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Outline

e What is “State” in an infection process: HIV as an example
e At the microscopic level: infected cells

o At the population level: infected individuals

Manifestations of state of infection

e |Impact of infection states on transmission, immune responses, and
treatment strategies

e A continuous state-structured model with nonlocal effects
e Model formulation and nonlinear semigroup

e Asymptotic smoothness and global attractor

Threshold operator and the basic reproduction number Rg

Linear stability analysis and Rg = 1 as a threshold value

Global stability and uniqueness of the endemic equilibrium

e Summary



State of Infection: at Microscopic Level

Retrovirus infection and reverse transcription

4117,
- La

e The state of an infected cell = its level of viral productivity
e Cell cycles and antiviral actions can revert productivity to latent.

e Antigenic stimulations can cause activation and increase viral
productivity (kick-and-kill strategy)



State of Infection: at Population Level
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Source: SlideShare at Linkedin.

e The HIV state of an infected individual can be indexed by the CD4

count or/and the viral (proviral) load.

o ART treatment can change an individual's HIV state.

o Elite controllers, non-progressors, and fast progressors.



State of Infection: HIV as an Example

Key points for modeling:
e Each infected individual has an index for the state of infection

e States correlate to infectivity, immune responses, and ART
treatment strategies, and a potential cure.
e States can both progress (forward) or revert (backward).

Two modeling approaches:
o Discrete states: staged models, large systems of ODEs
e Continuous states: differential-integral models, with non-local terms.



Discrete State Models

e Group states into distinct discrete stages: lx, k =1,---n.
e Consider individual transfers among different stages
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(Guo-Li-Shuai (SIAP 2012), Liu-Li (2018))



A General Discrete-State Model

The model is a system of n+ 1 ordinary differential equations:

S'=0(S) — f(N) Zgj(s, ),

N)Zgj(sa IJ)+Z¢U Z¢jl i l l Ci(li),
j=1 j=1



Transfer Matrix

In the special case ¢;i(1;) = 0;l;, i <j, ¢ii(};) = vili, 1> J,
the matrix of transfer rates among different stages is:

0 01 - d1n
A= Y21 :
. . . 5(n—1)n
Yol Yn(n—1) 0

Earlier staged progression models only considered tridiagonal A.

Simon and Jacquez (1992), Hyman et al. (1999), McCluskey (2003), Guo
and L. (2006, 2008), Gumel et al. (2006), Iggidr et al. (2007), Bame et al.
(2008), Guo-Li-Shuai (2012), .......,



Results

Typical behaviours in epidemic models are convergence to equilibria.

Theorem (Guo-Li-Shuai (2012), Liu-Li (2018))
Under suitable assumptions of the nonlinear functions in the model,

(a) If Rg <1, then the disease-free equilibrium Py = (S,0,---0) is
globally stability in the feasible region .

(b) If Rg > 1, then Py is unstable, and a unique endemic equilibrium

P* = (S*,If,---,I¥) is globally stable in the interior of the feasible
region I.

Fr={(S,h,--,l)eR™ | S4+h+---+1, <M}

Mathematical challenge is to show that:
e P* is unique when Ry > 1, and
e P* is stable and attracts points (GAS) in the interior of I'.



Proof of GAS was done using a Lyapunov function - graph theoretic
approach (Guo-Li-Shuai (2010)).

Question: Can the graph theoretic approach be extended to continuous
state models?



Continuous State-Structured Model

Joint work with Drs. Zhipeng Qiu and Zhongwei Shen.
Let

e S(t): number of susceptible individuals at time ¢
e [(t,x): number of infected individuals at state x and time t

e R(t): number of individuals recovered from infection at time t.

The model equation:
$(8) = NS (1)) - /Q Fly, S(1), I(t,y))dy,

I(t, %) = a(x) /Q Fly. S(t), I(t,y))dy + / 0y, )1, y)dy
() I(t, x) — (x)I(t,x) = 6(x)I(t, x),
/(5 I1(t, x)dx — dR(t).



Reduced system:
$(8) = A(S(1) - /Q Fly, S(2). (£, y))dy,
(e = () [ Fr.S(0.1e.dy + [ 0y x)i(e.)dy
—y(x)I(t,x) — k(x)I(t, x).

Denote R, = [0,00) and Ry, = (0,00). Let Q C RN be compact and
connected with a smooth boundary and Q = Cl(int(Q2))

Denote
C(Q)={heC(Q) : h>0}, and

C++(Q):{h€ C(QXR+) : inf h>0}
QxR



Assumptions:

A € CY(R4,R), and 3 a unique Sp > 0 such that A(5°) =0 and
A(S) >0for0<S < Spand A(S) <0 for S > Sp, and that
N(S% <o.
f e C(QxRE,R)NCHQ x R, R) and satisfies the following
properties:

e f(x,0,1) = f(x,5,0) =0 for all (x,S,/) € Q x RZ;

o for x € Qand S >0, f(x,S,/) is non-decreasing w.r.t | € Ry;

o for x € Qand />0, f(x,S,/) is increasing w.r.t. S € Ry;

e forxeQand S >0, M is non-increasing w.r.t. | € R, ;
k€ C44(Q), and a € C,(Q) satisfies [, a(x)dx = 1;
0 € C(Q2 x Q,R}) and satisfies 6(x, x) > 0 for all x € Q;

v € C+(Q) satisfies the balance condition

-/Qe(x,y)dy =v(x), VxeQ.



Nonlinear Semigroup

Set u(t) = (S(t),/(-,t))". Rewrite the system in the abstract form:

u(t) = Au(t) + F(u(t)),

where operators A and F are defined as
p (5) B N(0)S
/ /99()/, M(y)dy — I — &l

() NS) =N O)S = [ F(r. 5. 1)y
' o [ fr. 5.0y
Q

in the Banach space X = R x C(Q) equipped with the norm

and

165, ) lx = 1SI + 1T @) = IS] +528“(X”’ (s.n"eX.

Let Xy := R4 x C4(Q) denote the closed positive cone of X and

Xiq = Riy x C41(Q) the interior of X, .



Well-Posedness, Positivity and Dissipativity

Theorem (Qiu-Li-Shen, 2017)

For any ug € X, there exists a unique global classical solution
u:[0,00) = Xy with u(0) = ug. Moreover, the semi-flow defined by

Y(t)uo = u(t), t>0, upe Xy

is bounded dissipative and asymptotically smooth, and hence, it admits a
global attractor in X,..

Challenges: Due to the integral form of the system, the semigroup lacks
the usual regularity. The dissipativeness in X is done by directly proving
asymptotic smoothness.



Threshold Operator and R
The threshold operator, £ : C(Q2) — C(Q) is defined as

_ x) Jo 00y, x)I(y)dy
E[/](x)_,{(x)_’_fy(x)/nﬁ(y,SO,O)( dy+w, x €.

Proposition

e The operator L is compact and non-supporting.

e The spectral radius r(L) is a positive and algebraically simple
eigenvalue of L with an eigenfunction in C; ().

o [f X\ is an eigenvalue of L with an eigenfunction in C,(2)\ {0}, then
A= r(L).

Define the basic reproduction number as:



Ro and Linear Stability

To relate Rg to linear stability of the disease-free equilibrium Py, we
examine the linearized equation at Py = (S°,0)7:

5(6) = N(SIS(0) ~ [ Ay, S*.0)(e.)dy,
Q
(t) = [ il S0 (e y)dy + [ 67 01(E:)dy = (1) + RGON(6)
Q Q
and the operators:
L[N(x) = a(x /f, y,S°, 0)/ dy+/ O(y, x — (v(x) + r(x))I(x)

= U[N+ T[]

Let s(L) := sup{ReX : A € o(L)} be the spectral bound of L



Theorem

1. Ifs(L) > s(T), then s(L) is an isolated and simple eigenvalue of L,
whose eigen-space is spanned by ¢ € C, (), and if A € o(L) and
A # s(L), then Rex < s(L).

2. Conversely, if there exist A\, € R and ¢, € C;(Q) such that
Lop = App, then s(L) = A, > s(T).

3. The disease-free equilibrium (S°,0)7 is asymptotically stable if
s(L) < 0 and unstable if s(L) > 0.

Proposition
s(L) >0, s(L) =0 and s(L) <0 ifand only if r(L) > 1, r(£) =1 and
r(L£) < 1, respectively.

Theorem
The disease-free equilibrium (S°,0)7 is asymptotically stable if Rg < 1
and unstable if Rg > 1.



Main Result

Theorem (Qiu-Li-Shen, 2017)

o /fRg < 1, then the disease-free equilibrium Py is globally
asymptotically stable in X..

e [fRg > 1, then Py is unstable and the model is uniformly persistent
in X+.

o [fRgy > 1, then the model admits a positive stationary solution
P"< = (5*,I*)T in X+ Wlth />’< S C++(Q)
e [fRqg > 1, and

f(x,5*,1" (x))
St (ST ))] ST T
— 0 | <0, VxeQ, 5,/>0
SRS 5T sy |25 X €34 51>,
then P* is globally asymptotically stable in Xy. In particular,
(S*,1*)T is the unique endemic equilibrium.



The Lyapunov Functional

Set ¢(a) = a— 1 — loga. The proof uses a candidate Lyapunov
functional of form

V(s (e ) = [[a9]aeas (S + (12 ) o

Need to choose a suitable function n(x) so that V(5(t),/(t,-)) is a
Lyapunov functional!

While there is no longer a graph in the continuous case, the selection of
n(x) is guided by the same principle as in the discrete case: n(x) is the
eigenfunction of the Laplacian operator of certain linear operator with
respect to the eigenvalue 0.



The Lyapunov Functional
Define a linear operator with kernel:

K(x,y) = 0(y,)I"(y) + a(x)f(y, S*, I"(y)), (x,y) € 2xQ.

Then K € C(Q2 x Q) and K(x,x) > 0 for x € €, and there exists almost
everywhere positive Borel function 7 on § such that (Thieme, 2011)

/Q n(x)( /Q K, y)(v(x) — v(y))dy) dx=0, Yvel®Q).

Compare to the discrete case:

ZC"Z”’U(G"_GJ):Q forany G, i=1,---,n
i J

(c1,-++,cn)T is an eigenvector of the algebraic Laplacian matrix of a
irreducible matrix (m;;) with respect to eigenvalue 0.

Such a choice of 7(x) makes the Lyapunov functional work.



Summary

For infectious diseases, states can be considered for susceptibility,
infectivity, immunity, level of resistance, etc.

Considering state structures can be fruitful from both mathematical
and biological viewpoints.
State-structured models, both discrete and continuous, give rise to
considerable challenges in their analysis, stimulating development of
mathematical theory.

e Integral form leads to lack of regularity

e Nonlocal terms due to switching of states cause problems in linear

stability analysis and global stability analysis.

Biologically, disease states are impacted by medical and
pharmaceutical interventions. Investigations of how disease states
change in response to current or potential treatments would provide
insights to the development of treatments and vaccines.
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