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Banded lower Hessenberg matrices
In this talk we consider banded lower Hessenberg matrices

Hn =



a(0)
1 1 0

a(1)
1 a(0)

2 1
...

. . .
. . .

. . .

a(p)
1

. . .
. . .

. . .
. . .

. . .
. . . 1

0 a(p)
n−p · · · a(1)

n−1 a(0)
n


with 1’s in the first superdiagonal.

The number of subdiagonals is p ≥ 1, arbitrary fixed positive integer.

a(k)
j is located in the k th subdiagonal (k = 0 for the main diagonal) and the j th column.

The characteristic polynomials Qn(z) = det(zIn − Hn) satisfy the (p + 2)-term
recurrence relation

zQn(z) = Qn+1(z) + a(0)
n+1Qn(z) + a(1)

n Qn−1(z) + · · ·+ a(p)
n−p+1Qn−p(z).

The roots of Qn (eigenvalues of Hn) are in general spread in the complex plane in a
rather arbitrary way.
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Some notable examples

Examples of such polynomials are multiple orthogonal polynomials with respect to
Angelesco systems or Nikishin systems of p measures on the real line, or on a
symmetric star with center at the origin in the complex plane with rotationally
symmetric generating measures.

In the case of Angelesco systems on the real line: Take µ1, . . . , µp positive measures
with infinite support supp(µk ) ⊂ [ak , bk ], such that [ak , bk ] ∩ [aj , bj ] = ∅ for k 6= j . Then
Qn is the nth-degree monic polynomial satisfying∫

Qn(x) xk dµj (x) = 0, k = 0, . . . ,
⌊

n − j
p

⌋
, 1 ≤ j ≤ p.

The roots of Qn are on the real line in this case.

Then the sequence (Qn(z))∞n=0 satisfies

zQn(z) = Qn+1(z) + a(0)
n+1Qn(z) + a(1)

n Qn−1(z) + · · ·+ a(p)
n−p+1Qn−p(z), n ≥ 0,

with initial conditions Q0 ≡ 1, Q−1 ≡ · · · ≡ Q−p ≡ 0.
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Banded Hessenberg operators and resolvent functions
Let a(k) = (a(k)

n )∞n=1, 0 ≤ k ≤ p, be bounded sequences of complex numbers, and
construct the bounded operator H on `2(N) with matrix representation

H =



a(0)
1 1 0
...

. . .
. . .

a(p)
1

. . .
. . .

. . .
. . .

. . .
. . . 1

a(p)
n−p

. . . a(0)
n

. . .

0
. . .

. . .
. . .


.

Let {ej}∞j=1 be the standard basis in `2(N), with inner product 〈·, ·〉. Let

φj (z) = 〈(z − H)−1ej , e1〉 =
∞∑

n=0

〈Hnej , e1〉
zn+1 , 1 ≤ j ≤ p.

We also define φ0 ≡ 1. We have defined a map

A = (a(0), a(1), . . . , a(p)) 7−→ Φ = (φ0, φ1, . . . , φp)

which we indicate by writing Φ = Φ(A).
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Random matrices
Assumptions:

1) Let µk , 0 ≤ k ≤ p, be a collection of p + 1 Borel probability measures with
compact support in C.

2) For each 0 ≤ k ≤ p, let a(k) = (a(k)
n )∞n=1 be a sequence of i.i.d. random variables

with distribution µk .

3) The whole collection {a(k)
n : n ≥ 1, 0 ≤ k ≤ p} is jointly independent.

In our work we assume in fact that the entries are surely bounded in modulus by an
absolute constant.

Construct the infinite banded Hessenberg matrix

H =



a(0)
1 1 0
...

. . .
. . .

a(p)
1

. . .
. . .

. . .
. . .

. . .
. . . 1

a(p)
n−p

. . . a(0)
n

. . .

0
. . .

. . .
. . .


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Let Hn be the n × n principal truncation of H:

Hn =



a(0)
1 1 0
...

. . .
. . .

a(p)
1

. . .
. . .

. . .
. . . 1

0 a(p)
n−p · · · a(0)

n



Let {λi,n}n
i=1 denote the eigenvalues of Hn, counting multiplicities, and let

σn :=
1
n

n∑
i=1

δλi,n . (ESD of Hn)

Eσn is the deterministic probability measure defined via duality by∫
f dEσn = E

(∫
f dσn

)
.

Main questions of interest:
1) Is the sequence of average measures Eσn weakly convergent (in the weak-star

topology)?
2) If so, what is the limit, and how is it related to the distributions {µk}p

k=0?
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We have a partial answer to these questions, proving the existence of the limits of the
average moments

lim
n→∞

∫
z`dEσn(z) = lim

n→∞
E

(
1
n

n∑
i=1

λ`i,n

)
=: ω`, ` ≥ 0, (1)

and we can describe the moment generating function

∞∑
`=0

ω`
z`+1

in terms of resolvent functions of the operator H and an extension of this operator to
`2(Z).

As a consequence of (1), if sp(Hn) ⊂ R for all n, then Eσn is weakly convergent to a
probability measure on R.

In certain models of bi-diagonal random Hessenberg matrices with eigenvalues on a
symmetric starlike set, we can also prove weak convergence of Eσn to a probability
measure on the set.
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Recall the map

A = (a(0), a(1), . . . , a(p)) 7−→ Φ = (φ0, φ1, . . . , φp)

which we indicate by writing Φ = Φ(A), where φ0 ≡ 1 and

φj (z) := 〈(z − HA)−1ej , e1〉, 1 ≤ j ≤ p.

Theorem

Let A = (a(0), . . . , a(p)) and B = (b(0), . . . , b(p)) be two independent collections of
random sequences with corresponding distributions (µ0, . . . , µp). Let
Φ(A) = (φ0, . . . , φp) and Ψ(B) = (ψ0, . . . , ψp). Further, let α = (α

(k)
j )0≤j≤k≤p be a

triangular array of independent random variables, where α(k)
j has distribution µk for all j

and k, and such that α is independent of A and B. Let σn be the ESD of the matrix Hn

(originating from A). For each ` ≥ 0,

lim
n→∞

∫
z` dEσn(z) = E([W ]`+1),

where [W ]`+1 is the coefficient of z−`−1 in the Laurent series expansion at∞ of

W (z) =
1

z −
∑p

k=0

∑k
j=0 α

(k)
j φk−j (z)ψj (z)

.
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W (z) =
1

z −
∑p

k=0

∑k
j=0 α

(k)
j φk−j (z)ψj (z)

The expression
∑p

k=0

∑k
j=0 α

(k)
j φk−j (z)ψj (z) is the triangular bilinear form:

(ψ0 ψ1 ψ2 . . . ψp)



α
(0)
0 α

(1)
0 α

(2)
0 . . . α

(p)
0

α
(1)
1 α

(2)
1 · · · α

(p)
1

α
(2)
2 · · · α

(p)
2

...
...

α
(p)
p 0




φ0

φ1

φ2

...
φp

 .

The function W (z), analytic in a nbhd of∞, is a resolvent function of a two-sided
operator on `2(Z).
The operator in `2(Z) is obtained extending the sequences in A = (a(0), a(1), . . . , a(p))
from N to Z using the sequences in B = (b(0), . . . , b(p)) and the array
α = (α

(k)
j )0≤j≤k≤p: For n ≤ 0, we define

a(k)
n =

{
α
(k)
−n if − k ≤ n ≤ 0,

b(k)
−n−k if n ≤ −k − 1.
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Let {en}n∈Z be the standard basis in `2(Z), and let M be the operator on `2(Z) that acts
on the basis vectors as follows:

Men = en−1 +

p∑
k=0

a(k)
n en+k , n ∈ Z

M =



. . .
. . . 0

. . . a(0)
1 1

. . .
. . .

. . .
. . .

a(p)
1

. . .
. . .

. . .
. . .

. . .
. . . 1

a(p)
n−p

. . . a(0)
n

. . .

0
. . .

. . .
. . .


Then

W (z) =
1

z −
∑p

k=0

∑k
j=0 α

(k)
j φk−j (z)ψj (z)

= 〈(z −M)−1e0, e0〉.
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Some key ideas in the proof

1) Hermite-Padé property: Let

Qn(z) = det(zIn − Hn),

Qn,j (z) = det((zIn − Hn)[j]), 1 ≤ j ≤ p, n ≥ 0,

where (zIn − Hn)[j] is the submatrix of zIn − Hn obtained deleting the first j rows and
columns.

Kalyagin (1995) proved that (
Qn,1

Qn
,

Qn,2

Qn
, . . . ,

Qn,p

Qn

)
is a Hermite-Padé approximant at infinity for the system of resolvent functions
(φ1, φ2, . . . , φp) associated with the operator H:

Qn(z)φj (z)−Qn,j (z) = O
(

1
znj+2

)
, z →∞, 1 ≤ j ≤ p,

where nj = b(n − j)/pc.
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2) Let M = (mi,j )i,j∈Z be the bi-infinite banded Hessenberg matrix defined before. For
n ≥ 0, let

M2n+1 = (mi,j )−n≤i,j≤n.

Then for every −n ≤ j ≤ n,

(zI2n+1 −M2n+1)−1(j, j)− wj (z) = O
(

1
zn−|j|+3+b(n−|j|)/pc

)
, z →∞ (2)

where
wj (z) = 〈(zI −M)−1 ej , ej〉.

(2) follows from the Hermite-Padé property and the identity

(zI2n+1 −M2n+1)−1(j, j) =
q+

n−j (z)q−n+j (z)

q2n+1(z)

where

q2n+1(z) = det(zI2n+1 −M2n+1)

q+
` (z) = det((zI2n+1 −M2n+1)[2n+1−`])

q−` (z) = det((zI2n+1 −M2n+1)[2n+1−`])
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In fact, the key relations are

(zI2n+1 −M2n+1)−1(j, j) =
q+

n−j (z)q−n+j (z)

q2n+1(z)

=
1

z − a(0)
j −

∑p
t=1

∑t
k=0 a(t)

j−k
q+

n−j+k−t (z)

q+
n−j (z)

q−
n+j−k (z)

q−
n+j (z)

≈ 1

z − a(0)
j −

∑p
t=1

∑t
k=0 a(t)

j−k φ
+
j,t−k (z)φ−j,k (z)

= 〈(zI −M)−1 ej , ej〉
= wj (z)

where φ+
j,t−k (z) and φ−j,k (z) are the resolvent functions of certain restrictions of the

operator M on `2(N).

3) The connection with the eigenvalues λ1, λ2, . . . , λ2n+1 of M2n+1 is

n∑
j=−n

(zI2n+1 −M2n+1)−1(j, j) =
2n+1∑
k=1

1
z − λk
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From the independence between the elements α(k)
j , φk−j (z), and ψj (z) in the formula

W (z) =
1

z −
∑p

k=0

∑k
j=0 α

(k)
j φk−j (z)ψj (z)

one can easily obtain a relation (in the form of a series) between E(W (z)), moments of
the distributions µ0, µ1, . . . , µp, and joint moments of the random vector
(φ1(z), . . . , φp(z)):

g(n1,...,np)(z) = E

( p∏
k=1

φk (z)nk

)
.
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The distribution of (φ1(z), . . . , φp(z))

For z large enough, the random vector (φ1(z), . . . , φp(z)) is well-defined (resolvent
functions of the infinite matrix H on `2(N)). Let σz be the distribution of this vector
(probability measure on Cp). We don’t know what it is, but it satisfies an invariance
principle.

Let H1 be the infinite one-sided matrix obtained by removing the first row and the first
column of the matrix H, and let

φj (z) = 〈(z − H)−1ej , e1〉 1 ≤ j ≤ p

φ1,j (z) = 〈(z − H1)−1ej , e1〉 1 ≤ j ≤ p

then for z large enough

φ1(z) =
1

z − a(0)
1 −

∑p
k=1 a(k)

1 φ1,k (z)
, (3)

φj (z) =
φ1,j−1(z)

z − a(0)
1 −

∑p
k=1 a(k)

1 φ1,k (z)
, 2 ≤ j ≤ p, (4)

which when iterated gives a vector continued fraction expansion of
(φ1(z), . . . , φp(z)) (vector analogue of the Jacobi continued fraction for OPs).
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By the i.i.d. assumptions, the vectors Φ(z) := (φ1(z), φ2(z), . . . , φp(z)) and
Φ1(z) := (φ1,1(z), φ1,2(z), . . . , φ1,p(z)) clearly have the same distribution σz , and the
vectors (a(0)

1 , . . . , a(p)
1 ) and Φ1(z) are independent.

Let µ := µ0 × · · · × µp be the probability distribution of (a(0)
1 , . . . , a(p)

1 ).

We will write t = (t0, . . . , tp), x = (x1, . . . , xp). Let λz : Dz −→ Cp be the function

λz(t, x) :=

(
1

z − t0 −
∑p

k=1 tk xk
,

x1

z − t0 −
∑p

k=1 tk xk
, . . . ,

xp−1

z − t0 −
∑p

k=1 tk xk

)
.

Then the relations (3)–(4) mean Φ(z) = λz((a(0)
1 , . . . , a(p)

1 ),Φ1(z)), and the distribution
of ((a(0)

1 , . . . , a(p)
1 ),Φ1(z)) is µ× σz , so

σz = (λz)∗(µ× σz)

(push-forward of µ× σz under λz ).

This means that for any f : Cp −→ C in L1(σz), we have∫
f dσz =

∫∫
f ◦ λz d(µ× σz).
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Literature on random matrices

Most of the literature on random matrices is devoted to the study of ensembles of
Hermitian/real-symmetric or unitary/orthogonal matrices. The great advantage of such
ensembles is that the eigenvalues are located on the real line or the unit circle.
Important examples are GUE, GOE, GSE, CUE.

In the class of random banded matrices, most works in the literature also assume
symmetry (see e.g. works of Bourgade, Fyodorov, M. Shcherbina, T. Shcherbina,
Sodin, Spencer, and others).

Random banded Hessenberg matrices are on the contrary non-symmetric, and so it is
difficult in general to locate the eigenvalues, so the spectral analysis presents new
challenges. We have found that Hermite-Padé approximation can be an effective tool
for this analysis.
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Figure: Eigenvalues of Hn, n = 300, p = 2, a(0)
n = a(1)

n = 0 for all n, (a(2)
n )∞n=1 is i.i.d. with uniform

distribution on the unit circle.

A. López-García (University of Central Florida) 12/5/2021 18 / 20



-1.5 -1.0 -0.5 0.5 1.0 1.5

-2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

Figure: Eigenvalues of Hn, n = 300, p = 2, a(0)
n = a(1)

n = 0 for all n, (a(2)
n )∞n=1 is i.i.d. with uniform

distribution on the arc of the unit circle {eiθ : π3 ≤ θ ≤ 2π
3 }.
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