MAC 1140C - 0002 Precalculus, 3 credit hours
Mathematics Department, College of Sciences
University of Central Florida

<table>
<thead>
<tr>
<th>Instructor:</th>
<th>Prof. Donald Porchia</th>
<th>Term:</th>
<th>Spring 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office:</td>
<td>MSB 127</td>
<td>Class meeting days:</td>
<td>Tuesday and Thursday 10:30 am – 11:50 am</td>
</tr>
<tr>
<td>E-mail:</td>
<td>Donald.Porchia@ucf.edu</td>
<td>Mall meeting:</td>
<td>Friday 3:00 pm – 4:20 pm</td>
</tr>
<tr>
<td>Office hours</td>
<td>MWF 10:30 am – 11:30 am TR 9:00 am – 10:00 am</td>
<td>Class location Mall location</td>
<td>VAB 132 MSB 240</td>
</tr>
</tbody>
</table>

Course Description: PR: Appropriate score on the UCF Math Placement exam, or MAC 1105C with a “C” (2.0) or better, or C.I. Inequalities. High degree polynomials. Graphs, rational, logarithmic, and exponential functions. Systems of equations. Properties and graphs of polynomials, rational, exponential and logarithmic functions, sequences and series, binomial theorem

Course Goals: This course is designed to familiarize the student with such fundamental mathematical concepts as polynomials, linear and quadratic equations, exponential functions, and logarithmic functions. Preparing the student for upper level mathematics. Pre-requisites of a course are what you are assumed to know before you take the course. Understanding pre-requisite knowledge is the responsibility of the student.

Please note: In a mathematics course, understanding is established not just by familiarity with concepts, but also by being able to work math problems associated with the concepts. Therefore, do not assume you know something unless you can work the problems. Pre-requisites of a course are what you are assumed to know before you take the course. Understanding pre-requisite knowledge is the responsibility of the student.

Email Policy: The best way to contact me outside of class or office hours is by email. I will do my best to respond to your message in a timely fashion. If you have any mathematical questions outside of class or our MALL meeting, please use the math success center, the MALL during open lab hours and my office hours.
Required Materials:

1. MyLabsMath (MLM) Access Code for Precalculus Fourth Edition by Sullivan and Sullivan. Access code to be purchased through the First Day Program or the University Bookstore only. (Please note: First Day Program will be cheaper than the bookstore price)

2. iClicker2 student remote by iClicker
3. Four new 8.5”×11” Bluebook/greenbook (books must be blank i.e. nothing written on or in). They will be used for testing.
4. TI30XA calculator. The TI-30XA will be provided on tests only. Absolutely no graphing calculator or programmable calculator should be used in class or mall. It is best if you buy a TI30XA and practice with it. Proctors are not allowed to answers questions about calculator use during the test.
5. Regular notebook (spiral-bound, binder) to keep neat and organized notes.

MyLab Math (MLM) Access Code:

To purchase the MLM access code for $61.24, you must go to the “Course Materials” link in your MAC1114 Webcourse, choose “opt-in”, and then click ‘CONFIRM’. You may do this through January 12, 2020, 11:59pm, and the fee will be charged to your student account. If you neglect to do this by January 12, 2020 or you choose “opt-out”, then you will have to go to the UCF campus bookstore and pay $93.90 to continue to access MyLab Math. If you have any questions, please contact the UCF campus bookstore manager.

We will access MyLab Math through Webcourses using a single sign-on feature. During testing you must close Webcourses or any other window except the MLM test window.

Required Academic Activity: As of fall 2014, all faculty members are required to document students' academic activity at the beginning of each course. In order to document that you began this course, please complete the following academic activity by the end of the first week of classes, REQUIRED ACADEMIC ACTIVITY Syllabus quiz in MyLabsMath (MLM) no later Friday, January 10th, 2020 by 4:00 pm EDT. Failure to do so may result in a delay in the disbursement of your financial aid.

iClicker2:
We will be using the iClicker2 feedback system in every lecture to provide an interactive classroom environment. Be prepared to “click-in” your answers to the questions posed. Participation and attendance grades will reflect iClicker2 responses.

Purchase:
Be sure to purchase the correct iClicker2 for our course as there several types of clickers available. If desired, it may be possible to find an iClicker2 secondhand, and/or to sell your used iClicker2 at the end of the semester.

Registration:
Register at https://www.iclicker.com/remote-registration-form-for-classic . Be sure to enter your NID in the Student ID field on the web site, including the two leading letters. Students are required to
register their iClicker2 before the second class meeting. A student who fails to register their iClicker2 by the end of the second week will not receive lecture participation points until registered and any zeros earned will not be changed.

Academic Honesty:
Using two iClicker2s during class is PROHIBITED. If a student “clicks in” for another student who is not in the classroom, both students will face disciplinary actions which will include a referral to student conduct and possibility receiving a ZF for the course grade.

Policy: The following policies will apply to the use of iClicker2 in the course:

- Each student is responsible for registering his/her own clicker ID under the correct student name as listed in MyUCF.
- iClicker2s must be registered at the start of the semester even if registered during a previous semester. Should a student replace an iClicker2 during the semester, the student is responsible for registering the new iClicker2 and informing the instructor.
- Using two iClicker2s during class is PROHIBITED. If a student “clicks in” for another student who is not in the classroom, both students will face disciplinary actions which will include receiving a ZF for the course grade.
- If a student fails to bring their iClicker2 to class, they will not receive class participation points associated with the clicker responses for that day.
- Students are expected to come to class prepared with fresh batteries for their iClicker2. Dead batteries will not excuse missed clicker responses.
- Unless otherwise specified, discussing clicker questions in class is NOT cheating; it is part of the learning exercise.

<table>
<thead>
<tr>
<th>Homework assignments</th>
<th>10% of the course grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework assignments will typically be due on Monday. All assignment due dates appear in MyLabsPlus.</td>
<td>The lowest Two Homework Assignment grades will be dropped.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class Activities</th>
<th>5% of the course grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>An iClicker will be used in class to answer questions to aid in student engagement. You must bring your iClicker to each class in order to participate.</td>
<td>The lowest Four Class Activity grades will be dropped.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MALL Meeting</th>
<th>5% of the course grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student must spend at least 70 minutes each Friday during our scheduled MALL meeting. During each MALL meeting, students will have the opportunity to review their previous homework and ask questions of the tutors and will then have a MALL activity to do. Once completed, students will then be able to work on the current homework or review until the end of the MALL meeting. Students are expected to be working on precalculus</td>
<td>The lowest Two MALL Meeting grades will be dropped.</td>
</tr>
</tbody>
</table>
during their scheduled MALL meeting. It is the students responsibility to sign in correctly so that their time is properly recorded.

For MALL policies, rules and regulations, please log into the MALL website: http://mall.cos.ucf.edu/

MALL Activities
MALL Activities are IP locked to the MALL computers. They can be taken an unlimited number of times and the highest score captured. They will be based on previous homework assignments.

<table>
<thead>
<tr>
<th>Week</th>
<th>Sections</th>
<th>Exams</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chapter F.1 – F.4 (Review)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.1-1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.4-1.5,2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.3-2.4</td>
<td>Test 1 Friday 2/7/20* Sections: F.1-F.4,1.1-1.5,2.1,2.3-2.4</td>
<td>Exam is on Friday during our MALL meeting</td>
</tr>
<tr>
<td>5</td>
<td>2.7-2.8</td>
<td>Test 2 Friday 3/6/20* Sections:2.7-2.8,3.1-3.6</td>
<td>Exam is on Friday during our MALL meeting</td>
</tr>
<tr>
<td>6</td>
<td>3.1-3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3.3-3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3.5-3.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4.1-4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Spring Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4.3-4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>4.5-4.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>4.7-4.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>10.5</td>
<td>Test 3 Friday 4/10/20* Sections:4.1-4.8</td>
<td>Exam is on Friday during our MALL meeting</td>
</tr>
<tr>
<td>15</td>
<td>Review</td>
<td></td>
<td>Thursday is the Last Class Last Mall Meeting on Friday</td>
</tr>
</tbody>
</table>

5% of the course grade
The lowest Two MALL Activity grades will be dropped

Please note: Students have one week after grades have been posted to Webcourses to come to the instructor’s office hours if they believe their grade is incorrect. Otherwise, the grade will be final.

Tentative Schedule:
Make-up Policy

Should you miss an exam because of your participation in official University-sponsored activities (e.g., intercollegiate athletics) please provide your Program Verification Form, religious observances (see restrictions), legal obligations (such as jury duty), military obligations, you may make up the exam. However, you must obtain permission from your instructor at least one week ahead of time and provide valid and complete documentation in advance. (e.g. UCF program verification form, copy of military orders, jury notice) Your exam will be administered prior to the exam you will miss. Otherwise, a grade of zero for the missed exam will be factored into your course average. Make-ups must be made before the missed assignment due date. It is at your professor’s discretion to determine whether the reason why you missed an exam grants a make-up exam. Personal travel plans or illness are not valid reasons for taking tests at a different date/time than scheduled.

Alternative to make-ups to handle any other circumstances such as illness, serious family emergencies, personal travel plans, etc., there will be a fixed number of drops given to all students enrolled in this course. There will be at least two drops in class activities, homework assignments and mall meetings and mall activities. If you miss more than one exam from test 1, 2 and 3, then your final exam will be 75% of your course grade. No make up will be given, other than ‘incomplete’ if the student missed the final exam due to a documented emergency such as hospital admission or death in the immediate family. Students who miss the final exam under such circumstances should contact the instructor immediately and no later than December 11, 2019 to get consideration.

Grading Scale:

<table>
<thead>
<tr>
<th>Average</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 – 100%</td>
<td>A</td>
</tr>
<tr>
<td>80 – 89%</td>
<td>B</td>
</tr>
<tr>
<td>70-79%</td>
<td>C</td>
</tr>
<tr>
<td>30-69% (must take final)</td>
<td>NC (Not for credit)**</td>
</tr>
<tr>
<td>Otherwise</td>
<td>F</td>
</tr>
</tbody>
</table>

The official method of contact is Knights email, always include your full name, NID, Math section number (not class meeting time). Grade discussion must be in person.

**Students must take the final exam and the final is comprehensive. Please note all test may be comprehensive because math builds on prior concepts.
This course is a NC course. Please see http://fyae.sdes.ucf.edu/faq for complete details for NC policy.

Academic Honesty: All students are required to abide by the Academic Honesty Guidelines. We must develop, sustain and protect an academic environment of honesty, trust, and respect. Please read and understand all policies listed in http://creed.ucf.edu/points, http://www.goldenrule.sdes.ucf.edu. The Z Designation will be used in cases of academic dishonesty as decided by the UCF Office of Student Conduct.

Grading Scale: Your final grade will be no less that the following:

<table>
<thead>
<tr>
<th></th>
<th>Option A</th>
<th>Option B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Mall Meeting</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>MALL Activities</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>Class activity</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>Test 1</td>
<td>Best 2 are 45%</td>
<td>0%</td>
</tr>
<tr>
<td>Test 2</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>Test 3</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>Final</td>
<td>30%</td>
<td>75%</td>
</tr>
</tbody>
</table>

The student’s grade average will be calculated using both options and the highest average will be used to determine the students’ final letter grade. You do not need to contact your instructor with your choice of option. There will be 3% extra credit for a comprehensive final assessment consisting of a set of assignments to be completed before the end of the semester.

Important Dates:
- Required Academic Activity: January 10
- Martin Luther King Day: January 20
- Spring Break: March 9 – March 14
- Withdrawal Deadline: March 20
- Classes End: April 20
- Final Exam Period: April 21- April 27

TEST POLICIES & PROCEDURES:
Tests (except final) will be during your regularly scheduled class time on the date indicated in the course outline above. Therefore, no reservations are needed (except early testing). The date and time of the final test will be confirmed. Follow this check list:

- Have an active (not expired) access code, you should check your account before you go to test.
- Have your UCF ID to be admitted for testing.
- Memorize your NID and password to log in to a computer and Webcourses.
- Make sure that you arrive early as the test will start on time. You will lose elapsed time if you are late or don’t know log in information and need to retrieve it.
• If you miss any of the first three tests that will be your dropped test if you miss 2 or more option B will be used to calculate your grade.
• You must have a UCF ID and put it front of desk, on left side of keyboard to make it easy for the staff to check.
• 8 ½ x 11 blue/green book with nothing written on it (see UCF bookstore or vending machine outside MALL or Student Union front desk).
• $.50 if you are going to use a locker (read instruction before you use a locker so you don't lose the money before it locks). No personal belonging are allowed during testing.
• Writing utensil.
• During a test, a password will be provided by a proctor or screens will be locked.
• NO cellphones, NO skateboards, NO calculators (you'll be loaned TI-30XA), NO smart watches. (If you don't want put them in a locker please don't bring them with you and don't jeopardize your grade.)
• During tests 1, 2, 3, or the final if your phone makes noise, is observed to be on, or you access it for any reason while you are in the testing room you will be given a zero on that test and possibility sent to student conduct.
• At all times, you must abide by Mathematics Assistance and Learning Lab (MALL) Policies and Procedures, please visit http://mall.cos.ucf.edu/ as it is the student’s responsibility to read, understand and follow policies.
• The use of any algebra solving app, algebra solving calculator or algebra solving software is cheating and the student will be sent to student conduct for cheating.
• After taking the test and during the remaining portion of that test week the dissemination of the contents of the test by any means is unauthorized assistance and is a violation of the UCF code and the student will be sent to student conduct.

Learning Objectives:
F1 The Distance and Midpoint formulas
 Use the distance formula. Use the midpoint formula
F2 Graphs of equations in two variables; intercepts; symmetry
 Graph equations by plotting points. Find intercepts from a graph. Find intercepts from an equation. Test an equation for symmetry. Know how to graph key equations.
F3 Lines
 Calculate and interpret the slope of a line. Graph lines given a point and the slope. Find the equation of a vertical line. Use the point-slope form of a line. Identify horizontal lines. Write the equation of a line in slope-intercept form. Identify the slope and y-intercept of a line from its equation. Find the equation of a line given two points. Graph lines written in general form using intercepts. Find equations of parallel lines. Find equations of perpendicular lines.
F4 Circles
 Write the standard form of the equation of a circle. Graph a circle. Work with the general form of the equation of a circle.
1.1 Functions
 Determine whether a relation represents a function. Find the value of a function. Find the difference quotient of a function. Find the domain of a function defined by an equation. Form the sum, difference, product and quotient of two functions.
1.2 The graph of a function.
 Identify the graph of a function. Obtain information from or about the graph of a function.
1.3 Properties of Functions
 Determine even and odd functions from a graph. Determine even and odd functions from the equation. Use a graph to determine where a function is increasing, decreasing, of constant. Use a graph to locate local maxima and local minima. Use a graph to locate the absolute maximum and the absolute
minimum. Use a graphing utility to approximate local maxima and local minima and to determine where a function is increasing or decreasing. Find the rate of change of a function

1.4 Library of functions; piecewise-defined functions
Graph the functions listed in the library of functions. Graph piecewise-defined functions.

1.5 Graphing techniques: Transformations
Graph functions using vertical and horizontal shifts. Graph functions using compressions and stretches. Graph functions using reflections about the x-axis and the y-axis.

1.6 Mathematical models: Building functions
Build and analyze functions.

1.7 Building mathematical models using variation
Construct a model using direct variation. Construct a model using inverse variation. Construct a model using joint or combined variation

2.1 Properties of linear functions and linear models
Graph linear functions. Use average rate of change to identify linear functions. Determine whether a linear function if increasing, decreasing, or constant. Find the zero of a linear function. Build linear models from verbal descriptions.

2.2 Building linear models from data.
Draw and interpret scatter diagrams. Distinguish between linear and nonlinear relations. Use a graphing utility to find the line of best fit.

2.3 Quadratic functions and their zeros
Find the zeros of a quadratic function by factoring. Find the zeros of a function using the square root method. Find the zeros of a quadratic function by completing the square. Find the zeros of a quadratic function by using the quadratic formula. Find the point of intersection of two functions. Solve equations that are quadratic in form.

2.4 Properties of quadratic functions.
Graph a quadratic function using transformations. Identify the vertex and axis of symmetry of a quadratic function. Graph a quadratic function using its vertex, axis, and intercepts. Find a quadratic function given its vertex and one other point. Find the maximum or minimum value of a quadratic function.

2.5 Inequalities involving quadratic functions
Solve inequalities involving a quadratic function.

2.6 Building quadratic models from verbal descriptions and from data
Build quadratic models from verbal descriptions. Build quadratic models from data

2.7 Complex zeros of a quadratic function
Find the complex zeros of a quadratic function.

2.8 Equations and inequalities involving the absolute value function
Solve absolute value equations. Solve absolute value inequalities.

3.1 Polynomial functions and models
Identify polynomial functions and their degree. Graph polynomial functions using transformations. Identify the real zeros of a polynomial functions and their multiplicity. Analyze the graph of a polynomial function. Build cubic models from data.

3.2 The real zeros of a polynomial function
Use the remainder and factor theorems. Use Desecrates’ rule of signs to determine the number of positive and negative real zeros of a polynomial function. Use the rational zeros theorem to list the potential rational zeros of a polynomial function. Find the real zeros of a polynomial function. Solve polynomial equations. Use the theorem for the bounds on zero. Use the intermediate value theorem.

3.3 Complex zeros; Fundamental theorem of algebra
Use the conjugate pairs theorem. Find a polynomial function with specified zeros. Find the complex zeros of a polynomial function.

3.4 Properties of rational functions
Find the domain of a rational function. Find a polynomial function with specified zeros. Find the complex zeroes of a polynomial function.

3.5 The graph of a rational function
Analyze the graph of a rational function. Solve applied problems involving rational functions.

3.6 Polynomial and rational inequalities
Solve polynomial inequalities. Solve rational inequalities.

4.1 Composite functions
Form a composite function. Find the domain of a composite function.

4.2 One-to-one functions; inverse functions
Determine whether a function is one-to-one. Determine the inverse of a function defined by a map or a set of ordered pairs. Obtain the graph of the inverse function from the graph of the function. Find the inverse of a function defined by an equation.

4.3 Exponential functions
Evaluate exponential functions. Graph exponential functions. Define the number e. Solve exponential equations.

4.4 Logarithmic functions
Change exponential statements to logarithmic statements and logarithmic statements to exponential statement. Evaluate logarithmic expressions. Determine the domain of a logarithmic function. Graph logarithmic functions. Solve logarithmic equations.

4.5 Properties of logarithms
Work with properties of logarithms. Write a logarithmic expression as a sum or difference of logarithms. Write a logarithmic expression as a single logarithm. Evaluate a logarithm whose base is neither 10 nor e. Graph a logarithmic function whose base is neither 10 nor e.

4.6 Logarithmic and exponential equations
Solve logarithmic equations. Solve exponential equations. Solve logarithmic and exponential equations using graphing utility.

4.7 Financial models
Determine the future value of a lump sum of money. Calculate effective rates of return. Determine the present value of a lump sum of money. Determine the rate of interest or the time require to double a lump sum of money.

4.8 Exponential growth and decay models; Newton’s law; logistic growth and decay models
Find equations of populations that obey the law of uninhibited growth. Find equations of populations that obey the law of decay. Use Newton’s law of cooling. Use logistic models

4.9 Building exponential, logarithmic, and logistic models from data
Build an exponential model from data. Build a logarithmic model from data. Build a logistic model from data.

10.5 Partial fraction decomposition
Decompose P/Q where Q has only nonrepeated linear factors. Decompose P/Q where Q has only repeated linear factors. Decompose P/Q where Q has only nonrepeated quadratic factors. Decompose P/Q where Q has only repeated quadratic factors.

Religious Policy: It is the practice of the University of Central Florida to reasonably accommodate the religious observances, practices, and beliefs of individuals in regard to admissions, class attendance, and the scheduling
Course Accessibility Statement. The University of Central Florida is committed to providing access and inclusion for all persons with disabilities. Students with disabilities who need disability-related access in this course should contact the professor as soon as possible. Students should also connect with Student Accessibility Services (SAS) http://sas.sdes.ucf.edu/ (Ferrell Commons 185, sas@ucf.edu, phone: 407-823-2371). Through Student Accessibility Services, a Course Accessibility Letter may be created and sent to professors, which informs faculty of potential access and accommodations that might be reasonable. Determining reasonable access and accommodations requires consideration of the course design, course learning objectives and the individual academic and course barriers experienced by the student.

Campus Safety Statement. Emergencies on campus are rare, but if one should arise during class, everyone needs to work together. Students should be aware of their surroundings and familiar with some basic safety and security concepts. In case of an emergency, dial 911 for assistance. Every UCF classroom contains an emergency procedure guide posted on a wall near the door. Students should make a note of the guide’s physical location and review the online version at http://emergency.ucf.edu/emergency guide.html Students should know the evacuation routes from each of their classrooms and have a plan for finding safety in case of an emergency. If there is a medical emergency during class, students may need to access a first-aid kit or AED (Automated External Defibrillator). To learn where those are located, see http://www.ehs.ucf.edu/AEDLocations-UCF (click on link from menu on left). To stay informed about emergency situations, students can sign up to receive UCF text alerts by going to my.ucf.edu and logging in. Click on “Student Self Service” located on the left side of the screen in the toolbar, scroll down to the blue “Personal Information” heading on the Student Center screen, click on “UCF Alert”, fill out the information, including e-mail address, cell phone number, and cell phone provider, click “Apply” to save the changes, and then click “OK.” Students with special needs related to emergency situations should speak with their instructors outside of class. To learn about how to manage an active-shooter situation on campus or elsewhere, consider viewing this video (https://youtu.be/NIKYajEx4pk).

Accessibility Related Accommodations: It is my goal that this class be an accessible and welcoming experience for all students, including those with disabilities that may impact learning in this class. If anyone believes the design of this course poses barriers to effectively participating and/or demonstrating learning in this course, please meet with me (with or without a Student Accessibility Services (SAS) accommodation letter) to discuss reasonable options or adjustments. During our discussion, I may suggest the possibility/necessity of you contacting SAS (Ferrell Commons 185; 407-823-2371; sds@ucf.edu) to talk about academic accommodations. You are welcome to talk to me at any point in the semester about course design concerns, but it is always best if we can talk at least one week prior to the need for any modifications.

Academic Integrity Statement. Students should familiarize themselves with UCF’s Rules of Conduct at http://osc.sdes.ucf.edu/process/roc According to Section 1, “Academic Misconduct,” students are prohibited from engaging in Unauthorized assistance: Using or attempting to use unauthorized materials, information or study aids in any academic exercise unless specifically authorized by the instructor of record. The unauthorized possession of examination or course-related material also constitutes cheating. Communication to another through written, visual, electronic, or oral means: The presentation of material which has not been studied or learned, but rather was obtained through someone else’s efforts and used as part of an examination, course assignment, or project. Commercial Use of Academic Material: Selling of course material to another person, student, and/or uploading course material to a third-party vendor without authorization or without the express written permission of the university and the instructor. Course materials include but are not limited to class notes, Instructor’s PowerPoints, course syllabi, tests, quizzes, labs, instruction sheets,
homework, study guides, handouts, etc. Falsifying or misrepresenting the student’s own academic work. Plagiarism: Using or appropriating another’s work without any indication of the source, thereby attempting to convey the impression that such work is the student’s own. Multiple Submissions: Submitting the same academic work for credit more than once without the express written permission of the instructor. Helping another violate academic behavior standards. For more information about Academic Integrity, students may consult The Center for Academic Integrity http://www.academicintegrity.org/ical/assets/FVProject.pdf For more information about plagiarism and misuse of sources, see “Defining and Avoiding Plagiarism: The WPA Statement on Best Practices” http://wpacouncil.org/node/9

Responses to Academic Dishonesty, Plagiarism, or Cheating. Students should also familiarize themselves with the procedures for academic misconduct in UCF’s student handbook, The Golden Rule http://goldenrule.sdes.ucf.edu/docs/goldenrule.pdf. UCF faculty members have a responsibility for students’ education and the value of a UCF degree, and so seek to prevent unethical behavior and when necessary respond to academic misconduct. Penalties can include a failing grade in an assignment or in the course, suspension or expulsion from the university, and/or a “Z Designation” on a student’s official transcript indicating academic dishonesty, where the final grade for this course will be preceded by the letter Z. For more information about the Z Designation, see http://goldenrule.sdes.ucf.edu/zgrade

Campus Safety Statement. Emergencies on campus are rare, but if one should arise during class, everyone needs to work together. Students should be aware of their surroundings and familiar with some basic safety and security concepts. In case of an emergency, dial 911 for assistance. Every UCF classroom contains an emergency procedure guide posted on a wall near the door. Students should make a note of the guide’s physical location and review the online version at http://emergency.ucf.edu/emergency guide.html Students should know the evacuation routes from each of their classrooms and have a plan for finding safety in case of an emergency. If there is a medical emergency during class, students may need to access a first-aid kit or AED (Automated External Defibrillator). To learn where those are located, see http://www.ehs.ucf.edu/AEDlocations-UCF (click on link from menu on left). To stay informed about emergency situations, students can sign up to receive UCF text alerts by going to my.ucf.edu and logging in. Click on “Student Self Service” located on the left side of the screen in the toolbar, scroll down to the blue “Personal Information” heading on the Student Center screen, click on “UCF Alert”, fill out the information, including e-mail address, cell phone number, and cell phone provider, click “Apply” to save the changes, and then click “OK.” Students with special needs related to emergency situations should speak with their instructors outside of class. To learn about how to manage an active-shooter situation on campus or elsewhere, consider viewing this video (https://youtu.be/NIKYajEx4pk).

Deployed Active Duty Military Students. A deployed active duty military student who feels the need for a special accommodation due to that unique status should contact their instructor to discuss the circumstances. Please provide a paper copy of your military orders.

Disclaimer: Instructor has the right to make some adjustments to syllabus and any adjustment will be announced in class and via email and/or Webcourses announcements.