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Energy of a point configuration

Let ω = (x1, . . . , xN) be a tuple of N ≥ 2 points in Rp. With |xi − xj | denoting the
Euclidean distance between xi and xj :

The logarithmic energy of ω is

E0(ω) :=
∑
i 6=j

log
1

|xi − xj |
= 2

∑
i<j

log
1

|xi − xj |
.

For a parameter s > 0, the Riesz s-energy of ω is

Es(ω) :=
∑
i 6=j

1
|xi − xj |s

= 2
∑
i<j

1
|xi − xj |s

.

For a parameter λ > 0, the λ-energy of ω is

Hλ(ω) :=
∑
i 6=j

|xi − xj |λ = 2
∑
i<j

|xi − xj |λ.
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Optimal energy configurations

Let K ⊂ Rp be a compact set, not finite. Throughout the talk, K satisfies these
conditions.

The energy functionals E0 and Es, s > 0, are lower semicontinuous functions of
(x1, . . . , xN), so they attain their minimum value on K N = K × · · · × K . That is, for each
N ≥ 2, there exists ωN,s ∈ K N , in general not unique, such that

Es(ωN,s) = min
ω∈K N

Es(ω).

In the logarithmic case (s = 0), and for K ⊂ C, the configurations ωN,0 are called
Fekete sets on K . In general, the configurations ωN,s are called N-point minimal
s-energy configurations on K .

Clearly, for each λ > 0 and N ≥ 2, there exists ωN,λ ∈ K N , in general not unique, such
that

Hλ(ωN,λ) = max
ω∈K N

Hλ(ω).

ωN,λ is an N-point maximal λ-energy configuration on K .
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Logarithmic energy in the plane
Let P(K ) be the space of all Borel probability measures on K . Assume K ⊂ C. For
µ ∈ P(K ),

I0(µ) :=

∫∫
log

1
|x − y | dµ(x) dµ(y),

Uµ(z) :=

∫
log

1
|z − t | dµ(t).

Let

W0(K ) := inf
µ∈P(K )

I0(µ) (Robin constant of K )

C0(K ) := e−W0(K ) (Logarithmic capacity of K )

Theorem (Fekete-Szegő)

If (ωN,0)N≥2 is a sequence of Fekete sets on K , then
(

E0(ωN,0)

N(N−1)

)
N≥2

is monotonically

increasing and its limit is W0(K ).

If C0(K ) > 0, then 1
N

∑
x∈ωN,0

δx
∗−→ µK , where µK is the equilibrium measure for K .
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Edrei-Leja sequences

In a 1939 work, A. Edrei introduced the following inductive construction of a sequence
(an)∞n=0 on a compact set K ⊂ C:

1) Pick a0 ∈ K arbitrarily. Let a0 be the first selected point of the sequence.

2) For each n ≥ 1, assuming that a0, . . . , an−1 have been selected, pick the next
point of the sequence an ∈ K so that

n−1∏
i=0

|an − ai | = max
z∈K

n−1∏
i=0

|z − ai |. (1)

The sequence (an)∞n=0 is an Edrei-Leja sequence on K .

(1) is equivalent to
n−1∑
i=0

log
1

|an − ai |
= inf

z∈K

n−1∑
i=0

log
1

|z − ai |
,

or
E0((a0, . . . , an−1, an)) = inf

z∈K
E0((a0, . . . , an−1, z)).
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In his work, Edrei showed that for the configurations αN := (a0, . . . , aN−1), we have

lim
N→∞

E0(αN)

N2 = W0(K ). (2)

The proof is short: For every N ≥ 2, E0(αN) ≥ E0(ωN,0), so by Fekete-Szegő,

lim inf
N→∞

E0(αN)

N2 ≥ lim
N→∞

E0(ωN,0)

N2 = W0(K ).

If W0(K ) = +∞, we are done. Suppose W0(K ) < +∞ (or C0(K ) > 0).

E0(αN) = 2
N−1∑
i=1

∑
j<i

log
1

|ai − aj |
≤ 2

N−1∑
i=1

∑
j<i

log
1

|z − aj |
, ∀z ∈ K .

Integrating this inequality with respect to dµK (z),

E0(αN) ≤ 2
N−1∑
i=1

∑
j<i

UµK (aj ) ≤ 2
N−1∑
i=1

∑
j<i

W0(K ) = N(N − 1)W0(K ).

and the result follows. Q.E.D.

If C0(K ) > 0, then (2) implies 1
N

∑N−1
i=0 δai

∗−→ µK .
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lim inf
N→∞

E0(αN)

N2 ≥ lim
N→∞

E0(ωN,0)

N2 = W0(K ).

If W0(K ) = +∞, we are done. Suppose W0(K ) < +∞ (or C0(K ) > 0).

E0(αN) = 2
N−1∑
i=1

∑
j<i

log
1

|ai − aj |
≤ 2

N−1∑
i=1

∑
j<i

log
1

|z − aj |
, ∀z ∈ K .

Integrating this inequality with respect to dµK (z),

E0(αN) ≤ 2
N−1∑
i=1

∑
j<i

UµK (aj ) ≤ 2
N−1∑
i=1

∑
j<i

W0(K ) = N(N − 1)W0(K ).

and the result follows. Q.E.D.

If C0(K ) > 0, then (2) implies 1
N

∑N−1
i=0 δai

∗−→ µK .

A. López-García (University of Central Florida) 9/7/2020 6 / 33



In his work, Edrei showed that for the configurations αN := (a0, . . . , aN−1), we have

lim
N→∞

E0(αN)

N2 = W0(K ). (2)

The proof is short: For every N ≥ 2, E0(αN) ≥ E0(ωN,0), so by Fekete-Szegő,
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lim inf
N→∞

E0(αN)

N2 ≥ lim
N→∞

E0(ωN,0)

N2 = W0(K ).

If W0(K ) = +∞, we are done. Suppose W0(K ) < +∞ (or C0(K ) > 0).

E0(αN) = 2
N−1∑
i=1

∑
j<i

log
1

|ai − aj |
≤ 2

N−1∑
i=1

∑
j<i

log
1

|z − aj |
, ∀z ∈ K .

Integrating this inequality with respect to dµK (z),

E0(αN) ≤ 2
N−1∑
i=1

∑
j<i

UµK (aj ) ≤ 2
N−1∑
i=1

∑
j<i

W0(K ) = N(N − 1)W0(K ).

and the result follows. Q.E.D.

If C0(K ) > 0, then (2) implies 1
N

∑N−1
i=0 δai

∗−→ µK .

A. López-García (University of Central Florida) 9/7/2020 6 / 33



In his work, Edrei showed that for the configurations αN := (a0, . . . , aN−1), we have

lim
N→∞

E0(αN)

N2 = W0(K ). (2)

The proof is short: For every N ≥ 2, E0(αN) ≥ E0(ωN,0), so by Fekete-Szegő,
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On the unit circle S1

On the unit circle S1, N-point Fekete sets are the configurations formed by N equally
spaced points, such as the set of all Nth roots of unity. Also, E0(ωN,0) = −N log N, for
all N ≥ 2.

For an Edrei-Leja sequence (an)∞n=0 on S1, what is the behavior of E0(αN),
αN = (a0, . . . , aN−1), as N →∞ ?

Edrei’s result shows that
lim

N→∞

E0(αN)

N2 = 0 = W0(S1).

Is E0(αN) ∼ −N log N ?
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On the unit circle S1

In a work on interpolatory properties of Edrei-Leja sequences on the unit circle, J-P.
Calvi and P. Van Manh proved the following identity:

Theorem (Calvi, Van Manh, 2011)

Let (an)∞n=0 be an Edrei-Leja sequence on S1. For all n ≥ 1,

n−1∏
i=0

|an − ai | = 2τ(n)

where τ(n) is the number of 1’s in the binary representation of n.

Bialas-Ciez and Calvi (2012) also showed how to describe geometrically the
configuration αN = (a0, . . . , aN−1) in terms of the binary representation of N.

In particular, for every k ≥ 1, the first 2k points of an Edrei-Leja sequence are equally
spaced on S1.
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On the unit circle S1

Using the identity of Calvi and Van Manh, it was shown by López and Wagner (2015)
that

lim
N→∞

E0(αN)

N log N
= −1.

In view of this, it’s natural to study the sequence (E0(αN) + N log N)N (second-order
asymptotics).

Theorem (López, Wagner, 2015)
For every N ≥ 2,

0 ≤ E0(αN) + N log N
N

< log(4/3).

The lower bound is attained iff N = 2k , k ≥ 1, and

lim sup
N→∞

E0(αN) + N log N
N

= log(4/3).

So the sequence E0(αN )
−N log N converges, but the sequence E0(αN )+N log N

N diverges!
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The sequence E0(αN )+N log N
N

Figure: The first 4200 points of the sequence E0(αN )+N log N
N . The limsup is log(4/3) ≈ 0.2876.

We have a doubling periodicity property: For all N ≥ 2,

E0(αN) + N log N
N

=
E0(α2N) + 2N log(2N)

2N
.
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What can be said about the behavior of
∏n−1

i=0 |an − ai | = 2τ(n)? How should this
sequence be normalized?

General result: Suppose K ⊂ C is compact, C0(K ) > 0, (an)∞n=0 is an Edrei-Leja
sequence on K , and let

PN(z) :=
N−1∏
n=0

(z − an),

‖PN‖K := sup
z∈K
|PN(z)|.

Leja and Górski proved
lim

N→∞
‖PN‖1/N

K = C0(K ). (3)

In the case of the unit circle K = S1, C0(S1) = 1, so (3) implies

lim
N→∞

log ‖PN‖S1

N
= lim

N→∞

log(2)τ(N)

N
= 0.

So log ‖PN‖S1 = o(N).
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Theorem (López, McCleary)
On the unit circle, for all N ≥ 1,

0 <
log ‖PN‖S1

log(N + 1)
≤ 1.

The upper bound is attained iff N = 2k − 1, k ≥ 1. Also,

lim inf
N→∞

log ‖PN‖S1

log(N + 1)
= 0.

Proof.

By Calvi-Van Manh, ‖PN‖S1 = 2τ(N). The τ function has the property

N ≥ 2τ(N) − 1, N ≥ 1,

with equality iff N = 2k − 1 for some k ≥ 1. We have

log ‖PN‖S1

log(N + 1)
=

log(2τ(N))

log(N + 1)
≤ log(N + 1)

log(N + 1)
= 1.

Also, log ‖PN‖S1 > 0 since ‖PN‖S1 ≥ 2. Taking N = 2k , we have ‖P2k ‖S1 = 2, so
log ‖P2k ‖S1/ log(2k + 1) −→ 0 as k →∞.
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The sequence log ‖PN‖S1
log(N+1)

Figure: The first 1000 points of the sequence
log ‖PN‖S1

log(N+1)
.

We have τ(N) = τ(2N) for all N, so for each m ≥ 1, the subsequence(
log ‖P2k (2m−1)‖S1

log(2k (2m − 1) + 1)

)∞
k=0

decreases from 1 to 0 (the numerator is the constant).
A. López-García (University of Central Florida) 9/7/2020 13 / 33



λ-energy on the unit sphere Sd

Let λ > 0.

For configurations ω = (x1, . . . , xN) on the unit sphere Sd ⊂ Rd+1 we consider the
λ-energy

Hλ(ω) :=
∑
i 6=j

|xi − xj |λ = 2
∑
i<j

|xi − xj |λ.

For µ ∈ P(Sd ), let

Iλ(µ) :=

∫∫
|x − y |λdµ(x) dµ(y).

We say that σ is a maximal distribution if

Iλ(σ) = sup
µ∈P(Sd )

Iλ(µ).

Let σd denote the normalized uniform (Lebesgue) measure on Sd .
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For the continuous energy problem we have:

Theorem (G. Björck, 1956)

For 0 < λ < 2, the measure σd is the unique maximal distribution in P(Sd ). For λ = 2,
a distribution σ ∈ P(Sd ) is maximal if and only if its center of mass is at the origin. For
λ > 2, a distribution σ ∈ P(Sd ) is maximal if and only if it is of the form σ = 1

2 (δa + δ−a)

for some a ∈ Sd .

So the most interesting range for the λ-energy problem on Sd is 0 < λ < 2,
independently of d .

On S1, for 0 < λ < 2, the N-point configurations ωN,λ that satisfy

Hλ(ωN,λ) = max
ω∈(S1)N

Hλ(ω)

are the configurations formed by N equally spaced points.
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Greedy λ-energy sequences

Given λ > 0, a sequence (an)∞n=0 ⊂ Sd is a greedy λ-energy sequence on Sd if for
every n ≥ 1,

n−1∑
k=0

|an − ak |λ = max
x∈Sd

n−1∑
k=0

|x − ak |λ.

Notation:

αN,λ := (a0, . . . , aN−1)

σN,λ :=
1
N

N−1∑
k=0

δak

UN,λ(x) :=
N−1∑
k=0

|x − ak |λ
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Distribution

The following properties are valid in any dimension d ≥ 1.

1) Symmetry property: Let λ > 0 be arbitrary. For every k ≥ 0,

a2k+1 = −a2k .

More precisely, after a0, . . . , a2k have been selected, there is a unique possible choice
of a2k+1, which is −a2k .

2) Uniform distribution: For 0 < λ < 2, we have σN,λ
∗−→ σd , as N →∞.

3) If λ > 2, the greedy λ-energy sequence (an)∞n=0 concentrates on the opposite points
a0,−a0:

{a2k , a2k+1} = {a0,−a0}, for all k ≥ 0.

4) If λ = 2, the sequence (σN,2) may be divergent, but any convergent subsequence
converges to a measure σ with center of mass at the origin.
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First order asymptotics

From now on we assume 0 < λ < 2.

Using classical arguments, one can prove: For any greedy λ-energy sequence
(an)∞n=0 ⊂ Sd ,

lim
N→∞

Hλ(αN,λ)

N2 = Iλ(σd ), αN,λ = (a0, . . . , aN−1),

lim
n→∞

UN,λ(aN)

N
= Iλ(σd ), UN,λ(x) =

N−1∑
k=0

|x − ak |λ.

These limits suggest the analysis of the sequences (Hλ(αN,λ)− Iλ(σd )N2) and
(UN,λ(aN)− Iλ(σd )N). We have analyzed these sequences in the case d = 1 (the unit
circle).
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Binary representation of energy and potential in the case d = 1
Let’s define

Lλ(N) :=
∑

0≤k 6=`≤N−1

|e
2πik

N − e
2πi`

N |λ (λ-energy of the N-th roots of unity)

Uλ(N) :=
N−1∑
k=0

|e
2πik

N − e
πi
N |λ (potential of the N-th roots of unity at e

πi
N )

Lemma (López, McCleary)
Suppose that N ≥ 2 has the binary representation

N = 2n1 + 2n2 + · · ·+ 2np , n1 > n2 > · · · > np ≥ 0.

Then,

UN,λ(aN) =

p∑
k=1

Uλ(2nk ),

Hλ(αN,λ) =

p−1∑
k=1

 p∑
j=k+1

2nj−nk

Lλ(2nk +1) +

p∑
k=1

1−
p∑

j=k+1

2nj−nk +1

Lλ(2nk ).
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The sequence (UN,λ(aN)− Iλ(σ1)N)

Figure: The first 2000 points of the sequence (UN,λ(aN )− Iλ(σ1)N) for λ = 0.01
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The sequence (UN,λ(aN)− Iλ(σ1)N)

Figure: The first 2000 points of the sequence (UN,λ(aN )− Iλ(σ1)N) for λ = 0.1
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The sequence (UN,λ(aN)− Iλ(σ1)N)

Figure: The first 2000 points of the sequence (UN,λ(aN )− Iλ(σ1)N) for λ = 0.7
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The sequence (UN,λ(aN)− Iλ(σ1)N)

Figure: The first 2000 points of the sequence (UN,λ(aN )− Iλ(σ1)N) for λ = 1
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The sequence (UN,λ(aN)− Iλ(σ1)N)

Figure: The first 2000 points of the sequence (UN,λ(aN )− Iλ(σ1)N) for λ = 1.3
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The sequence (UN,λ(aN)− Iλ(σ1)N)

Theorem (López, McCleary)

Let 0 < λ < 2, and let (an)∞n=0 ⊂ S1 be a greedy λ-energy sequence. Then, the
sequence (UN,λ(aN)− Iλ(σ1)N)∞N=1 is bounded and divergent. For every N ≥ 1,

0 < UN,λ(aN)− Iλ(σ1)N < Iλ(σ1)

and we have

lim inf
N→∞

(UN,λ(aN)− Iλ(σ1)N) = 0,

lim sup
N→∞

(UN,λ(aN)− Iλ(σ1)N) = Iλ(σ1).
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The sequence (Hλ(αN,λ)− Iλ(σ1)N2)

Let

κλ(N) =


N1−λ 0 < λ < 1,
log N λ = 1,
1 1 < λ < 2.

For any 0 < λ < 2, the sequence(
Hλ(αN,λ)− Iλ(σ1)N2

κλ(N)

)∞
N=2

is bounded and divergent.

In contrast, for the N-th roots of unity, its energy Lλ(N) satisfies, for all 0 < λ < 2,

lim
N→∞

Lλ(N)− Iλ(σ1)N2

N1−λ = (2π)λ 2ζ(−λ),

as shown by Brauchart-Hardin-Saff, where ζ(s) is the Riemann zeta function.
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The sequence (
Hλ(αN,λ)− Iλ(σ1)N2

N1−λ

)∞
N=2

is bounded and divergent.

Figure: The first 8000 points of the sequence
(

Hλ(αN,λ)−Iλ(σ1)N2

N1−λ

)
for λ = 0.1

A. López-García (University of Central Florida) 9/7/2020 27 / 33



Figure: The first 8000 points of the sequence
(

Hλ(αN,λ)−Iλ(σ1)N2

N1−λ

)
for λ = 0.3

A. López-García (University of Central Florida) 9/7/2020 28 / 33



Figure: The first 8000 points of the sequence
(

Hλ(αN,λ)−Iλ(σ1)N2

N1−λ

)
for λ = 0.7
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Figure: The first 8000 points of the sequence
(

Hλ(αN,λ)−Iλ(σ1)N2

N1−λ

)
for λ = 0.9
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The sequence
(

Hλ(αN,λ)−Iλ(σ1)N2

N1−λ

)
for 0 < λ < 1

Class of functions G(~θ, λ):
Given an odd integer M = 2t1 + 2t2 + · · ·+ 2tp−1 + 1, t1 > t2 > · · · > tp−1 > 0, we
construct the vector

~θ = ~θM =

(
2t1

M
,

2t2

M
, . . . ,

2tp−1

M
,

1
M

)
.

Let Θ be the collection of all such vectors (of any length).

Given ~θ = (θ1, . . . , θp) ∈ Θ, let

G(~θ, λ) :=

p∑
k=1

θ−λk (2(2−λ − 1)
( p∑

j=k+1

θj

)
+ θk ).

For 0 < λ < 1, let
g(λ) := sup

~θ∈Θ

G(~θ, λ).

This function takes values > 1.
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The sequence
(

Hλ(αN,λ)−Iλ(σ1)N2
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)
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Theorem

Let 0 < λ < 1, and let (an)∞n=0 ⊂ S1 be a greedy λ-energy sequence. Then, the
sequence (

Hλ(αN,λ)− Iλ(σ1)N2

N1−λ

)∞
N=2

(4)

is bounded and divergent, and we have

lim sup
N→∞

Hλ(αN,λ)− Iλ(σ1)N2

N1−λ = (2π)λ 2ζ(−λ),

lim inf
N→∞

Hλ(αN,λ)− Iλ(σ1)N2

N1−λ = g(λ) (2π)λ 2ζ(−λ).

For every ~θ ∈ Θ, the value G(~θ, λ)(2π)λ 2ζ(−λ) is a limit point of (4).

Note that for 0 < λ < 1, we have ζ(−λ) < 0 and g(λ) > 1, so indeed lim inf < lim sup.

We don’t have an explicit expression for g(λ).
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