polynomial of degree≤ N , not identically equal to zero since
∑N

j=0 |λ j | = 1.
We will show that pΛ′ does not depend on the subsequence taken. This implies the existence of
limit along all Λ. To this aim, we will uniquely determine N zeros of pΛ′ .

Let z1 be one of the zeros of p1 · · · pm and τ1 its multiplicity. Using (12) and the Weierstrass
theorem, it follows that

(pΛ′ ◦ ϕ0)
(i)(z1) = 0, i = 0, . . . , τ1 − 1.

Since ϕ0 is one to one in C \ ∆̃1, we conclude that pΛ′(w) is divisible by

(w − ϕ0(z1))
τ1 .

We will detect the rest of the zeros of pΛ′(w) in virtue of (13). Consider the sequence
{λ∗n Rn,k−1},n ∈ Λ′. From (10), (11) and (16)

λ∗n Rn,k−1(z) =
N∑

j=0

λ∗n, jΨn j ,k−1(z).

Multiplying this equation by εn0,k−1 K 2
n0,k−1 Qn0,k−1/Qn0,k and using the definition of hn,k ,

we obtain

λ∗nεn0,k−1 K 2
n0,k−1(Qn0,k−1 Rn,k−1)(z)

Qn0,k(z)

=

N∑
j=0

λ∗n, j

K 2
n0,k−1

K 2
n j ,k−1

Qn0,k−1(z)

Qn j ,k−1(z)

Qn j ,k(z)

Qn0,k(z)

εn0,k−1

εn j ,k−1
εn j ,k−1hn j ,k(z).
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From (25)–(27), for each j ≥ 0 and k = 2, . . . ,m,

lim
n∈Λ′

K 2
n j ,k−1

K 2
n j+1,k−1

Qn j ,k−1(z)

Qn j+1,k−1(z)

Qn j+1,k(z)

Qn j ,k(z)
=

F̃ (1)k (z)

(κ
(1)
1 · · · κ

(1)
k−1)

2 F̃ (1)k−1(z)
,

uniformly on compact subsets of C \ (supp(σk−1) ∪ supp(σk)). On account of (28) and the
expression of the functions F (1)k ,

F̃ (1)k (z)

(κ
(1)
1 · · · κ

(1)
k−1)

2 F̃ (1)k−1(z)
=

sg(ψ (1)k−1(∞))

c(1)1 ψ
(1)
k−1(z)

=: ϕk−1(z). (33)

Let us consider the ratios εn j+1,k/εn j ,k, k = 1, . . . ,m − 1, j ≥ 0. Recall that εn,k is, by
definition, the sign of the measure Hn,k(x)dσk(x)/(Qn,k−1 Qn,k+1)(x) on ∆k . Notice that for
each fixed k = 2, . . . ,m the polynomials Qn j ,k have the same degree for all j ≥ 0; therefore,
they all have the same sign on any interval disjoint from ∆k . On the other hand, the polynomials
Qn j ,1 have degrees that increase one by one with j . Hence, if ∆1 is to the left of ∆2, all the
polynomials Qn j ,1 have the same sign on ∆2 whereas, if ∆1 is to the right of ∆2, the sign of these
polynomials alternates on ∆2 as j increases one by one. Taking these facts into consideration,
it is easy to see that for all j ≥ 0, the measures Hn j ,1(x)dσ1(x)/Qn j ,2(x) = dσ1(x)/Qn j ,2(x),
have the same sign; therefore, for all j ≥ 0, εn j+1,1/εn j ,1 = 1 and the functions Hn j ,2 have
the same sign on ∆2 (see (18)). Hence, the measures Hn j ,2(x)dσ2(x)/(Qn j ,1 Qn j ,3)(x) have the
same sign if ∆1 is to the left of ∆2 and an alternate sign as j increases when ∆1 is to the right of
∆2. Thus, for all j ≥ 0, εn j+1,2/εn j ,2 = 1 when ∆1 is to the left of ∆2 and εn j+1,2/εn j ,2 = −1
when ∆1 is to the right of ∆2. By the same token (see (18)), for all j ≥ 0 the functions Hn j ,3
have the same sign on ∆3 when ∆1 is to the left of ∆2 and an alternate sign when ∆1 is to the
right of ∆2. From now on the situation repeats and for each fixed k = 2, . . . ,m − 1, and all
j ≥ 0, εn j+1,k/εn j ,k = 1 when ∆1 is to the left of ∆2 while εn j+1,k/εn j ,k = −1 when ∆1 is to
the right of ∆2.

Let δ = 1 when ∆1 is to the left of ∆2 and δ = −1 if ∆1 is to the right of ∆2. Using (25)–(28),
it follows that

lim
n∈Λ′

λ∗nεn0,k−1 K 2
n0,k−1

Qn0,k−1(z)Rn,k−1(z)

Qn0,k(z)

=


1

√
(z − b1)(z − a1)

N∑
j=0

λ jϕ
j
1 (z), k = 2,

1√
(z − bk−1)(z − ak−1)

N∑
j=0

λ j (δϕk−1)
j (z), k = 3, . . . ,m,

=


1

√
(z − b1)(z − a1)

pΛ′(ϕ1(z)), k = 2,

1√
(z − bk−1)(z − ak−1)

pΛ′(δϕk−1(z)), k = 3, . . . ,m,
(34)

uniformly on each compact subset K of C \ (supp(σk−1) ∪ supp(σk)).
Let zk be one of the zeros of pk · · · pm, k = 2, . . . ,m, and τk its multiplicity. Using (34) and

(13), and the Weierstrass theorem, it follows that

(pΛ′ ◦ ϕ1)
(i)(z2) = 0, i = 0, . . . , τ2 − 1,
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and

(pΛ′ ◦ (δϕk−1))
(i)(zk) = 0, i = 0, . . . , τk − 1, k = 3, . . . ,m.

Since ϕk−1 is one to one in C \ (∆̃k−1 ∪ ∆̃k), we conclude that pΛ′(w) is divisible by

(w − ϕ1(z2))
τ2 ,

and

(w − δϕk−1(zk))
τk , k = 3, . . . ,m.

Therefore, the following sets are formed by zeros of pΛ′ :

Z0 := {ϕ0(z1) : z1 is a zero of p1 · · · pm},

Z1 := {ϕ1(z2) : z2 is a zero of p2 · · · pm},

Zk := {δϕk(zk+1) : zk+1 is a zero of pk+1 · · · pm}, 2 ≤ k ≤ m − 1.

Assume, first, that δ = 1. Recall that in this case we selected ψ (1) so that sg(ψ (1)k (∞)) = 1
for all 0 ≤ k ≤ m. Therefore the functions ϕ0, ϕ1, δϕk, 2 ≤ k ≤ m − 1, are the first m branches
of 1/c(1)1 ψ (1). If δ = −1, since ψ (1) was chosen so that sg(ψ (1)0 (∞)) = sg(ψ (1)1 (∞)) = −1 and

sg(ψ (1)k (∞)) = 1, 2 ≤ k ≤ m, the functions ϕ0, ϕ1, δϕk, 2 ≤ k ≤ m − 1, are now the first m

branches of −1/c(1)1 ψ (1). In any case, since ψ (1) : R −→ C is bijective, it follows that the zero
sets Zk, 0 ≤ k ≤ m−1 are pairwise disjoint. Therefore, we have detected N = deg(p1 p2

2 · · · p
m
m )

zeros (counting multiplicities) of the polynomial pΛ′ and their location does not depend on the
subsequence Λ′ ⊂ Λ.

Let

(pk · · · pm)(z) =
lk∏
ν=1

(z − zk,ν)
τk,ν ,

where {zk,1, . . . , zk,lk } are the distinct zeros of pk · · · pm . Then

pΛ′(w) = c
2∏

k=1

lk∏
ν=1

(w − ϕk−1(zk,ν))
τk,ν

m∏
k=3

lk∏
ν=1

(w − δϕk−1(zk,ν))
τk,ν ,

where c is uniquely defined by the conditions that it is a positive constant such that the sum of
the moduli of the coefficients of pΛ′ equals one; moreover,

0 < c = lim
n∈Λ

λ∗n <∞.

Consequently, uniformly on each compact subset K ⊂ C \ supp(σ1),

lim
n∈Λ

Rn(z)

Qn0(z)

=

2∏
k=1

lk∏
ν=1

(ϕ0(z)− ϕk−1(zk,ν))
τk,ν

m∏
k=3

lk∏
ν=1

(ϕ0(z)− δϕk−1(zk,ν))
τk,ν . (35)

From (25) and (27), it follows that

lim
n∈Λ

Qn(z)

Qn0(z)
= (F̃ (1)1 (z))deg(p2···pm ) · · · (F̃ (m−1)

1 (z))deg(pm ). (36)
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Combining (35) and (36), we get

lim
n∈Λ

Q̃n(z)

Qn(z)
= F(z; p1, . . . , pm), K ⊂ C \ supp(σ1),

where (ϕ0(z) = F̃ (1)1 (z))

F(z; p1, . . . , pm) =

l1∏
ν=1

(
ϕ0(z)− ϕ0(z1,ν)

z − z1,ν

)τ1,ν l2∏
ν=1

(
1−

ϕ1(z2,ν)

ϕ0(z)

)τ2,ν

×

m∏
k=3

lk∏
ν=1

(
ϕ0(z)− δϕk−1(zk,ν)

F̃ (k−1)
1 (z)

)τk,ν

.

Let us simplify the expression above. From the definition of the functions ϕk , and taking into
account that δ = sg(ψ (1)0 (∞)), it follows that

1−
ϕ1(z2,ν)

ϕ0(z)
= 1−

ψ
(1)
0 (z)

ψ
(1)
1 (z2,ν)

.

It is easy to see that for l ≥ 2 the following equation holds:

1

ψ (1)(z)
−

1

ψ (1)(∞(l−1))
=

C (l−1)
0

C (1)
0 ψ (l−1)(z)

, (37)

where

ψ (1)(z) = C (1)
0 /z +O(1/z2), z→∞(0),

ψ (l−1)(z) = C (l−1)
0 /z +O(1/z2), z→∞(0).

For k ≥ 3 (recall that
∏m
ν=0 ψ

(l)
ν (∞) ∈ {−1, 1} when l ≥ 2), we have that

F̃ (k−1)
1 (z) =

sg(ψ (k−1)
0 )(∞)

c(k−1)
1 ψ

(k−1)
0 (z)

.

Thus

ϕ0(z)− δϕk−1(zk,ν)

F̃ (k−1)
1 (z)

=
c(k−1)

1 ψ
(k−1)
0 (z)

c(1)1 sg(ψ (k−1)
0 (∞))

(
sg(ψ (1)0 (∞))

ψ
(1)
0 (z)

−
δ

ψ
(1)
k−1(zk,ν)

)
. (38)

From (37), it follows that

ψ
(k−1)
0 (z)

(
1

ψ
(1)
0 (z)

−
1

ψ
(1)
k−1(∞)

)
=

C (k−1)
0

C (1)
0

.

Therefore,

ψ
(k−1)
0 (z)

(
1

ψ
(1)
0 (z)

−
δ

ψ
(1)
k−1(zk,ν)

)
=

C (k−1)
0

C (1)
0

+

(
ψ
(k−1)
0 (z)

ψ
(1)
k−1(∞)

−
δψ

(k−1)
0 (z)

ψ
(1)
k−1(zk,ν)

)
. (39)



228 A. López Garcı́a, G. López Lagomasino / Journal of Approximation Theory 158 (2009) 214–241

It is straightforward to check that

c(k−1)
1

c(1)1

C (k−1)
0

C (1)
0

=
sg(ψ (k−1)

0 (∞))

sg(ψ (1)0 (∞))
. (40)

Evaluating (37) at zk,ν we obtain

1

ψ
(1)
k−1(zk,ν)

−
1

ψ
(1)
k−1(∞)

=
C (k−1)

0

C (1)
0 ψ

(k−1)
k−1 (zk,ν)

. (41)

Assume that ∆1 is to the left of ∆2, then δ = sg(ψ (1)0 (∞)) = 1. From (38)–(41), we find that

ϕ0(z)− δϕk−1(zk,ν)

F̃ (k−1)
1 (z)

= 1−
ψ
(k−1)
0 (z)

ψ
(k−1)
k−1 (zk,ν)

.

If ∆1 is to the right of ∆2, then δ = sg(ψ (1)0 (∞)) = −1. Applying (38)–(41), we obtain again

ϕ0(z)− δϕk−1(zk,ν)

F̃ (k−1)
1 (z)

= 1−
ψ
(k−1)
0 (z)

ψ
(k−1)
k−1 (zk,ν)

.

Therefore,

F(z; p1, . . . , pm) =

l1∏
ν=1

(
ϕ0(z)− ϕ0(z1,ν)

z − z1,ν

)τ1,ν m∏
k=2

lk∏
ν=1

(
1−

ψ
(k−1)
0 (z)

ψ
(k−1)
k−1 (zk,ν)

)τk,ν

. (42)

(We did not substitute ϕ0 in terms of ψ (1)0 (see (31)) in the first group of products for simplicity
in the final expression.)

We have proved (3) on compact subsets of C \ supp(σ1). Using the maximum principle, it
follows that the same is true on compact subsets of C \ supp(σ1). Notice that F is analytic
and has no zero in C \ ∆̃1. For all n ∈ Λ, deg Qn = |n|, supp(σ1) is an attractor of the
zeros of {Qn},n ∈ Λ, and each point in supp(σ1) \ ∆̃1 is a 1 attraction point of zeros of
{Qn},n ∈ Λ; therefore, the statements concerning deg Q̃n and the asymptotic behavior of
the zeros of these polynomials follow from (3), on account of the argument principle and the
corresponding behavior of the zeros of the polynomials Qn described in Proposition 3.1.

In order to prove the last statement, let us assume that the polynomials pk, k = 1, . . . ,m, have
real coefficients and Λ ⊂ Zm

+(~). Notice that, in this case, the polynomials Q̃n are the multiple
orthogonal polynomials with respect to the Nikishin system N (p1σ1, . . . , pmσm) generated by
real measures with a constant sign. Thus, Proposition 3.2 can be applied to them. Given Λ we
construct the auxiliary sequence Λ(�) as follows. To each n = (n1, . . . , nm) ∈ Λ we associate
n� = (n1, n2 − deg(p2), . . . , nm − deg(p2 · · · pm)) (we disregard those multi-indices in Λ for
which a component of n� would turn out to be negative which, according to the assumptions on Λ
there can be, at most, a finite number of such n). It is easy to see that Λ(�) ⊂ Zm

+(~; p1, . . . , pm).
Choose consecutive multi-indices running from n� to n so that each one of them belongs to

Zm
+(~). We can write Qn/Qn� as the product of quotients of the corresponding monic multiple

orthogonal polynomials. The same can be done with Q̃n/Q̃n� . According to (25) and (27), there
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exists an analytic function G(z) in C \ ∆̃1, which is never zero, such that

lim
n∈Λ

Qn(z)

Qn�(z)
= lim

n∈Λ

Q̃n(z)

Q̃n�(z)
= G(z), K ⊂ C \ supp(σ1).

Since

Q̃n(z)

Qn(z)
=

Q̃n(z)

Q̃n�(z)

Q̃n�(z)

Qn�(z)

Qn�(z)

Qn(z)
,

using Theorem 1.1 on the ratio in the middle and the previous limits on the other two ratios, the
last statement readily follows. �

We can easily extend the main result to the more general case when the perturbation on the
initial system is carried out by rational functions.

Corollary 4.1. Let S = N ∗(σ1, . . . , σm). Consider the perturbed Nikishin system
N (

p1
q1
σ1, . . . ,

pm
qm
σm), where pk, qk denote relatively prime polynomials whose zeros lie in

C \ ∪m
k=1 ∆k . Let Λ ⊂ Zm

+(~; p1q1, . . . , pmqm) be a sequence of distinct multi-indices such
that for all n ∈ Λ, n1−nm ≤ C, where C is a constant. Let Q̃n be the monic multiple orthogonal
polynomial of smallest degree relative to the Nikishin system N (

p1
q1
σ1, . . . ,

pm
qm
σm) and n. Then

lim
n∈Λ

Q̃n(z)

Qn(z)
=

F(z; p1, . . . , pm)

F(z; q1, . . . , qm)
, K ⊂ C \ supp(σ1). (43)

For all sufficiently large |n|,n ∈ Λ, deg Q̃n = |n|, supp(σ1) is an attractor of the zeros of
{Q̃n},n ∈ Λ, and each point in supp(σ1) \ ∆̃1 is a 1 attraction point of zeros of {Q̃n},n ∈ Λ.
When the polynomials pk, qk, k = 1, . . . ,m, have real coefficients, the statements remain valid
for Λ ⊂ Zm

+(~).

Proof. Notice that N (
p1
q1
σ1, . . . ,

pm
qm
σm) = N (

p1q1
|q1|

2 σ1, . . . ,
pmqm
|qm |2

σm), where qk denotes the

polynomial obtained conjugating the coefficients of qk . Let Q∗n be the nth monic multiple
orthogonal polynomial with respect to the Nikishin system N (

σ1
|q1|

2 , . . . ,
σm
|qm |2

) generated by
measures with constant sign.

Using Theorem 1.1,

lim
n∈Λ

Q̃n(z)

Q∗n(z)
= F(z; p1q1, . . . , pmqm), K ⊂ C \ supp(σ1)

and, considering the last remark of the same theorem, we also have

lim
n∈Λ

Qn(z)

Q∗n(z)
= F(z; q1q1, . . . , qmqm), K ⊂ C \ supp(σ1).

On the other hand,

F(z; p1q1, . . . , pmqm)

F(z; q1q1, . . . , qmqm)
=

F(z; p1, . . . , pm)

F(z; q1, . . . , qm)

because, in the products defining the functions on the left hand side, all the factors connected with
the zeros of the qk cancel out. Consequently, (43) takes place. The rest of the statements of the
corollary are proved, following arguments similar to those employed in the proof of Theorem 1.1.
�
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The previous results allow us to derive ratio asymptotic behavior for the multiple orthogonal
polynomials of our perturbed Nikishin systems.

Corollary 4.2. Let S = N ∗(σ1, . . . , σm) Consider the perturbed Nikishin system
N (

p1
q1
σ1, . . . ,

pm
qm
σm), where pk, qk denote relatively prime polynomials whose zeros lie in

C \ ∪m
k=1 ∆k . Let Λ ⊂ Zm

+(~; p1q1, . . . , pmqm) be a sequence of distinct multi-indices such
that for all n ∈ Λ and some fixed l ∈ {1, . . . ,m}, we have that nl

∈ Zm
+(~; p1q1, . . . , pmqm)

and n1 − nm ≤ C, where C is a constant. Let Q̃n be the monic multiple orthogonal polynomial
of smallest degree with respect to the Nikishin system N (

p1
q1
σ1, . . . ,

pm
qm
σm) and n. Then

lim
n∈Λ

Q̃nl (z)

Q̃n(z)
= lim

n∈Λ

Qnl (z)

Qn(z)
= F̃ (l)1 (z), K ⊂ C \ supp(σ1).

Proof. Since

Q̃nl (z)

Q̃n(z)
=

Q̃nl (z)

Qnl (z)

Qnl (z)

Qn(z)

Qn(z)

Q̃n(z)
,

the result follows immediately applying Proposition 3.2 and Corollary 4.1. �

5. Relative asymptotic behavior of second type functions

Let Q̃n be the monic polynomial of smallest degree satisfying (2). Set

Ψ̃n,0(z) := Q̃n(z),

Ψ̃n,k(z) :=
∫

Ψ̃n,k−1(x)

z − x
pk(x) dσk(x), 1 ≤ k ≤ m.

(44)

Lemma 5.1. If n j ≥ deg(p j+1 · · · pm), j = 1, . . . ,m − 1, then Rn,k(z) =

(pk+1 · · · pm)(z)Ψ̃n,k(z), z ∈ C \ supp(σk), k = 0, 1, . . . ,m, (Rn,m = Ψ̃n,m).

Proof. We proceed by induction on k. The case k = 0 is trivial since by definition, Rn,0(z) =
(p1 · · · pm)(z)Q̃n(z). Assume that the result holds for k − 1, and let us prove it for k. We have

Rn,k(z) =
∫

Rn,k−1(x)

z − x
dσk(x) =

∫
Ψ̃n,k−1(x)(pk · · · pm)(x)

z − x
dσk(x)

= (pk+1 · · · pm)(z)Ψ̃n,k(z)+
∫

Ψ̃n,k−1(x)l(x)pk(x)dσk(x),

where l(x) is a polynomial of degree deg(pk+1 · · · pm)−1. Now, for k ≤ k+r ≤ m, the functions
Ψ̃n,k satisfy the orthogonality relations (see in [2] that the proof presented there is also valid for
complex measures)∫

Ψ̃n,k−1(t)t
νd〈pkσk, . . . , pk+rσk+r 〉(t) = 0, ν = 0, . . . , nk+r − 1.

In particular,
∫

Ψ̃n,k−1(t)tν pk(t)dσk(t) = 0 if ν ≤ nk − 1. Thus, since we are assuming that
nk ≥ deg(pk+1 · · · pm), we get that∫

Ψ̃n,k−1(x)l(x)pk(x)dσk(x) = 0

and the result follows. �
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Remark 5.1. The condition nk ≥ deg(pk+1 · · · pm), k = 1, . . . ,m−1, is automatically satisfied
by the components of multi-indices n with norm sufficiently large that belong to a sequence
Λ ⊂ Zm

+(~; p1, . . . , pm) such that for all n ∈ Λ, n1 − nm ≤ C , where C is a constant. In fact, it
is satisfied for all n ∈ Zm

+(~; p1, . . . , pm) such that nm ≥ 1.

Now, we need to introduce some notations. Let

δk :=

{
1, if ∆k is to the left of ∆k+1,

−1, if ∆k is to the right of ∆k+1.

For k ≥ 2, set

∆k,l :=

−δkδk−1, if l ≥ k + 1,
δk−1, if l ∈ {k − 1, k},
1, if l ≤ k − 2.

If k = 1,

∆1,l :=

{
1, if l = 1,
−δ1, if l ≥ 2.

Lemma 5.2. For any n,nl
∈ Zm
+(~)

εnl ,k

εn,k
=

k∏
i=1

∆i,l . (45)

Proof. By definition, εn,k is the sign of the measure Hn,k (x)dσk (x)
Qn,k−1(x)Qn,k+1(x)

on supp(σk). We will
denote by sign ( f,∆) the sign of a function f on the interval ∆. Thus

εnl ,k

εn,k
= sign

(
Hnl ,k Qn,k−1 Qn,k+1

Hn,k Qnl ,k−1 Qnl ,k+1
,∆k

)
. (46)

If l ≥ k − 1, since deg(Qnl ,k−1) = 1+ deg(Qn,k−1), we have that

sign
(
Qn,k−1/Qnl ,k−1,∆k

)
= δk−1, (47)

and if l ≤ k − 2, since deg(Qnl ,k−1) = deg(Qnl ,k−1), we obtain

sign
(
Qn,k−1/Qnl ,k−1,∆k

)
= 1. (48)

By similar arguments, we know that for l ≥ k + 1,

sign
(
Qn,k+1/Qnl ,k+1,∆k

)
= −δk, (49)

and if l ≤ k,

sign
(
Qn,k+1/Qnl ,k+1,∆k

)
= 1. (50)

Finally, from (18) it follows that

Hnl ,k(x)

Hn,k(x)
=

∫
∆k−1

Q2
nl ,k−1

(t)

x−t
Hnl ,k−1(t)dσk−1(t)
Qnl ,k−2(t)Qnl ,k (t)∫

∆k−1

Q2
n,k−1(t)
x−t

Hn,k−1(t)dσk−1(t)
Qn,k−2(t)Qn,k (t)

.
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Therefore,

sign
(
Hnl ,k/Hn,k,∆k

)
=
εnl ,k−1

εn,k−1
. (51)

From (46)–(51) we conclude that
εnl ,k

εn,k
= ∆k,l

εnl ,k−1

εn,k−1
.

Since Hnl ,1 ≡ Hn,1 ≡ Qnl ,0 ≡ Qn,0 ≡ 1, we have that εnl ,1 is the sign of the measure dσ1(x)
Qnl ,2(x)

on ∆1, and εn,1 is the sign of the measure dσ1(x)
Qn,2(x)

on ∆1. Therefore, we have (45). �

Definition 5.1. We define the following functions

ϕ
( j)
k−1(z) :=

sg(ψ ( j)
k−1(∞))

c( j)
1 ψ

( j)
k−1(z)

, 1 ≤ j ≤ m − 1. (52)

Notice that ϕ(1)k−1 = ϕk−1, where ϕk−1 was previously defined in (33).

Theorem 5.1. Let S = N ∗(σ1, . . . , σm) and Λ ⊂ Zm
+(~; p1, . . . , pm) be a sequence of distinct

multi-indices such that for all n ∈ Λ, n1 − nm ≤ C, where C is a constant. Then, for each
k ∈ {0, 1, . . . ,m},

lim
n∈Λ

Ψ̃n,k(z)

Ψn,k(z)
= Gk(z; p1, . . . , pm), K ⊂ C \ (supp(σk) ∪ supp(σk+1)), (53)

where Gk is analytic and never vanishes in the indicated region. For each k = {0, . . . ,m − 1}
and all sufficiently large |n|,n ∈ Λ, Ψ̃n,k has exactly Nn,k+1 = nk+1 + · · · + nm zeros in
C \ supp(σk), supp(σk+1) is an attractor of the zeros of {Ψ̃n,k},n ∈ Λ, in this region, and
each point in supp(σk+1) \ ∆̃k+1 is a 1 attraction point of zeros of {Ψ̃n,k},n ∈ Λ. When the
coefficients of the polynomials pk, k = 1, . . . ,m, are real, all the statements above remain valid
for Λ ⊂ Zm

+(~). An expression for Gk is given in (56)–(57).

Proof. For k = 0, (53) is (3) since Ψ̃n,0 = Q̃n and Ψn,0 = Qn; therefore,

G0(z; p1, . . . , pm) = F(z; p1, . . . , pm).

By (34), we know that

lim
n∈Λ

λ∗nεn0,k−1 K 2
n0,k−1(Qn0,k−1 Rn,k−1)(z)

Qn0,k(z)

=


1

√
(z − b1)(z − a1)

pΛ(ϕ1(z)), k = 2,

1√
(z − bk−1)(z − ak−1)

pΛ(δϕk−1(z)), k = 3, . . . ,m,

uniformly on compact subsets of C \ (supp(σk−1) ∪ supp(σk)). Also, see (22),

lim
n∈Λ

εn0,k−1hn0,k(z) =
1√

(z − bk−1)(z − ak−1)
, K ⊂ C \ supp(σk−1).
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Thus, since limn∈Λ λ
∗
n = c, we conclude that

lim
n∈Λ

Rn,k−1(z)

Ψn0,k−1(z)
= lim

n∈Λ
K 2

n0,k−1
(Qn0,k−1 Rn,k−1)(z)

(hn0,k Qn0,k)(z)

=

{
pΛ(ϕ1(z))/c, k = 2,
pΛ(δϕk−1(z))/c, k = 3, . . . ,m,

(54)

uniformly on compact subsets of C \ (supp(σk−1) ∪ supp(σk)).
Recall that n j = (n1 − deg(p2 · · · pm) + j, n2 − deg(p3 · · · pm), . . . , nm). It is easy to see

that

Ψn0,k−1

Ψn j ,k−1
=

Qn0,k

Qn j ,k

Qn j ,k−1

Qn0,k−1

εn0,k−1hn0,k

εn j ,k−1hn j ,k

εn j ,k−1

εn0,k−1

K 2
n j ,k−1

K 2
n0,k−1

.

From this expression, applying Proposition 3.2 and (45), we obtain that the following limit holds
uniformly on compact subsets of C \ (supp(σk−1) ∪ supp(σk))

lim
n∈Λ

Ψn0,k−1(z)

Ψn j ,k−1(z)
= (∆k−1,1 · · ·∆1,1)

j

(
F̃ (1)k−1(z)

F̃ (1)k (z)

) j

(κ
(1)
1 · · · κ

(1)
k−1)

2 j .

Now, from (28) and (29), we have

F̃ (1)k−1(z)

F̃ (1)k (z)
=

c(1)k

c(1)k−1

sg(ψ (1)k−1(∞))ψ
(1)
k−1(z),

and from (28)

(κ
(1)
1 · · · κ

(1)
k−1)

2
= c(1)1

c(1)k−1

c(1)k

.

Thus,

lim
n∈Λ

Ψn0,k−1(z)

Ψn j ,k−1(z)
= (∆k−1,1 · · ·∆1,1)

j (c(1)1 sg(ψ (1)k−1(∞))ψ
(1)
k−1(z))

j .

Set

Ξk := (∆k−1,1 · · ·∆1,1)
deg(p2···pm ) · · · (∆k−1,m−1 · · ·∆1,m−1)

deg(pm ). (55)

Using the same arguments employed above, on an appropriate consecutive collection of multi-
indices, one proves that

lim
n∈Λ

Ψn0,k−1(z)

Ψn,k−1(z)
= Ξk

m−1∏
j=1

1

(ϕ
( j)
k−1(z))

deg(p j+1···pm )
,

uniformly on compact subsets of C \ (supp(σk−1) ∪ supp(σk)). Therefore, writing

Rn,k−1(z)

Ψn,k−1(z)
=

Rn,k−1(z)

Ψn0,k−1(z)

Ψn0,k−1(z)

Ψn,k−1(z)
,

using the expression of pΛ, applying (54), and Lemma 5.1, for k = 2 we get
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lim
n∈Λ

Ψ̃n,1(z)

Ψn,1(z)
= Ξ2

l1∏
ν=1

(ϕ1(z)− ϕ0(z1,ν))
τ1,ν

l2∏
ν=1

(
1

ϕ1(z)

ϕ1(z)− ϕ1(z2,ν)

z − z2,ν

)τ2,ν

×

m∏
j=3

l j∏
ν=1

(
ϕ1(z)− δϕ j−1(z j,ν)

ϕ
( j−1)
1 (z)

)τ j,ν

(56)

uniformly on compact subsets of C \ (supp(σ1) ∪ supp(σ2)), and for k ≥ 3 we obtain

lim
n∈Λ

Ψ̃n,k−1(z)

Ψn,k−1(z)
= Ξk

l1∏
ν=1

(δϕk−1(z)− ϕ0(z1,ν))
τ1,ν

l2∏
ν=1

(
δϕk−1(z)− ϕ1(z2,ν)

ϕk−1(z)

)τ2,ν

×

lk∏
ν=1

(
δϕk−1(z)− δϕk−1(zk,ν)

ϕ
(k−1)
k−1 (z)(z − zk,ν)

)τk,ν m∏
j=3, j 6=k

l j∏
ν=1

(
δϕk−1(z)− δϕ j−1(z j,ν)

ϕ
( j−1)
k−1 (z)

)τ j,ν

(57)

uniformly on compact subsets of C \ (supp(σk−1) ∪ supp(σk)). Therefore, (53) is proved.
From the expression of the limit functions one sees that Gk does not vanish in C\ (supp(σk)∪

supp(σk+1)). The statements concerning the number of zeros of Ψ̃n,k for k ∈ {0, . . . ,m − 1}
and their limit behavior follows at once from (53), on account of the argument principle and
the corresponding behavior of the zeros of the polynomials Qn,k+1 described in Proposition 3.1.
Recall that the zeros of Qn,k+1 are those of Ψn,k in C \ supp(σk).

Now, let us assume that the coefficients of the polynomials pk are real and Λ ⊂ Zm
+(~). Since

Ψnl ,k−1

Ψn,k−1
=

Qnl ,k

Qn,k

Qn,k−1

Qnl ,k−1

εnl ,k−1hnl ,k

εn,k−1hn,k

εn,k−1

εnl ,k−1

K 2
n,k−1

K 2
nl ,k−1

,

applying (26), (27), (22) and (45), we conclude that

lim
n∈Λ

Ψnl ,k−1(z)

Ψn,k−1(z)
, K ⊂ C \ (supp(σk−1) ∪ supp(σk)),

holds and the limit does not vanish in the indicated region.
Since each measure pk σk is real with a constant sign, we can define the polynomials

Q̃n,k, 1 ≤ k ≤ m, as the monic polynomials of degree Nn,k whose simple zeros are located
at the points where Ψ̃n,k−1 vanishes on ∆k . Let Q̃n,0 ≡ Q̃n,m+1 ≡ 1. We also introduce the
associated notions

H̃n,k :=
Q̃n,k−1Ψ̃n,k−1

Q̃n,k
, k = 1, . . . ,m + 1, (58)

ε̃n,k as the sign of H̃n,k(x)pk(x)dσk(x)/Q̃n,k−1(x)Q̃n,k+1(x) on supp(σk), and

K̃n,k :=

(∫
Q̃2

n,k(x)
ε̃n,k H̃n,k(x)pk(x)dσk(x)

Q̃n,k−1(x)Q̃n,k+1(x)

)−1/2

. (59)

The formulas (26), (27), (22), and (45) are independent of the orthogonality measures, hence

lim
n∈Λ

Ψ̃nl ,k−1(z)

Ψ̃n,k−1(z)
= lim

n∈Λ

Ψnl ,k−1(z)

Ψn,k−1(z)
.
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Applying the same argument used in the last two paragraphs, of the proof of Theorem 1.1, we
conclude that (53) is valid for Λ ⊂ Zm

+(~).
The rest of the statements regarding the zeros of Ψ̃n,k and their limit behavior follows, as in

the case of polynomials with complex coefficients. �

Corollary 5.1. Let S = N ∗(σ1, . . . , σm). Consider the perturbed Nikishin system
N (

p1
q1
σ1, . . . ,

pm
qm
σm), where pk, qk denote relatively prime polynomials whose zeros lie in

C \ ∪m
k=1 ∆k . Let Λ ⊂ Zm

+(~; p1q1, . . . , pmqm) be a sequence of distinct multi-indices such
that for all n ∈ Λ, n1 − nm ≤ C, where C is a constant. Let Q̃n be the monic multiple
orthogonal polynomial of smallest degree relative to the Nikishin system N (

p1
q1
σ1, . . . ,

pm
qm
σm)

and n, whereas Ψ̃n,k, 0 ≤ k ≤ m, denote the second type functions defined in (44), with pk
replaced by pk/qk . Then, for each k ∈ {0, . . . ,m},

lim
n∈Λ

Ψ̃n,k(z)

Ψn,k(z)
=

Gk(z; p1, . . . , pm)

Gk(z; q1, . . . , qm)
, K ⊂ C \ (supp(σk) ∪ supp(σk+1)). (60)

For each k = {0, . . . ,m − 1} and all sufficiently large |n|,n ∈ Λ, Ψ̃n,k has exactly Nn,k+1 zeros
in C \ supp(σk), supp(σk+1) is an attractor of the zeros of {Ψ̃n,k},n ∈ Λ, in this region, and
each point in supp(σk+1) \ ∆̃k+1 is a 1 attraction point of zeros of {Ψ̃n,k},n ∈ Λ. When the
polynomials pk, qk, k = 1, . . . ,m, have real coefficients, all the statements remain valid when
Λ ⊂ Zm

+(~).

Proof. We consider the auxiliary Nikishin system

S1 := N
(
σ1

|q1|
2 , . . . ,

σm

|qm |
2

)
,

and define the related second type functions

Ψ∗n,0(z) := Q∗n(z),

Ψ∗n,k(z) :=
∫ Ψ∗n,k−1(x)

z − x

dσk(x)

|qk(x)|2
, 1 ≤ k ≤ m,

where Q∗n denotes the multiple orthogonal polynomial associated to S1 and n.
Notice that if we perturb the generator of system S1 multiplying the k-th measure by the

real polynomial |qk |
2 we get the generator of the original Nikishin system S. Thus, applying

Theorem 5.1, we obtain that for all k ∈ {0, . . . ,m}

lim
n∈Λ

Ψn,k(z)

Ψ∗n,k(z)
= Gk(z; |q1|

2, . . . , |qm |
2), K ⊂ C \ (supp(σk) ∪ supp(σk+1)).

The perturbed system S2 := N (
p1
q1
σ1, . . . ,

pm
qm
σm) can be written as

S2 = N
(

p1q1
σ1

|q1|
2 , . . . , pmqm

σm

|qm |
2

)
.

Therefore, employing the same argument

lim
n∈Λ

Ψ̃n,k(z)

Ψ∗n,k(z)
= Gk(z; p1q1, . . . , pmqm), K ⊂ C \ (supp(σk) ∪ supp(σk+1)).
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We conclude that

lim
n∈Λ

Ψ̃n,k(z)

Ψn,k(z)
=

Gk(z; p1q1, . . . , pmqm)

Gk(z; q1q1, . . . , qmqm)
=

Gk(z; p1, . . . , pm)

Gk(z; q1, . . . , qm)
,

uniformly on compact subsets of C \ (supp(σk) ∪ supp(σk+1)). The statements concerning the
zeros can be proved as in the case of polynomial perturbation.

When the polynomials pk, qk, k = 1, . . . ,m, have real coefficients, it follows from
Theorem 5.1 that (60) remains valid for Λ ⊂ Zm

+(~). The statements concerning the zeros are
derived immediately. �

6. Relative asymptotic behavior for the polynomials Qn,k

In this section, we will restrict our attention to the case when the polynomials pk, qk, k =
1, . . . ,m, have real coefficients (and of course their zeros lie in C \ ∪m

k=1 ∆k). Accordingly, we
use the objects Q̃n,k, H̃n,k, K̃n,k , and ε̃n,k , introduced at the end of the proof of Theorem 5.1 (see
(58) and (59)). Here, we study the relative asymptotic behavior of the ratios Q̃n,k/Qn,k .

Lemma 6.1. For any n ∈ Zm
+(~)

εn,k

ε̃n,k
=

k∏
i=1

sign (pi , supp(σi )) . (61)

Proof. By definition εn,k is the sign of Hn,k(x)dσk(x)/Qn,k−1(x)Qn,k+1(x) on supp(σk) and
ε̃n,k is the sign of H̃n,k(x)pk(x)dσk(x)/Q̃n,k−1(x)Q̃n,k+1(x) on supp(σk). If k = 1 these
measures reduce, respectively, to dσ1(x)/Qn,2(x) and p1(x)dσ1(x)/Q̃n,2(x). Since Qn,2 and
Q̃n,2 are monic polynomials of the same degree and their zeros are located in ∆2, which is
disjoint with supp(σ1), it follows that Qn,2 and Q̃n,2 have the same sign on supp(σ1). Therefore,

εn,1

ε̃n,1
= sign (p1, supp(σ1)) .

To conclude the proof we show that
εn,k

ε̃n,k
= sign (pk, supp(σk))

εn,k−1

ε̃n,k−1
.

Notice that Qn,k−1 and Q̃n,k−1 have the same sign on supp(σk) by an argument similar to the
one explained above. The same holds for Qn,k+1 and Q̃n,k+1. Therefore

εn,k

ε̃n,k
=

sign
(
Hn,k, supp(σk)

)
sign

(
pk H̃n,k, supp(σk)

) .
By (18), we know that

Hn,k(x) =
∫
∆k−1

Q2
n,k−1(t)

x − t

Hn,k−1(t)dσk−1(t)

Qn,k−2(t)Qn,k(t)
,

and

H̃n,k(x) =
∫
∆k−1

Q̃2
n,k−1(t)

x − t

H̃n,k−1(t)pk−1(t)dσk−1(t)

Q̃n,k−2(t)Q̃n,k(t)
.
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Consequently,

sign
(
Hn,k, supp(σk)

)
sign

(
H̃n,k, supp(σk)

) = εn,k−1

ε̃n,k−1
,

and the claim follows. �

We are ready to state and prove

Theorem 6.1. Let S = N ∗(σ1, . . . , σm) and Λ ⊂ Zm
+(~) be a sequence of distinct multi-indices

such that for all n ∈ Λ, n1 − nm ≤ C, where C is a constant. Assume that the polynomials
pk, k = 1, . . . ,m, have real coefficients. For each k ∈ {1, . . . ,m},

lim
n∈Λ

Q̃n,k(z)

Qn,k(z)
= Fk(z; p1, . . . , pm), K ⊂ C \ supp(σk), (62)

where Fk(z; p1, . . . , pm) is analytic and never vanishes in C \ supp(σk) and

lim
n∈Λ

K̃ 2
n,k

K 2
n,k

=

k∏
i=1

sign (pi , supp(σi ))

Gk(∞; p1, . . . , pm)
. (63)

For k ∈ {1, . . . ,m − 1} and z ∈ C \ (supp(σk) ∪ supp(σk+1))

Fk+1(z; p1, . . . , pm) =

k∏
i=0

Gi (z; p1, . . . , pm)

Gi (∞; p1, . . . , pm)
, (64)

where Gi (z; p1, . . . , pm) is the function given in (53).

Proof. If Λ ⊂ Zm
+(~; p1, . . . , pm), from (34) and Lemma 5.1, we have that

lim
n∈Λ

λ∗nεn0,k−1 K 2
n0,k−1

Qn0,k−1(z)(pk · · · pm)(z)Ψ̃n,k−1(z)

Qn0,k(z)

=


1

√
(z − b1)(z − a1)

pΛ(ϕ1(z)), k = 2,

1√
(z − bk−1)(z − ak−1)

pΛ(δϕk−1(z)), k = 3, . . . ,m.
(65)

By Proposition 3.1, we know that

lim
n∈Λ

ε̃n,k K̃ 2
n,k H̃n,k+1(z) =

1
√
(z − bk)(z − ak)

, K ⊂ C \ supp(σk), (66)

where [ak, bk] = ∆̃k . Formula (58) implies

λ∗nεn0,k−1 K 2
n0,k−1 Qn0,k−1(z)(pk · · · pm)(z)Ψ̃n,k−1(z)

ε̃n,k−1 K̃ 2
n,k−1 H̃n,k(z)Qn0,k(z)

= λ∗n
εn0,k−1

ε̃n,k−1

K 2
n0,k−1

K̃ 2
n,k−1

Qn0,k−1(z)

Q̃n,k−1(z)

Q̃n,k(z)

Qn0,k(z)
(pk · · · pm)(z). (67)
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Using (65), (66), and (67), we obtain

lim
n∈Λ

λ∗n
εn0,k−1

ε̃n,k−1

K 2
n0,k−1

K̃ 2
n,k−1

Qn0,k−1(z)

Q̃n,k−1(z)

Q̃n,k(z)

Qn0,k(z)
(pk · · · pm)(z)

=

{
pΛ(ϕ1(z)), k = 2,
pΛ(δϕk−1(z)), k = 3, . . . ,m.

(68)

Using the results on ratio asymptotic for the constants Kn,k, K̃n,k and the polynomials
Qn,k, Q̃n,k , it follows that (68) is also valid for Λ ⊂ Zm

+(~).
Since
εn0,k−1

ε̃n,k−1
=
εn0,k−1

εn,k−1

εn,k−1

ε̃n,k−1
,

applying Lemma 6.1, (45), and (55), we obtain

εn0,k−1

ε̃n,k−1
= Ξk

k−1∏
i=1

sign (pi , supp(σi )) . (69)

We have

K 2
n0,k−1

K̃ 2
n,k−1

=
K 2

n0,k−1

K 2
n,k−1

K 2
n,k−1

K̃ 2
n,k−1

, (70)

and by (26)

lim
n∈Λ

K 2
n0,k−1

K 2
n,k−1

=

m−1∏
i=1

(κ
(i)
1 · · · κ

(i)
k−1)

−2 deg(pi+1···pm ). (71)

Write

Qn0,k−1(z)

Q̃n,k−1(z)
=

Qn0,k−1(z)

Qn,k−1(z)

Qn,k−1(z)

Q̃n,k−1(z)
, (72)

and

Q̃n,k(z)

Qn0,k(z)
=

Q̃n,k(z)

Qn,k(z)

Qn,k(z)

Qn0,k(z)
. (73)

Notice that

lim
n∈Λ

Qn0,k−1(z)

Qn,k−1(z)
=

m−1∏
i=1

(F̃ (i)k−1(z))
−deg(pi+1···pm ). (74)

lim
n∈Λ

Qn,k(z)

Qn0,k(z)
=

m−1∏
i=1

(F̃ (i)k (z))deg(pi+1···pm ). (75)

From (29) and (28)it follows that

F̃ (i)k (z)

F̃ (i)k−1(z)
=

c(i)k−1

c(i)k

sg(ψ (i)k−1(∞))

ψ
(i)
k−1(z)

,

(κ
(i)
1 · · · κ

(i)
k−1)

2
=

c(i)1 c(i)k−1

c(i)k

.



A. López Garcı́a, G. López Lagomasino / Journal of Approximation Theory 158 (2009) 214–241 239

Therefore, using (52), we get

F̃ (i)k (z)

F̃ (i)k−1(z)(κ
(i)
1 · · · κ

(i)
k−1)

2
= ϕ

(i)
k−1(z). (76)

Taking into consideration (69)–(76), we conclude that

lim
n∈Λ

λ∗n
εn0,k−1

ε̃n,k−1

K 2
n0,k−1

K̃ 2
n,k−1

Qn0,k−1(z)

Q̃n,k−1(z)

Q̃n,k(z)

Qn0,k(z)
(pk · · · pm)(z)

= c Ξk

k−1∏
i=1

sign (pi , supp(σi ))

m−1∏
i=1

(ϕ
(i)
k−1(z))

deg(pi+1···pm ) lim
n∈Λ

Qn,k−1(z)

Q̃n,k−1(z)

×(pk · · · pm)(z) lim
n∈Λ

K 2
n,k−1

K̃ 2
n,k−1

Q̃n,k(z)

Qn,k(z)
, (77)

provided that the limits on the right hand side exist.
In Theorem 1.1 we proved (62) for k = 1. Assume that k = 2. Eq. (68) and (77) yield

lim
n∈Λ

K 2
n,1

K̃ 2
n,1

Q̃n,2(z)

Qn,2(z)

=
pΛ(ϕ1(z))F(z; p1, . . . , pm)

c Ξ2 sign (p1, supp(σ1)) (p2 · · · pm)(z)
m−1∏
i=1

(ϕ
(i)
1 (z))deg(pi+1···pm )

,

uniformly on compact subsets of C \ supp(σ2). Using (56), we have

pΛ(ϕ1(z))

c Ξ2 (p2 · · · pm)(z)
m−1∏
i=1

(ϕ
(i)
1 (z))deg(pi+1···pm )

= G1(z; p1, . . . , pm).

Consequently,

lim
n∈Λ

K 2
n,1

K̃ 2
n,1

Q̃n,2(z)

Qn,2(z)
=

F(z; p1, . . . , pm)G1(z; p1, . . . , pm)

sign (p1, supp(σ1))
.

Evaluating at infinity, we obtain (F(∞; p1, . . . , pm) = 1)

lim
n∈Λ

K 2
n,1

K̃ 2
n,1

=
G1(∞; p1, . . . , pm)

sign (p1, supp(σ1))
.

Therefore, (63) and (64) are satisfied for k = 1, since G0 = F .
Define the functions

Fk(z; p1, . . . , pm) := lim
n∈Λ

Q̃n,k(z)

Qn,k(z)

provided the limit exists. From (57) it follows that for any k ≥ 3,

pΛ(δϕk−1(z))

c Ξk (pk · · · pm)(z)
m−1∏
i=1

(ϕ
(i)
k−1(z))

deg(pi+1···pm )

= Gk−1(z; p1, . . . , pm).
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As a consequence, using (77), we obtain that for any k ≥ 3,

lim
n∈Λ

K 2
n,k−1

K̃ 2
n,k−1

Q̃n,k(z)

Qn,k(z)
=

Fk−1(z; p1, . . . , pm)Gk−1(z; p1, . . . , pm)

k−1∏
i=1

sign (pi , supp(σi ))

.

Therefore, using an induction process, one proves (62)–(64). �

Corollary 6.1. Let S = N ∗(σ1, . . . , σm). Consider the perturbed Nikishin system
N (

p1
q1
σ1, . . . ,

pm
qm
σm), where pk, qk denote relatively prime polynomials with real coefficients

whose zeros lie in C \ ∪m
k=1 ∆k . Let Λ ⊂ Zm

+(~) be a sequence of distinct multi-indices such
that for all n ∈ Λ, n1 − nm ≤ C, where C is a constant. Let Q̃n,k, 1 ≤ k ≤ m, be the monic
polynomials of degree Nn,k whose simple zeros are located at the points where Ψ̃n,k−1 vanishes
on ∆k , where Ψ̃n,k, 0 ≤ k ≤ m, denote the second type functions defined in (44), with pk
replaced by pk/qk . Let K̃n,k, 1 ≤ k ≤ m be the constants defined in (59), with pk replaced by
pk/qk . Then, for each k ∈ {1, . . . ,m},

lim
n∈Λ

Q̃n,k(z)

Qn,k(z)
=

Fk(z; p1, . . . , pm)

Fk(z; q1, . . . , qm)
, K ⊂ C \ supp(σk), (78)

and

lim
n∈Λ

K̃ 2
n,k

K 2
n,k

=

k∏
i=1

sign (pi/qi , supp(σi ))
Gk(∞; q1, . . . , qm)

Gk(∞; p1, . . . , pm)
. (79)

Proof. By Q∗n,k denote polynomials associated with the auxiliary Nikishin system
N (σ1/q1, . . . , σm/qm), corresponding to the indices n, k. On account of Theorem 6.1, we have
that

lim
n∈Λ

Q̃n,k(z)

Q∗n,k(z)
= Fk(z; p1, . . . , pm), K ⊂ C \ supp(σk).

and

lim
n∈Λ

Qn,k(z)

Q∗n,k(z)
= Fk(z; q1, . . . , qm), K ⊂ C \ supp(σk).

Therefore, (78) is obtained. Using the same idea, (79) follows from (63). �

Remark 6.1. Theorem 5.1 and Corollary 5.1 allow us to define polynomials Q̃n,k, k = 1, . . . ,m,
in the case when pk, qk have complex coefficients as those monic polynomials which carry
the zeros of Ψ̃n,k−1 lying in C \ ∆k−1. For such polynomials Q̃n,k , results analogous to those
expressed in Theorem 6.1 and Corollary 6.1 can be proved.
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[13] D. Barrios Rolanı́a, B. de la Calle Ysern, G. López Lagomasino, Ratio and relative asymptotic of polynomials

orthogonal with respect to varying Denisov-type measures, J. Approx. Theory 139 (2006) 223–256.
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