# Nikishin systems on star-like sets: limiting functions in ratio asymptotics

A. López-García

University of Central Florida

Joint work with G. López Lagomasino

OPSFA, Hagenberg, Austria, July 25, 2019

Multiorthogonal polynomials are polynomials of a single complex variable that satisfy orthogonality conditions with respect to a collection of  $p \ge 2$  measures.

Multiorthogonal polynomials are polynomials of a single complex variable that satisfy orthogonality conditions with respect to a collection of  $p \ge 2$  measures.

 $\mathbf{s} = (s_0, \dots, s_{p-1})$ : system of p complex measures with compact support.

Multiorthogonal polynomials are polynomials of a single complex variable that satisfy orthogonality conditions with respect to a collection of  $p \ge 2$  measures.

 $\mathbf{s} = (s_0, \dots, s_{p-1})$ : system of p complex measures with compact support.

 $\mathbf{n} = (n_0, \dots, n_{p-1})$ : multi-index with  $n_j \in \mathbb{Z}_{>0}$  for all  $0 \le j \le p-1$ .

Multiorthogonal polynomials are polynomials of a single complex variable that satisfy orthogonality conditions with respect to a collection of  $p \ge 2$  measures.

 $\mathbf{s} = (s_0, \dots, s_{p-1})$ : system of p complex measures with compact support.

$$\mathbf{n} = (n_0, \dots, n_{p-1})$$
: multi-index with  $n_j \in \mathbb{Z}_{\geq 0}$  for all  $0 \leq j \leq p-1$ .

 $P_{\mathbf{n}}(z)$  is multiorthogonal with respect to **s** and **n** if it is a non-zero polynomial of degree at most  $|\mathbf{n}| = n_0 + \cdots + n_{p-1}$ , satisfying

$$\int P_{\mathbf{n}}(z) z^{j} ds_{0}(z) = 0, \quad 0 \le j \le n_{0} - 1,$$

$$\vdots$$

$$\int P_{\mathbf{n}}(z) z^{j} ds_{p-1}(z) = 0, \quad 0 \le j \le n_{p-1} - 1.$$

Multiorthogonal polynomials are polynomials of a single complex variable that satisfy orthogonality conditions with respect to a collection of  $p \ge 2$  measures.

 $\mathbf{s} = (s_0, \dots, s_{p-1})$ : system of p complex measures with compact support.

$$\mathbf{n}=(n_0,\ldots,n_{p-1})$$
: multi-index with  $n_j\in\mathbb{Z}_{\geq 0}$  for all  $0\leq j\leq p-1$ .

 $P_{\mathbf{n}}(z)$  is multiorthogonal with respect to **s** and **n** if it is a non-zero polynomial of degree at most  $|\mathbf{n}| = n_0 + \cdots + n_{p-1}$ , satisfying

$$\int P_{\mathbf{n}}(z) z^{j} ds_{0}(z) = 0, \quad 0 \le j \le n_{0} - 1,$$

$$\vdots$$

$$\int P_{\mathbf{n}}(z) z^{j} ds_{p-1}(z) = 0, \quad 0 \le j \le n_{p-1} - 1.$$

Finding  $P_n$  amounts to solve a homogeneous linear system of  $|\mathbf{n}|$  equations with  $|\mathbf{n}|+1$  unknowns (the coefficients of  $P_n$ ), so a solution always exists.

If  $deg(P_n) = |\mathbf{n}|$  for any solution, then  $\mathbf{n}$  is called normal. In this case, the subspace of solutions has dimension 1.

#### Nikishin systems on star-like sets

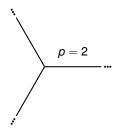
Nikishin systems of measures on the real line where introduced by E.M. Nikishin in 1980. In this talk we consider Nikishin systems on a star.

### Nikishin systems on star-like sets

Nikishin systems of measures on the real line where introduced by E.M. Nikishin in 1980. In this talk we consider Nikishin systems on a star.

Let  $p \ge 1$ , and let

$$S_{+} = \{z \in \mathbb{C} : z^{p+1} \in [0, +\infty)\}.$$



A Nikishin system  $\mathbf{s} = (s_0, \dots, s_{p-1})$  on  $S_+$  is a system of complex measures with common support on  $S_+$ , constructed as follows.

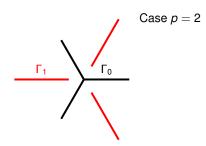
Let  $(\Gamma_0, \Gamma_1, \dots, \Gamma_{p-1})$  be a system of sets given by

$$\Gamma_j := T^{-1}(\Delta_j), \qquad j = 0, \ldots, p-1,$$

where  $T(z) = z^{p+1}$  and  $(\Delta_0, \Delta_1, \dots, \Delta_{p-1})$  are compact intervals such that

$$\Delta_j \subset \begin{cases} [0,+\infty) & \text{if } j \text{ is even,} \\ (-\infty,0] & \text{if } j \text{ is odd.} \end{cases}$$

We also assume that  $\Delta_j \cap \Delta_{j+1} = \emptyset$  for all  $j = 0, \dots, p-2$ .



Let  $(\sigma_0,\ldots,\sigma_{p-1})$  be a system of measures supported on  $(\Gamma_0,\ldots,\Gamma_{p-1})$ , respectively, such that each  $\sigma_j$  is positive, rotationally invariant, with infinitely many points in its support.

Let  $(\sigma_0, \ldots, \sigma_{p-1})$  be a system of measures supported on  $(\Gamma_0, \ldots, \Gamma_{p-1})$ , respectively, such that each  $\sigma_j$  is positive, rotationally invariant, with infinitely many points in its support.

Let

$$\widehat{\tau}(z) = \int \frac{d\tau(t)}{z - t}$$

denote the Stieltjes transform of a measure  $\tau$ .

Let  $(\sigma_0, \ldots, \sigma_{p-1})$  be a system of measures supported on  $(\Gamma_0, \ldots, \Gamma_{p-1})$ , respectively, such that each  $\sigma_j$  is positive, rotationally invariant, with infinitely many points in its support.

Let

$$\widehat{\tau}(z) = \int \frac{d\tau(t)}{z - t}$$

denote the Stieltjes transform of a measure  $\tau$ .

Suppose that  $\tau_1, \tau_2, \dots, \tau_k$  are arbitrary complex measures with compact support, such that  $\operatorname{supp}(\tau_j) \cap \operatorname{supp}(\tau_{j+1}) = \emptyset$  for all  $j = 1, \dots, k-1$ .

Let  $(\sigma_0, \ldots, \sigma_{p-1})$  be a system of measures supported on  $(\Gamma_0, \ldots, \Gamma_{p-1})$ , respectively, such that each  $\sigma_j$  is positive, rotationally invariant, with infinitely many points in its support.

Let

$$\widehat{\tau}(z) = \int \frac{d\tau(t)}{z - t}$$

denote the Stieltjes transform of a measure  $\tau$ .

Suppose that  $\tau_1, \tau_2, \dots, \tau_k$  are arbitrary complex measures with compact support, such that  $\operatorname{supp}(\tau_j) \cap \operatorname{supp}(\tau_{j+1}) = \emptyset$  for all  $j = 1, \dots, k-1$ .

Inductively, one defines:

$$\langle \tau_1 \rangle := \tau_1$$

$$\langle \tau_1, \tau_2 \rangle := \widehat{\tau}_2 \, \tau_1$$

$$\langle \tau_1, \tau_2, \tau_3 \rangle := \langle \tau_1, \langle \tau_2, \tau_3 \rangle \rangle$$

$$\vdots$$

$$\langle \tau_1, \tau_2, \dots, \tau_k \rangle := \langle \tau_1, \langle \tau_2, \dots, \tau_k \rangle \rangle$$

$$(s_0,\ldots,s_{p-1})=\mathcal{N}(\sigma_0,\ldots,\sigma_{p-1})$$
 is the **Nikishin system** generated by  $(\sigma_0,\ldots,\sigma_{p-1})$ , if  $s_i=\langle\sigma_0,\ldots,\sigma_i\rangle$ , for all  $0\leq i\leq p-1$ .

$$(s_0,\ldots,s_{p-1})=\mathcal{N}(\sigma_0,\ldots,\sigma_{p-1})$$
 is the **Nikishin system** generated by  $(\sigma_0,\ldots,\sigma_{p-1})$ , if  $s_j=\langle\sigma_0,\ldots,\sigma_j\rangle$ , for all  $0\leq j\leq p-1$ .

Let  $\sigma_j^*$  be the push-forward of the measure  $\sigma_j$  on  $\Gamma_j$  under the transformation  $T(z) = z^{p+1}$ , that is,  $\sigma_j^*$  is the measure on  $\Delta_j$  such that

$$\sigma_j^*(E) = \sigma_j(\{z \in \mathbb{C} : T(z) \in E\}), \qquad E \subset \Delta_j.$$

# Multiorthogonal polynomials and functions of the second kind Let $(s_0, \ldots, s_{p-1}) = \mathcal{N}(\sigma_0, \ldots, \sigma_{p-1})$ .

## Multiorthogonal polynomials and functions of the second kind

Let 
$$(s_0, ..., s_{p-1}) = \mathcal{N}(\sigma_0, ..., \sigma_{p-1}).$$

#### Definition of multiple orthogonal polynomials

Let  $(Q_n)_{n=0}^{\infty}$  be the sequence of **monic** polynomials of lowest degree that satisfy the multiple orthogonality conditions

$$\int_{\Gamma_0} Q_n(z) \, z^I \, ds_j(z) = 0, \qquad I = 0, \ldots, \left\lfloor \frac{n-j-1}{p} \right\rfloor,$$

for each  $j = 0, \ldots, p-1$ .

In terms of the notation used before, we are considering here multi-indices  $\mathbf{n} = (n_0, \dots, n_{p-1})$  such that

$$n_0 \geq n_1 \geq n_2 \geq \cdots \geq n_{p-1} \geq n_0 - 1$$
,

so we identify  $\mathbf{n}$  with  $|\mathbf{n}|$  and write  $Q_{|\mathbf{n}|}$  instead of  $Q_{\mathbf{n}}$ .

## Multiorthogonal polynomials and functions of the second kind

Let 
$$(s_0, ..., s_{p-1}) = \mathcal{N}(\sigma_0, ..., \sigma_{p-1}).$$

#### Definition of multiple orthogonal polynomials

Let  $(Q_n)_{n=0}^{\infty}$  be the sequence of **monic** polynomials of lowest degree that satisfy the multiple orthogonality conditions

$$\int_{\Gamma_0} Q_n(z) z^I ds_j(z) = 0, \qquad I = 0, \ldots, \left\lfloor \frac{n-j-1}{p} \right\rfloor,$$

for each  $j = 0, \ldots, p-1$ .

In terms of the notation used before, we are considering here multi-indices  $\mathbf{n}=(n_0,\ldots,n_{p-1})$  such that

$$n_0 \geq n_1 \geq n_2 \geq \cdots \geq n_{p-1} \geq n_0 - 1$$

so we identify **n** with  $|\mathbf{n}|$  and write  $Q_{|\mathbf{n}|}$  instead of  $Q_{\mathbf{n}}$ .

#### Definition of functions of the second kind

Set  $\Psi_{n,0} := Q_n$ , and let

$$\Psi_{n,k}(z) := \int_{\Gamma_{k-1}} \frac{\Psi_{n,k-1}(t)}{z-t} \, d\sigma_{k-1}(t), \qquad k = 1, \ldots, p.$$

### Algebraic properties

#### Theorem (López-García, Miña-Díaz)

#### We have

- 1)  $Q_n$  has maximal degree n.
- 2) If  $n \equiv \ell \mod (p+1)$ ,  $0 \le \ell \le p$ , then  $Q_n(z) = z^\ell q_n(z^{p+1})$ , and  $q_n$  has exactly  $\frac{n-\ell}{p+1}$  simple zeros in the interior of  $\Delta_0$ .
- 3) The zeros of  $q_n$  and  $q_{n+1}$  interlace on  $\Delta_0$ .
- 4) The sequences  $(Q_n(z))_{n=0}^{\infty}$ ,  $(\Psi_{n,k}(z))_{n=0}^{\infty}$ ,  $1 \le k \le p$ , satisfy a linear difference equation of the form

$$y_{n+1}=zy_n-a_n\,y_{n-p}, \qquad n\geq p, \tag{1}$$

where  $a_n > 0$  for all  $n \ge p$ . These p+1 sequences form a basis for the space of solutions of (1).

From now on, we assume that the Nikishin system satisfies the following property (  ${\bf P}$  ):

For each  $0 \le j \le p-1$ , the measure  $\sigma_j^*$  has positive Radon-Nikodym derivative a.e. on  $\Delta_j$ .

From now on, we assume that the Nikishin system satisfies the following property ( $\mathbf{P}$ ):

For each  $0 \le j \le p-1$ , the measure  $\sigma_j^*$  has positive Radon-Nikodym derivative a.e. on  $\Delta_j$ .

Assuming (P), in a joint work with G. López Lagomasino, the following was proved:

1) For each fixed  $0 \le \rho \le p(p+1) - 1$ , the following limits hold, uniformly on compact subsets of the indicated regions:

$$\lim_{n\to\infty}\frac{Q_{np(\rho+1)+\rho+1}(z)}{Q_{np(\rho+1)+\rho}(z)} \qquad z\in\mathbb{C}\setminus(\Gamma_0\cup\{0\}),$$

$$\lim_{n\to\infty}\frac{\Psi_{np(p+1)+\rho+1,k}(z)}{\Psi_{np(p+1)+\rho,k}(z)} \qquad z\in\mathbb{C}\setminus(\Gamma_{k-1}\cup\Gamma_k\cup\{0\}),\quad 1\leq k\leq p,$$

where  $\Gamma_{\rho} = \emptyset$ .

From now on, we assume that the Nikishin system satisfies the following property ( $\mathbf{P}$ ):

For each  $0 \le j \le p-1$ , the measure  $\sigma_j^*$  has positive Radon-Nikodym derivative a.e. on  $\Delta_j$ .

Assuming (P), in a joint work with G. López Lagomasino, the following was proved:

1) For each fixed  $0 \le \rho \le p(p+1) - 1$ , the following limits hold, uniformly on compact subsets of the indicated regions:

$$\lim_{n\to\infty}\frac{Q_{np(\rho+1)+\rho+1}(z)}{Q_{np(\rho+1)+\rho}(z)} \qquad z\in\mathbb{C}\setminus(\Gamma_0\cup\{0\}),$$

$$\lim_{n\to\infty}\frac{\psi_{np(p+1)+\rho+1,k}(z)}{\psi_{np(p+1)+\rho,k}(z)} \qquad z\in\mathbb{C}\setminus \big(\Gamma_{k-1}\cup\Gamma_k\cup\{0\}\big),\quad 1\le k\le p,$$

where  $\Gamma_{\rho} = \emptyset$ .

2) For any fixed  $0 \le \rho \le p(p+1) - 1$ ,

$$\lim_{n\to\infty}a_{np(p+1)+\rho}=a^{(\rho)}.$$



From now on, we assume that the Nikishin system satisfies the following property ( $\mathbf{P}$ ):

For each  $0 \le j \le p-1$ , the measure  $\sigma_j^*$  has positive Radon-Nikodym derivative a.e. on  $\Delta_j$ .

Assuming (P), in a joint work with G. López Lagomasino, the following was proved:

1) For each fixed  $0 \le \rho \le p(p+1) - 1$ , the following limits hold, uniformly on compact subsets of the indicated regions:

$$\lim_{n\to\infty}\frac{Q_{np(\rho+1)+\rho+1}(z)}{Q_{np(\rho+1)+\rho}(z)} \qquad z\in\mathbb{C}\setminus (\Gamma_0\cup\{0\}),$$

$$\lim_{n\to\infty}\frac{\Psi_{np(p+1)+\rho+1,k}(z)}{\Psi_{np(p+1)+\rho,k}(z)} \qquad z\in\mathbb{C}\setminus(\Gamma_{k-1}\cup\Gamma_k\cup\{0\}),\quad 1\leq k\leq p,$$

where  $\Gamma_{\rho} = \emptyset$ .

2) For any fixed  $0 \le \rho \le p(p+1) - 1$ ,

$$\lim_{n\to\infty}a_{np(p+1)+\rho}=a^{(\rho)}.$$

We describe these limits in terms of certain algebraic functions defined on a Riemann surface.

### Riemann surface of genus zero and conformal mappings

Let  $\mathcal R$  denote the compact Riemann surface

$$\mathcal{R} = \overline{\bigcup_{k=0}^{p} \mathcal{R}_k}$$

formed by the p + 1 consecutively "glued" sheets

$$\mathcal{R}_0 := \overline{\mathbb{C}} \setminus \Delta_0, \qquad \mathcal{R}_k := \overline{\mathbb{C}} \setminus \left(\Delta_{k-1} \cup \Delta_k\right), \quad k = 1, \dots, p-1, \qquad \mathcal{R}_p := \overline{\mathbb{C}} \setminus \Delta_{p-1},$$

where the upper and lower banks of the common slits of two neighboring sheets are identified. This surface has genus zero.

### Riemann surface of genus zero and conformal mappings

Let  $\mathcal R$  denote the compact Riemann surface

$$\mathcal{R} = \overline{\bigcup_{k=0}^{p} \mathcal{R}_{k}}$$

formed by the p + 1 consecutively "glued" sheets

$$\mathcal{R}_0:=\overline{\mathbb{C}}\setminus\Delta_0,\qquad \mathcal{R}_k:=\overline{\mathbb{C}}\setminus\left(\Delta_{k-1}\cup\Delta_k\right),\quad k=1,\ldots,p-1,\qquad \mathcal{R}_p:=\overline{\mathbb{C}}\setminus\Delta_{p-1},$$

where the upper and lower banks of the common slits of two neighboring sheets are identified. This surface has genus zero.

Given  $I \in \{1, \dots, p\}$ , let  $\varphi^{(I)} : \mathcal{R} \longrightarrow \overline{\mathbb{C}}$  denote a conformal mapping whose divisor consists of a simple zero at the point  $\infty^{(0)} \in \mathcal{R}_0$  and a simple pole at the point  $\infty^{(I)} \in \mathcal{R}_I$ . For each  $k = 0, \dots, p$ , let

$$\varphi_k^{(I)} := \varphi^{(I)}|_{\mathcal{R}_k}.$$

We normalize  $\varphi^{(l)}$  so that

$$\prod_{k=0}^{\rho} \varphi_k^{(l)} \equiv \pm 1, \qquad \omega_l := \lim_{z \to \infty} z \varphi_0^{(l)}(z) > 0.$$

### Asymptotic formulae

#### Theorem (López-García, López Lagomasino)

Assume that (P) holds. The following formulas hold, uniformly on compact subsets of the indicated regions:

1) For each fixed  $0 \le \rho \le p(p+1) - 1$ ,

$$\lim_{n \to \infty} \frac{Q_{np(p+1)+\rho+1}(z)}{Q_{np(p+1)+\rho}(z)} = \frac{z}{1 + a^{(\rho)} \, \omega_l^{-1} \, \varphi_0^{(l)}(z^{p+1})}, \qquad z \in \mathbb{C} \setminus (\Gamma_0 \cup \{0\}),$$

where  $I = I(\rho)$  is the integer satisfying the conditions  $1 \le I \le p$  and  $I - 1 \equiv \rho \mod p$ . Convergence takes place in  $\mathbb{C} \setminus \Gamma_0$  if  $\rho \not\equiv p \mod (p+1)$ .

#### Asymptotic formulae

#### Theorem (López-García, López Lagomasino)

Assume that (P) holds. The following formulas hold, uniformly on compact subsets of the indicated regions:

1) For each fixed  $0 \le \rho \le p(p+1) - 1$ ,

$$\lim_{n \to \infty} \frac{Q_{np(p+1)+\rho+1}(z)}{Q_{np(p+1)+\rho}(z)} = \frac{z}{1 + a^{(\rho)}\,\omega_I^{-1}\,\varphi_0^{(I)}(z^{p+1})}, \qquad z \in \mathbb{C} \setminus \big(\Gamma_0 \cup \{0\}\big),$$

where  $I = I(\rho)$  is the integer satisfying the conditions  $1 \le I \le p$  and  $I - 1 \equiv \rho$  mod p. Convergence takes place in  $\mathbb{C} \setminus \Gamma_0$  if  $\rho \not\equiv p \mod (p+1)$ .

2) For each fixed  $0 \le \rho \le p(p+1) - 1$  and  $1 \le k \le p$ ,

$$\lim_{n \to \infty} \frac{\Psi_{np(p+1)+\rho+1,k}(z)}{\Psi_{np(p+1)+\rho,k}(z)} = \frac{z}{1 + a^{(\rho)} \omega_l^{-1} \varphi_k^{(l)}(z^{p+1})}, \qquad z \in \mathbb{C} \setminus (\Gamma_{k-1} \cup \Gamma_k \cup \{0\}),$$

with  $I = I(\rho)$  as in 1), and  $\Gamma_{\rho} = \emptyset$ .

### Asymptotic formulae

#### Theorem (López-García, López Lagomasino)

Assume that (P) holds. The following formulas hold, uniformly on compact subsets of the indicated regions:

1) For each fixed  $0 \le \rho \le p(p+1) - 1$ ,

$$\lim_{n \to \infty} \frac{Q_{np(p+1)+\rho+1}(z)}{Q_{np(p+1)+\rho}(z)} = \frac{z}{1 + a^{(\rho)}\,\omega_I^{-1}\,\varphi_0^{(I)}(z^{p+1})}, \qquad z \in \mathbb{C} \setminus \big(\Gamma_0 \cup \{0\}\big),$$

where  $I = I(\rho)$  is the integer satisfying the conditions  $1 \le I \le p$  and  $I - 1 \equiv \rho \mod p$ . Convergence takes place in  $\mathbb{C} \setminus \Gamma_0$  if  $\rho \not\equiv p \mod (p+1)$ .

2) For each fixed  $0 \le \rho \le p(p+1) - 1$  and  $1 \le k \le p$ ,

$$\lim_{n\to\infty} \frac{\Psi_{np(p+1)+\rho+1,k}(z)}{\Psi_{np(p+1)+\rho,k}(z)} = \frac{z}{1+a^{(\rho)}\,\omega_l^{-1}\,\varphi_k^{(l)}(z^{p+1})}, \qquad z\in\mathbb{C}\setminus(\Gamma_{k-1}\cup\Gamma_k\cup\{0\}),$$

with  $I = I(\rho)$  as in 1), and  $\Gamma_{\rho} = \emptyset$ .

We extend the sequence  $(a^{(\rho)})_{\rho=0}^{p(p+1)-1}$ , periodically in  $\mathbb Z$  with period p(p+1), so that

$$a^{(\rho)}=a^{(\rho+p(p+1))}, \qquad ext{for all } 
ho\in\mathbb{Z}.$$

#### Theorem (López-García, López Lagomasino)

The following properties stated in 1)–4) below hold for each  $0 \le \rho \le p(p+1)-1$ :

1)  $a^{(\rho)} > 0$ .

#### Theorem (López-García, López Lagomasino)

The following properties stated in 1)–4) below hold for each  $0 \le \rho \le p(p+1)-1$ :

- 1)  $a^{(\rho)} > 0$ .
- 2) The set of p values  $\{a^{(p+m(p+1))}\}_{m=0}^{p-1}$  is formed by distinct quantities.

#### Theorem (López-García, López Lagomasino)

The following properties stated in 1)–4) below hold for each  $0 \le \rho \le p(p+1)-1$ :

- 1)  $a^{(\rho)} > 0$ .
- 2) The set of p values  $\{a^{(p+m(p+1))}\}_{m=0}^{p-1}$  is formed by distinct quantities.
- 3) The following relation holds:

$$\sum_{i=\rho}^{\rho+p-1} a^{(i)} = \sum_{i=\rho+p+1}^{\rho+2p} a^{(i)}.$$

#### Theorem (López-García, López Lagomasino)

The following properties stated in 1)–4) below hold for each  $0 \le \rho \le p(p+1)-1$ :

- 1)  $a^{(\rho)} > 0$ .
- 2) The set of p values  $\{a^{(p+m(p+1))}\}_{m=0}^{p-1}$  is formed by distinct quantities.
- 3) The following relation holds:

$$\sum_{i=\rho}^{\rho+p-1} a^{(i)} = \sum_{i=\rho+p+1}^{\rho+2p} a^{(i)}.$$

4) We have

$$a^{(\rho)} = -\frac{\omega_l}{\varphi_k^{(l)}(0)} \tag{2}$$

where  $(k, l) = (k(\rho), l(\rho))$  is the unique pair of integers satisfying the conditions  $0 \le k \le p, \, \rho \equiv k-1 \mod (p+1)$ , and  $1 \le l \le p, \, \rho \equiv l-1 \mod p$ .

#### Theorem (López-García, López Lagomasino)

The following properties stated in 1)–4) below hold for each  $0 \le \rho \le p(p+1)-1$ :

- 1)  $a^{(\rho)} > 0$ .
- 2) The set of p values  $\{a^{(p+m(p+1))}\}_{m=0}^{p-1}$  is formed by distinct quantities.
- 3) The following relation holds:

$$\sum_{i=\rho}^{\rho+p-1} a^{(i)} = \sum_{i=\rho+p+1}^{\rho+2p} a^{(i)}.$$

4) We have

$$a^{(\rho)} = -\frac{\omega_l}{\varphi_k^{(l)}(0)} \tag{2}$$

where  $(k, l) = (k(\rho), l(\rho))$  is the unique pair of integers satisfying the conditions  $0 \le k \le p, \, \rho \equiv k-1 \mod (p+1)$ , and  $1 \le l \le p, \, \rho \equiv l-1 \mod p$ .

5) Assume that  $0 \in \Delta_k$  for some  $0 \le k \le p-1$ . Then, for any  $0 \le \rho \le p(p+1)-1$  such that  $\rho \equiv k-1 \mod (p+1)$ , we have  $a^{(\rho-p)}=a^{(\rho)}$ . If  $0 \notin \Delta_k$  for all  $0 \le k \le p-1$ , then for any  $0 \le \rho \le p(p+1)-1$ , the set of p+1 values  $\{a^{(\rho+mp)}\}_{m=0}^p$  is formed by distinct quantities.

#### A conformal mapping

The function  $\eta^{(\rho)}:\mathcal{R}\longrightarrow\overline{\mathbb{C}}$  defined by

$$\eta^{(\rho)}(z) = \frac{1}{1 + a^{(\rho)} \, \omega_{l(\rho)}^{-1} \, \varphi^{(l(\rho))}(z)}$$

is conformal since it is the composition of  $\varphi^{(l(\rho))}$  with the Möbius transformation  $w\mapsto (1+a^{(\rho)}\,\omega_{l(\rho)}^{-1}\,w)^{-1}$ .

#### A conformal mapping

The function  $\eta^{(\rho)}:\mathcal{R}\longrightarrow\overline{\mathbb{C}}$  defined by

$$\eta^{(\rho)}(z) = \frac{1}{1 + a^{(\rho)} \, \omega_{l(\rho)}^{-1} \, \varphi^{(l(\rho))}(z)}$$

is conformal since it is the composition of  $\varphi^{(l(\rho))}$  with the Möbius transformation  $\mathbf{w}\mapsto (\mathbf{1}+\mathbf{a}^{(\rho)}\,\omega_{l(\rho)}^{-1}\,\mathbf{w})^{-1}$ .

As a consequence of (2) and the definition of  $\varphi^{(l(\rho))}$ , the function  $\eta^{(\rho)}: \mathcal{R} \longrightarrow \overline{\mathbb{C}}$  is characterized as the unique conformal mapping with a simple zero at  $\infty^{(l(\rho))}$ , a simple pole at  $0 \in \mathcal{R}_{k(\rho)}$ , and satisfying  $\eta^{(\rho)}(\infty^{(0)}) = 1$ .

#### A conformal mapping

The function  $\eta^{(\rho)}: \mathcal{R} \longrightarrow \overline{\mathbb{C}}$  defined by

$$\eta^{(\rho)}(z) = \frac{1}{1 + a^{(\rho)} \, \omega_{l(\rho)}^{-1} \, \varphi^{(l(\rho))}(z)}$$

is conformal since it is the composition of  $\varphi^{(l(\rho))}$  with the Möbius transformation  $w\mapsto (1+a^{(\rho)}\,\omega_{l(\rho)}^{-1}\,w)^{-1}$ .

As a consequence of (2) and the definition of  $\varphi^{(l(\rho))}$ , the function  $\eta^{(\rho)}: \mathcal{R} \longrightarrow \overline{\mathbb{C}}$  is characterized as the unique conformal mapping with a simple zero at  $\infty^{(l(\rho))}$ , a simple pole at  $0 \in \mathcal{R}_{k(\rho)}$ , and satisfying  $\eta^{(\rho)}(\infty^{(0)}) = 1$ .

Then, the asymptotic formulas take the simpler form

$$\begin{split} & \lim_{n \to \infty} \frac{Q_{np(p+1)+\rho+1}(z)}{Q_{np(p+1)+\rho}(z)} = z \eta_0^{(\rho)}(z^{\rho+1}), \\ & \lim_{n \to \infty} \frac{\Psi_{np(p+1)+\rho+1,k}(z)}{\Psi_{np(\rho+1)+\rho,k}(z)} = z \eta_k^{(\rho)}(z^{\rho+1}), \quad 1 \le k \le p, \end{split}$$

where  $\eta_{\mathbf{k}}^{(\rho)} = \eta^{(\rho)}|_{\mathcal{R}_{\mathbf{k}}}$ .



## Main ideas in the proof

The proof is based on the simultaneous analysis of *p* sequences of ratios

$$\left\{\frac{P_{n+1,k}(z)}{P_{n,k}(z)}\right\}_{n=0}^{\infty} \qquad k=0,\ldots,p-1,$$

constructed out of the polynomials  $Q_n$  and the functions of the second kind  $\Psi_{n,k}$ .

## Main ideas in the proof

The proof is based on the simultaneous analysis of *p* sequences of ratios

$$\left\{\frac{P_{n+1,k}(z)}{P_{n,k}(z)}\right\}_{n=0}^{\infty} \qquad k=0,\ldots,p-1,$$

constructed out of the polynomials  $Q_n$  and the functions of the second kind  $\Psi_{n,k}$ . By definition,  $P_{n,0} = q_n$  is the monic polynomial in the relation

$$Q_n(z)=z^\ell q_n(z^{p+1}), \qquad n\equiv \ell \mod (p+1), \quad 0\leq \ell \leq p.$$

## Main ideas in the proof

The proof is based on the simultaneous analysis of *p* sequences of ratios

$$\left\{\frac{P_{n+1,k}(z)}{P_{n,k}(z)}\right\}_{n=0}^{\infty} \qquad k=0,\ldots,p-1,$$

constructed out of the polynomials  $Q_n$  and the functions of the second kind  $\Psi_{n,k}$ .

By definition,  $P_{n,0} = q_n$  is the monic polynomial in the relation

$$Q_n(z) = z^\ell q_n(z^{p+1}), \qquad n \equiv \ell \mod (p+1), \quad 0 \le \ell \le p.$$

For each  $1 \le k \le p-1$ , by definition  $P_{n,k}$  is the monic polynomial whose zeros are the zeros in  $\operatorname{int}(\Delta_k)$  of the function  $\psi_{n,k} \in \mathcal{H}(\mathbb{C} \setminus \Delta_{k-1})$  given by the relation

$$\Psi_{n,k}(z)=z^{\ell-k}\psi_{n,k}(z^{p+1}).$$

In a previous work, we proved under the hypothesis (**P**) the existence of the following limits, for each fixed  $0 \le \rho \le p(p+1) - 1$  and  $0 \le k \le p-1$ ,

$$\lim_{\lambda\to\infty}\frac{P_{\lambda p(p+1)+\rho+1,k}(z)}{P_{\lambda p(p+1)+\rho,k}(z)}=\widetilde{F}_k^{(\rho)}(z), \qquad z\in\mathbb{C}\setminus\Delta_k,$$

where  $\widetilde{F}_k^{(\rho)}$  and  $1/\widetilde{F}_k^{(\rho)}$  are analytic in  $\mathbb{C}\setminus\Delta_k$ .

In a previous work, we proved under the hypothesis (**P**) the existence of the following limits, for each fixed  $0 \le \rho \le p(p+1) - 1$  and  $0 \le k \le p-1$ ,

$$\lim_{\lambda\to\infty}\frac{P_{\lambda\rho(\rho+1)+\rho+1,k}(z)}{P_{\lambda\rho(\rho+1)+\rho,k}(z)}=\widetilde{F}_k^{(\rho)}(z), \qquad z\in\mathbb{C}\setminus\Delta_k,$$

where  $\widetilde{F}_k^{(\rho)}$  and  $1/\widetilde{F}_k^{(\rho)}$  are analytic in  $\mathbb{C}\setminus\Delta_k$ .

**Key fact**:  $\psi_{n,k}$  satisfies the following orthogonality conditions with respect to **varying measures**:

If  $k > \ell$ , then

$$\int_{\Delta_k} \psi_{n,k}(t) \, t^l \, \frac{d\sigma_k^*(t)}{P_{n,k+1}(t)} = 0, \qquad l = 0, \ldots, \deg(P_{n,k}) - 1,$$

and if  $k < \ell$ , then

$$\int_{\Delta_k} \psi_{n,k}(t) t^l \frac{t d\sigma_k^*(t)}{P_{n,k+1}(t)} = 0, \qquad l = 0, \ldots, \deg(P_{n,k}) - 1,$$

where  $n \equiv \ell \mod (p+1)$ ,  $0 \le \ell \le p$ .

<ロ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □

**Key fact**: Let  $0 \le \rho \le p(p+1)-1$  be fixed, and let  $0 \le \ell \le p$  be the remainder in the division of  $\rho$  by p+1. There exist positive constants  $c_k^{(\rho)}$  so that the collection of functions  $F_k^{(\rho)}(z) = c_k^{(\rho)}\widetilde{F}_k^{(\rho)}(z), 0 \le k \le p-1$  satisfies a system of boundary value equations:

1) If  $0 \le \ell \le p-1$ , the system is

$$\begin{split} &\frac{|F_k^{(\rho)}(x)|^2}{|F_{k-1}^{(\rho)}(x)||F_{k+1}^{(\rho)}(x)|} = 1, \quad x \in \Delta_k, \quad 0 \le k \le p-1, \quad k \ne \ell, \ell+1, \\ &\frac{|F_k^{(\rho)}(x)|^2|x|}{|F_{k-1}^{(\rho)}(x)||F_{k+1}^{(\rho)}(x)|} = 1, \quad x \in \Delta_k \setminus \{0\}, \quad k = \ell, \\ &\frac{|F_k^{(\rho)}(x)|^2}{|x||F_{k-1}^{(\rho)}(x)||F_{k+1}^{(\rho)}(x)|} = 1, \quad x \in \Delta_k \setminus \{0\}, \quad k = \ell+1. \end{split}$$

(The last equation is dropped if  $\ell = p - 1$ .)

**Key fact**: Let  $0 \le \rho \le p(p+1)-1$  be fixed, and let  $0 \le \ell \le p$  be the remainder in the division of  $\rho$  by p+1. There exist positive constants  $c_k^{(\rho)}$  so that the collection of functions  $F_k^{(\rho)}(z) = c_k^{(\rho)}\widetilde{F}_k^{(\rho)}(z), 0 \le k \le p-1$  satisfies a system of boundary value equations:

1) If  $0 \le \ell \le p-1$ , the system is

$$\begin{split} &\frac{|F_k^{(\rho)}(x)|^2}{|F_{k-1}^{(\rho)}(x)||F_{k+1}^{(\rho)}(x)|} = 1, \quad x \in \Delta_k, \quad 0 \le k \le p-1, \quad k \ne \ell, \ell+1, \\ &\frac{|F_k^{(\rho)}(x)|^2|x|}{|F_{k-1}^{(\rho)}(x)||F_{k+1}^{(\rho)}(x)|} = 1, \quad x \in \Delta_k \setminus \{0\}, \quad k = \ell, \\ &\frac{|F_k^{(\rho)}(x)|^2}{|x||F_{k-1}^{(\rho)}(x)||F_{k+1}^{(\rho)}(x)|} = 1, \quad x \in \Delta_k \setminus \{0\}, \quad k = \ell+1. \end{split}$$

(The last equation is dropped if  $\ell = p - 1$ .)

2) For  $\ell = p$ , the system is

$$\begin{split} \frac{|F_0^{(\rho)}(x)|^2}{|x||F_1^{(\rho)}(x)|} = &1, \quad x \in \Delta_0 \setminus \{0\}, \\ \frac{|F_k^{(\rho)}(x)|^2}{|F_{k-1}^{(\rho)}(x)||F_{k+1}^{(\rho)}(x)|} = &1, \quad x \in \Delta_k, \quad 1 \le k \le p-1. \end{split}$$

In the above equations we use the convention  $F_{-1}^{(\rho)} \equiv F_{\rho}^{(\rho)} \equiv 1$ .

We consider the products

$$f_k^{(\rho)} := \prod_{j=0}^p F_k^{(\rho+j)}.$$

Then

1)  $|f_k^{(\rho)}|$  has continuous and non-vanishing boundary values on  $\Delta_k$  and

$$\frac{|f_k^{(\rho)}(x)|^2}{|f_{k-1}^{(\rho)}(x)||f_{k+1}^{(\rho)}(x)|} = 1, \qquad \text{for all } x \in \Delta_k, \qquad 0 \le k \le p-1,$$

so the possible singularities at 0 present in the system of boundary value equations are now eliminated.

2) If  $l-1 \equiv \rho \mod p$ ,  $1 \leq l \leq p$ , then

$$f_k^{(\rho)}(z) = \begin{cases} c_{k,\rho} z + O(1), & 0 \le k \le l-1, \\ c_{k,\rho} + O(z^{-1}), & l \le k \le p-1, \end{cases}$$

where  $c_{k,\rho} > 0$  for all  $0 \le k \le p-1$ .

We consider the products

$$f_k^{(\rho)} := \prod_{j=0}^{\rho} F_k^{(\rho+j)}.$$

Then

1)  $|f_k^{(\rho)}|$  has continuous and non-vanishing boundary values on  $\Delta_k$  and

$$\frac{|f_k^{(\rho)}(x)|^2}{|f_{k-1}^{(\rho)}(x)||f_{k+1}^{(\rho)}(x)|} = 1, \qquad \text{for all } x \in \Delta_k, \qquad 0 \le k \le p-1,$$

so the possible singularities at 0 present in the system of boundary value equations are now eliminated.

2) If  $l-1 \equiv \rho \mod p$ ,  $1 \leq l \leq p$ , then

$$f_k^{(\rho)}(z) = \begin{cases} c_{k,\rho} z + O(1), & 0 \le k \le l-1, \\ c_{k,\rho} + O(z^{-1}), & l \le k \le p-1, \end{cases}$$

where  $c_{k,\rho} > 0$  for all  $0 \le k \le p-1$ .

This implies by a result of Aptekarev-López-Rocha the fundamental relation

$$f_k^{(\rho)} = \prod_{j=0}^{\rho} F_k^{(\rho+j)} = \operatorname{sg}\left(\prod_{\nu=k+1}^{\rho} \varphi_{\nu}^{(l)}(\infty)\right) \prod_{\nu=k+1}^{\rho} \varphi_{\nu}^{(l)}.$$

In particular,

$$f_k^{(\rho)} = f_k^{(\rho+p)}$$
 for any  $\rho$ . (3)

In particular,

$$f_k^{(\rho)} = f_k^{(\rho+p)}$$
 for any  $\rho$ . (3)

Since

$$\widetilde{F}_{0}^{(\rho)}(z) = \begin{cases} 1 - a^{(\rho)}z^{-1} + O(z^{-2}), & \text{if } \rho \not\equiv p \mod (p+1), \\ z - a^{(\rho)} + O(z^{-1}), & \text{if } \rho \equiv p \mod (p+1), \end{cases}$$

equation (3) for k = 0 immediately gives

$$\sum_{i=\rho}^{\rho+p-1} a^{(i)} = \sum_{i=\rho+p+1}^{\rho+2p} a^{(i)}.$$

We have

$$\widetilde{F}_k^{(\rho)}(z) = \lim_{\lambda \to \infty} \frac{P_{\lambda p(\rho+1)+\rho+1,k}(z)}{P_{\lambda p(\rho+1)+\rho,k}(z)} = \begin{cases} \prod_{j=0}^k \widetilde{\eta}_j^{(\rho)}(z), & \text{if } 0 \le k < k(\rho), \\ z \prod_{j=0}^k \widetilde{\eta}_j^{(\rho)}(z), & \text{if } k(\rho) \le k \le p-1, \end{cases}$$

where

$$\eta_j^{(\rho)}(z) = \frac{1}{1 + a^{(\rho)} \, \omega_{l(\rho)}^{-1} \, \varphi_j^{(l(\rho))}(z)},$$

 $\widetilde{\eta}_j^{(
ho)}$  is the normalization at  $\infty$  of  $\eta_j^{(
ho)}$ , and (k(
ho), l(
ho)) is the pair of integers satisfying

$$k(\rho)-1 \equiv \rho \mod p, \quad 0 \leq k(\rho) \leq p, \qquad l(\rho)-1 \equiv \rho \mod (p+1), \quad 1 \leq l(\rho) \leq p.$$

Proof of

$$\widetilde{F}_{0}^{(\rho)}(z) = \frac{z}{1 + a^{(\rho)} \, \omega_{l}^{-1} \, \varphi_{0}^{(l(\rho))}(z)}$$

for  $\rho \equiv p \mod (p+1)$ .

Proof of

$$\widetilde{F}_{0}^{(\rho)}(z) = \frac{z}{1 + a^{(\rho)} \,\omega_{l}^{-1} \,\varphi_{0}^{(l(\rho))}(z)}$$

for  $\rho \equiv p \mod (p+1)$ .

The recurrence relation gives

$$a^{(\rho)} = (z - \widetilde{F}_0^{(\rho)}(z)) \prod_{i=\rho-\rho}^{\rho-1} \widetilde{F}_0^{(i)}(z)$$

so

$$\widetilde{F}_{0}^{(\rho)}(z) = z - \frac{a^{(\rho)}}{\prod_{i=\rho-\rho}^{\rho-1} \widetilde{F}_{0}^{(i)}(z)} = z - \frac{a^{(\rho)} \widetilde{F}_{0}^{(\rho)}(z)}{\prod_{i=\rho-\rho}^{\rho} \widetilde{F}_{0}^{(i)}(z)} = z - \frac{a^{(\rho)} \widetilde{F}_{0}^{(\rho)}(z)}{\widetilde{f}_{0}^{(\rho)}(z)}$$

therefore

$$\widetilde{F}_0^{(\rho)}(z) = \frac{z}{1 + \frac{a^{(\rho)}}{\widetilde{f}_0^{(\rho)}(z)}} = \frac{z}{1 + a^{(\rho)}\,\widetilde{\varphi}_0^{(l(\rho))}(z)}.$$