MAC 1140C Section 0001 Precalculus, 3 credit hours
Department of Mathematics, College of Sciences
University of Central Florida

<table>
<thead>
<tr>
<th>Instructor:</th>
<th>William Plemmons</th>
<th>Term:</th>
<th>Summer 2023</th>
</tr>
</thead>
</table>
| Class meeting pattern | MW 13:00-14:50 VAB132
TT 13:00-14:30 MSB242 | Office hours: M/W 10:00-11:30 MSB402 and via zoom or in office | Office MSB402 |
| E-mail | william.plemmons@ucf.edu | Course Modality: P | |

Course Modality: This course has required classroom attendance and will meet M-Th in person. Students may encounter online, video, or adaptive elements as part of the instruction, thus requiring a computer.

Course Description: PR: Appropriate score on the UCF Math Placement exam, or MAC 1105C with a “C” (2.0) or better, or C.I. Inequalities. High degree polynomials. Graphs, rational, logarithmic, and exponential functions. Systems of equations. Properties and graphs of polynomials, rational, exponential and logarithmic functions, sequences and series, binomial theorem, partial fraction decomposition.

Course Goals: This course is designed to familiarize the student with such fundamental mathematical concepts as polynomials, linear and quadratic equations, exponential functions, and logarithmic functions. Preparing the student for upper-level mathematics. In a mathematics course, understanding is established not just by familiarity with concepts, but also by being able to work math problems associated with the concepts. Therefore, do not assume you know something unless you can work the problems. Pre-requisites of a course are what you are assumed to know before you take the course. Understanding pre-requisite knowledge is the responsibility of the student.

Please note: In a mathematics course, understanding is established not just by familiarity with concepts, but also by being able to work math problems associated with the concepts. Therefore, do not assume you know something unless you can work the problems.

Pre-requisites of a course are what you are assumed to know before you take the course. Understanding prerequisite knowledge is the responsibility of the student.

Required Materials:

1. **MyLabsMath (MLM) Access Code for Precalculus Fourth Edition** by Sullivan and Sullivan. Access code to be purchased through the First Day Program or the University Bookstore only. (Please note: First Day Program will be cheaper than the bookstore price!)

2. **Regular notebook** (spiral-bound, binder) to keep neat and organized notes.
3. 4 bluebooks or greenbooks to be brought to class on test days. One bluebook or greenbook will be required for admission on test day. https://studentgovernment.ucf.edu/services/academic/scantrons/ The bluebook or greenbook should have nothing written on it or in it.

4. UCF ID issued by UCF card services. The card must be presented before admission to the classroom on test day.

MyLab Math (MLM) Access Code:

To purchase the MLM access code for about $63.00, you must go to the “Course Materials” link in your MAC1140 Webcourse, choose “Opt-In”, and then click ‘CONFIRM’. You may do this through June 30, 2023, 23:59, and the fee will be charged to your student account. If you neglect to do this by June 30, 2023 or you choose “Opt-Out”, then you will have to contact the UCF campus bookstore and pay $93.30 to continue to access MyLab Math. If you have any questions, please contact the UCF campus bookstore manager.

We will access MyLab Math through Webcourses using a single sign-on feature.

First Day Program for MyLab Math

To enhance your learning experience and provide affordable access to the right course material, this course is part of an inclusive access model called First Day™. You can easily access the required materials for this course at a discounted price, and benefit from single sign-on access with no codes required in UCF Webcourses.

- All students enrolled in the course automatically have access to the MyLab Math digital textbook until at least January 14. You have until Friday, July 2nd at 23:59 to select the "Opt-In" option. You can select the opt-in option by first clicking on the tab that says Course Materials.
 - If you select and confirm "Opt-In" by June 30 at 23:59, then your cost for the semester is about $65.61. It is highly recommended that you do this now!
 - If you do not select and confirm "Opt-In" before June 30 at 23:59, then your cost for the semester is $93.30.

If you do not opt-in by the deadline, your MyLab Math access will be terminated within 2 business days after the deadline. If you wish to continue your MyLab Math access but did not opt-in, you may purchase access through the UCF bookstore at the opt-out Price. Access will be restored within 1-2 business days of your purchase.

Please note: To opt-in you need to click on the Course Materials tab, check "Opt-In", then click confirm.

Note: Chrome is the recommended web browser for Webcourses and MyLab Math. If you are using an Apple product and/or Safari, there is some likelihood that you will have technical difficulties accessing MyLab Math. If you are having trouble accessing MyLab Math, first try clearing your browser cookies/history/cache. If this doesn't work, try completely powering down your computer and restarting. Try using either Chrome or Firefox. If you are still having issues, please navigate to https://support.pearson.com/getsupport in order to contact technical support.

For assistance with setup, contact Webcourses@UCF Support at 407-823-0407.
Required Academic Activity

As of Fall 2014, all faculty members are required to document students' academic activity at the beginning of each course. In order to document that you began this course, please complete the following academic activity by the end of the first week of classes, REQUIRED ACADEMIC ACTIVITY quiz in Webcourses no later Friday, the first week of class by 23:59. Failure to do so may result in a delay in the disbursement of your financial aid.

Instructional Resources

- The modules in Webcourses
 - Each module will contain lecture notes, videos, animations, guided visualizations and interactive figures
- Online Office Hours
 - These are drop-by question-and-answer sessions where you may stop by a live streaming Zoom session and ask any question you wish.
- Tutoring session
 - Live tutoring session with our learning assistants.
- Virtual Tutoring from the Math Success Center
 - Additional tutoring offered by the Math Success Center (MSC).
 https://sciences.ucf.edu/math/success-center/

Course Structure

<table>
<thead>
<tr>
<th>Homework assignments</th>
<th>15% of the course grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework assignments will typically be due on Wednesday and Saturday nights. Lecture slides will be posted in each weekly module. You will work the homework in MyLab Math using Help Me Solve It and other learning aids. MyLab Math also has multimedia aids: videos, slides, and other tools. To access MyLab Math assignments you must first go to the Webcourses Home page, then click on one of the links in the MyLab Math Student Links module. The goal is to learn the methods necessary to solve the problems while taking notes as you go. You should plan on several working sessions before the day the homework is due.</td>
<td>At least one dropped</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quizzes</th>
<th>15% of the course grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>There will be at least one quiz due each week, and there will be two types of quizzes: MyLab Math quizzes.</td>
<td>At least one dropped</td>
</tr>
</tbody>
</table>
MyLab Math quizzes will cover the previous week’s material, and they will open on Tuesdays and Thursdays. You will have five attempts at each MyLab Math quiz and you will be able to review each of your attempts after submission.

Three Tests + Final

<table>
<thead>
<tr>
<th>Test 1</th>
<th>Test 2</th>
<th>Test 3</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 6 during our normal Mall class time test is one hour.</td>
<td>July 13 during our normal Mall class time test is one hour.</td>
<td>July 27 during our normal Mall class time test is one hour.</td>
<td>August 3rd during our normal Mall class time test is one and a half hour.</td>
</tr>
</tbody>
</table>

No student should make travel plans prior to or on test days.

Test 1, 2 and 3 are 40% of the course grade (lowest test score dropped)

Final is not subject to being dropped and is worth 30% of total grade

Assignment and Exam Policy

Each homework can be worked as long as it is open. It is expected that students will take multiple sessions to finish each assignment, working through Help Me Solve It and taking notes as you go.

Each quiz must be finished in one session. However, you may review your quiz after each submission. You have five attempts on each MyLab Math quiz and one attempt on each in-class quiz.

You must do your exam independently, without any outside help from any other persons. Seeking help from other people or internet is considered cheating. During the exam, you may not consult with any persons regarding any exam questions. You may not post or discuss questions pertaining to the exam in any group chat (i.e., GroupMe, Discord, Wechat) mediums or learning platforms. The use of an app on tests or quizzes is cheating and will be referred to student conduct with a non-droppable 0 given on that test or quiz.

Use of a graphing calculator on homework or quiz in the MALL will result in a 0 grade for the day.

How to prepare for Exam Day?

- It is recommended that you prepare your own note sheets with important formulas or whatever you think is important for exams. Use flashcards to aid in remembering formula.
- UCF ID is required for admission to the test.
- A bluebook are greenbook is required for admission to the test. https://studentgovernment.ucf.edu/services/academic/santron/
- Writing utensil.
- Each exam is 60 minutes (final is 90 minutes) and must be done during our normal Thursday meeting.
- Please read and understand to MALL’s rules for testing. https://sciences.ucf.edu/math/mall/policies-and-procedures/testing-2/

Makeup Exam Information/ Makeup Work

There will be no make-up exams or late work accepted except in the following events:
1. Military orders: Students who are deployed active-duty military and/or National Guard personnel and require accommodation should contact their instructors as soon as possible after the semester begins and/or after they receive notification of deployment to make related arrangements.

2. Court summons: Provide a copy of your court summons prior to the exam.

3. University authorized event: Provide the signed Program Verification Form prior to the exam.

4. Religious observance: A student who desires to observe a religious holy day of his or her religious faith must notify the instructor at the beginning of the term (in the first 10 days of class) to be excused from classes to observe a religious holy day.

5. Documented emergency: Examples of this include death in the immediate family, major car accident, hospitalization, etc. A makeup plan for a documented emergency will occur solely at the discretion of the instructor and the instructor must be notified through email or Webcourses by the student before the exam with appropriate documentation provided.

Please notice

- Vacations/travel plans are not emergency situations.
- Power outages, internet interruptions, computer malfunctions are not emergency situations. Please check "How to prepare for Exam Day?" above.
- Emergency- a serious, unexpected, and often dangerous situation requiring immediate action.

Tentative Schedule:

<table>
<thead>
<tr>
<th>Class</th>
<th>Sections</th>
<th>Exams</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chapter F.1 – F.4 (Review)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.1-1.3</td>
<td></td>
<td>July 4 is a UCF holiday</td>
</tr>
<tr>
<td>3</td>
<td>1.4-1.5, 2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.3-2.4</td>
<td>Test 1 7/6/2023</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2.7-2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3.1-3.2-3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3.4-3.5-3.6</td>
<td>Test 2 7/13/2023</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4.1-4.2-4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4.4-4.5-4.6</td>
<td>Test 3 7/27/2023</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4.7-4.8, 10.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>review</td>
<td>Final 8/3/2023 (Comprehensive)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No student should make travel plans prior to or on test days.
Grading Scale:

<table>
<thead>
<tr>
<th>Average</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 – 100%</td>
<td>A</td>
</tr>
<tr>
<td>80 – 89%</td>
<td>B</td>
</tr>
<tr>
<td>70 – 79%</td>
<td>C</td>
</tr>
<tr>
<td>40 – 69%</td>
<td>NC (Not for credit)**</td>
</tr>
<tr>
<td>Otherwise</td>
<td>F</td>
</tr>
</tbody>
</table>

The official method of contact is Knights email, always include your full name, NID, Math section number (not class meeting time). Grade discussion must be in person.

** note all tests may be comprehensive because math builds on prior concepts. Please note that I use standard mathematical rounding.

This course is a NC course. Please see http://fyae.sdes.ucf.edu/faq * for complete details for NC policy.

** note all tests may be comprehensive because math builds on prior concepts. Please note that I use standard mathematical rounding.

Academic Honesty: All students are required to abide by the Academic Honesty Guidelines. We must develop, sustain and protect an academic environment of honesty, trust, and respect. Please read and understand all policies listed in http://creed.ucf.edu/points, http://www.goldenrule.sdes.ucf.edu *. The Z Designation will be used in cases of academic dishonesty as decided by the UCF Office of Student Conduct.

Grading Scale: **Your final grade will be no less than the following:**

<table>
<thead>
<tr>
<th>Grade %</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>20%</td>
</tr>
<tr>
<td>Quizzes</td>
<td>20%</td>
</tr>
<tr>
<td>Test 1</td>
<td>40% for best 2</td>
</tr>
<tr>
<td>Test 2</td>
<td></td>
</tr>
<tr>
<td>Test 3</td>
<td></td>
</tr>
<tr>
<td>Final</td>
<td>20%</td>
</tr>
</tbody>
</table>

-Note: At least your lowest Homework, and Quiz grades will be dropped prior to calculating your final overall grade.

Holidays:
July 4, 2023

Test Policy and Procedures

- Show up for your normal Thursday MALL session on time as the test will start whether you are there or not.
- The use of any algebra solving app, algebra solving calculator or algebra solving software is cheating and the student will be sent to student conduct for cheating and given an F for the course.
- Bring your UCF ID issued by card services. You will not be admitted without the ID. https://ucfcard.ucf.edu/
- Bring a bluebook or greenbook with nothing written in it or on it.
- Bring a pen or pencil.
- You will be issued a TI30xa to use during the test. You can borrow a TI30xa from the library to
familiarize yourself with the functions of the calculator.

Learning Objectives:
F1 The Distance and Midpoint formulas
Use the distance formula. Use the midpoint formula

F2 Graphs of equations in two variables; intercepts; symmetry
Graph equations by plotting points. Find intercepts from a graph. Find intercepts from an equation.
Test an equation for symmetry. Know how to graph key equations.

F3 Lines
Calculate and interpret the slope of a line. Graph lines given a point and the slope. Find the equation of a vertical line. Use the point-slope form of a line. Identify horizontal lines. Write the equation of a line in slope-intercept form. Identify the slope and y-intercept of a line from its equation. Find the equation of a line given two points. Graph lines written in general form using intercepts. Find equations of parallel lines. Find equations of perpendicular lines.

F4 Circles
Write the standard form of the equation of a circle. Graph a circle. Work with the general form of the equation of a circle.

1.1 Functions
Determine whether a relation represents a function. Find the value of a function. Find the difference quotient of a function. Find the domain of a function defined by an equation. Form the sum, difference, product and quotient of two functions.

1.2 The graph of a function.
Identify the graph of a function. Obtain information from or about the graph of a function.

1.3 Properties of Functions
Determine even and odd functions from a graph. Determine even and odd functions from the equation. Use a graph to determine where a function is increasing, decreasing, of constant. Use a graph to locate local maxima and local minima. Use a graph to locate the absolute maximum and the absolute minimum. Use a graphing utility to approximate local maxima and local minima and to determine where a function is increasing or decreasing. Find the rate of change of a function

1.4 Library of functions; piecewise-defined functions
Graph the functions listed in the library of functions. Graph piecewise-defined functions.

1.5 Graphing techniques: Transformations
Graph functions using vertical and horizontal shifts. Graph functions using compressions and stretches. Graph functions using reflections about the x-axis and the y-axis.

1.6 Mathematical models: Building functions
Build and analyze functions.

1.7 Building mathematical models using variation
Construct a model using direct variation. Construct a model using inverse variation. Construct a model using joint of combined variation

2.1 Properties of linear functions and linear models
Graph linear functions. Use average rate of change to identify linear functions. Determine whether a linear function if increasing, decreasing, or constant. Find the zero of a linear function. Build linear models from verbal descriptions.

2.2 Building linear models from data.
Draw and interpret scatter diagrams. Distinguish between linear and nonlinear relations. Use a graphing utility to find the line of best fit.

2.3 Quadratic functions and their zeros
Find the zeros of a quadratic function by factoring. Find the zeros of a function using the square root method. Find the zeros of a quadratic function by completing the square. Find the zeros of a quadratic function by using the quadratic formula. Find the point of intersection of two functions. Solve equations that are quadratic in form.

2.4 Properties of quadratic functions.
Graph a quadratic function using transformations. Identify the vertex and axis of symmetry of a quadratic function. Graph a quadratic function using its vertex, axis, and intercepts. Find a quadratic function given its vertex and one other point. Find the maximum or minimum value of a quadratic function.

2.5 Inequalities involving quadratic functions
Solve inequalities involving a quadratic function.

2.6 Building quadratic models from verbal descriptions and from data
Build quadratic models from verbal descriptions. Build quadratic models from data

2.7 Complex zeros of a quadratic function
Find the complex zeros of a quadratic function.

2.8 Equations and inequalities involving the absolute value function
Solve absolute value equations. Solve absolute value inequalities.

3.1 Polynomial functions and models
Identify polynomial functions and their degree. Graph polynomial functions using transformations. Identify the real zeros of a polynomial functions and their multiplicity. Analyze the graph of a polynomial function. Build cubic models from data.

3.2 The real zeros of a polynomial function
Use the remainder and factor theorems. Use Descecrates’ rule of signs to determine the number of positive and negative real zeros of a polynomial function. Use the rational zeros theorem to list the potential rational zeros of a polynomial function. Find the real zeros of a polynomial function. Solve polynomial equations. Use the theorem for the bounds on zero. Use the intermediate value theorem.

3.3 Complex zeros; Fundamental theorem of algebra
Use the conjugate pairs theorem. Find a polynomial function with specified zeros. Find the complex zeros of a polynomial function.

3.4 Properties of rational functions
Find the domain of a rational function. Find a polynomial function with specified zeros. Find the complex zeroes of a polynomial function.

3.5 The graph of a rational function
Analyze the graph of a rational function. Solve applied problems involving rational functions.

3.6 Polynomial and rational inequalities
Solve polynomial inequalities. Solve rational inequalities.

4.1 Composite functions
Form a composite function. Find the domain of a composite function.

4.2 One-to-one functions; inverse functions
Determine whether a function is one-to-one. Determine the inverse of a function defined by a map or a set of ordered pairs. Obtain the graph of the inverse function from the graph of the function. Find the inverse of a function defined by an equation.

4.3 Exponential functions
Evaluate exponential functions. Graph exponential functions. Define the number e. Solve exponential equations.

4.4 logarithmic functions
Change exponential statements to logarithmic statements and logarithmic statements to exponential statement. Evaluate logarithmic expressions. Determine the domain of a logarithmic function. Graph logarithmic functions. Solve logarithmic equations.

4.5 Properties of logarithms
Work with properties of logarithms. Write a logarithmic expression as a sum or difference of logarithms. Write a logarithmic expression as a single logarithm. Evaluate a logarithm whose base is neither 10 nor e. Graph a logarithmic function whose base is neither 10 nor e.

4.6 Logarithmic and exponential equations
Solve logarithmic equations. Solve exponential equations. Solve logarithmic and exponential equations using graphing utility.

4.7 Financial models
Determine the future value of a lump sum of money. Calculate effective rates of return. Determine the present value of a lump sum of money. Determine the rate of interest or the time require to double a lump sum of money.

4.8 Exponential growth and decay models; Newton’s law; logistic growth and decay models
Find equations of populations that obey the law of uninhibited growth. Find equations of populations that obey the law of decay. Use Newton’s law of cooling. Use logistic models

4.9 Building exponential, logarithmic, and logistic models from data
Build an exponential model from data. Build a logarithmic model from data. Build a logistic model from data.

10.5 Partial fraction decomposition
Decompose P/Q where Q has only nonrepeated linear factors. Decompose P/Q where Q has only repeated linear factors. Decompose P/Q where Q has only nonrepeated quadratic factors. Decompose P/Q where Q has only repeated quadratic factors.

10.6 Systems of nonlinear equations
Solve a system of nonlinear equations using substitution. Solve a system of nonlinear equations using elimination.

10.7 Systems of inequalities
Graph an inequality. Graph a system of inequalities.

Religious Policy: It is the practice of the University of Central Florida to reasonably accommodate the religious observances, practices, and beliefs of individuals in regard to admissions, class attendance, and the scheduling of examinations and work assignments. A student who desires to observe a religious holy day of his or her religious faith must notify his/her instructor in writing at the beginning of the term (prior to the 10th business day of the term) to be excused from classes to observe the religious holy day. Please note that documentation is requested. Please see: https://regulations.ucf.edu/chapter5/documents/5.020ReligiousObservancesFINALJan19.pdf

Course Accessibility Statement. The University of Central Florida is committed to providing access and inclusion for all persons with disabilities. Students with disabilities who need disability-related access in this course should contact the professor as soon as possible. Students should also connect with Student Accessibility Services (SAS) http://sas.sdes.ucf.edu/ (Ferrell Commons 185, sas@ucf.edu, phone: 407-823-2371). Through Student Accessibility Services, a Course Accessibility Letter may be created and sent to professors, which informs faculty of potential access and accommodations that might be reasonable. Determining reasonable access and accommodations requires consideration of the course design, course learning objectives and the individual academic and course barriers experienced by the student.
Campus Safety Statement. Emergencies on campus are rare, but if one should arise during class, everyone needs to work together. Students should be aware of their surroundings and familiar with some basic safety and security concepts. In case of an emergency, dial 911 for assistance. Every UCF classroom contains an emergency procedure guide posted on a wall near the door. Students should make a note of the guide’s physical location and review the online version at http://emergency.ucf.edu/emergency-guide.html. Students should know the evacuation routes from each of their classrooms and have a plan for finding safety in case of an emergency. If there is a medical emergency during class, students may need to access a first-aid kit or AED (Automated External Defibrillator). To learn where those are located, see http://www.ehs.ucf.edu/AED-locations-UCF (click on link from menu on left). To stay informed about emergency situations, students can sign up to receive UCF text alerts by going to my.ucf.edu and logging in. Click on “Student Self Service” located on the left side of the screen in the toolbar, scroll down to the blue “Personal Information” heading on the Student Center screen, click on “UCF Alert”, fill out the information, including e-mail address, cell phone number, and cell phone provider, click “Apply” to save the changes, and then click “OK.” Students with special needs related to emergency situations should speak with their instructors outside of class. To learn about how to manage an active-shooter situation on campus or elsewhere, consider viewing this video (https://youtu.be/NIKYajEx4pk).

Accessibility Related Accommodations: It is my goal that this class be an accessible and welcoming experience for all students, including those with disabilities that may impact learning in this class. If anyone believes the design of this course poses barriers to effectively participating and/or demonstrating learning in this course, please meet with me (with or without a Student Accessibility Services (SAS) accommodation letter) to discuss reasonable options or adjustments. During our discussion, I may suggest the possibility/necessity of your contacting SAS (Ferrell Commons 185; 407-823-2371; sds@ucf.edu) to talk about academic accommodations. You are welcome to talk to me at any point in the semester about course design concerns, but it is always best if we can talk at least one week prior to the need for any modifications.

Academic Integrity Statement. Students should familiarize themselves with UCF’s Rules of Conduct at http://osc.sdes.ucf.edu/process/roc. According to Section 1, “Academic Misconduct,” students are prohibited from engaging in Unauthorized assistance: Using or attempting to use unauthorized materials, information or study aids in any academic exercise unless specifically authorized by the instructor of record. The unauthorized possession of examination or course-related material also constitutes cheating. Communication to another through written, visual, electronic, or oral means: The presentation of material which has not been studied or learned, but rather was obtained through someone else’s efforts and used as part of an examination, course assignment, or project. Commercial Use of Academic Material: Selling of course material to another person, student, and/or uploading course material to a third-party vendor without authorization or without the express written permission of the university and the instructor. Course materials include but are not limited to class notes, Instructor’s PowerPoints, course syllabi, tests, quizzes, labs, instruction sheets, homework, study guides, handouts, etc. Falsifying or misrepresenting the student’s own academic work. Plagiarism: Using or appropriating another’s work without any indication of the source, thereby attempting to convey the impression that such work is the student’s own. Multiple Submissions: Submitting the same academic work for credit more than once without the express written permission of the instructor. Helping another violate academic behavior standards. For more information about Academic Integrity, students may consult The Center for Academic Integrity http://www.academicintegrity.org/icai/assets/FVProject.pdf. For more information about plagiarism and misuse of sources, see “Defining and Avoiding Plagiarism: The WPA Statement on Best Practices” http://wpacouncil.org/node/9

Responses to Academic Dishonesty, Plagiarism, or Cheating. Students should also familiarize themselves with the procedures for academic misconduct in UCF’s student handbook, The Golden Rule http://goldenrule.sdes.ucf.edu/docs/goldenrule.pdf. UCF faculty members have a responsibility for students’
education and the value of a UCF degree, and so seek to prevent unethical behavior and when necessary respond to academic misconduct. Penalties can include a failing grade in an assignment or in the course, suspension or expulsion from the university, and/or a “Z Designation” on a student’s official transcript indicating academic dishonesty, where the final grade for this course will be preceded by the letter Z. For more information about the Z Designation, see http://goldenrule.sdes.ucf.edu/zgrade

Deployed Active Duty Military Students. A deployed active duty military student who feels the need for a special accommodation due to that unique status should contact their instructor to discuss the circumstances. Please provide a paper copy of your military orders.

In Case of Faculty Illness
If the instructor falls ill during the semester, there may be changes to this course, including having a backup instructor take over the course. Please look for announcements or mail in Webcourses@UCF or Knights email for any alterations to this course.

Course Accessibility and Disability COVID-19 Supplemental Statement
Accommodations may need to be added or adjusted should this course shift from an on-campus to a remote format. Students with disabilities should speak with their instructor and should contact sas@ucf.edu to discuss specific accommodations for this or other courses.

Web Course and class Announcements
Web course and class announcements will be used to convey messages to the class, i.e., access to zoom office hours, change in course policy. Students are responsible for announcements from class or web course whether they have read/hear the announcement or not.

Disclaimer: *Instructor has the right to make some adjustments to syllabus and any adjustment will be announced in class and via email and/or Webcourses announcements.*