Modelling antimicrobial de-escalation – when it is superior?

Xi Huo

Department of Mathematics, University of Miami

February 20th, 2018

Background

- Burden of antibiotic resistance (USA, CDC 2013):
 - \$35 billion/annually in societal costs
 - 2 million infections/annually
 - 23,000 directly attributable deaths/annually
 - Intensive care units (ICUs) are the epicenters of antibiotic resistance.
- Goal of antimicrobial stewardship programs (ASPs): reduce inappropriate use of and resistance to antibiotics without compromising patient outcomes.
- Challenges in assessing ASP interventions:
 - Difficult to set up large multi-center cluster randomized trials
 - Difficult to compare across studies (meta-analysis)
 - Variation in definitions, contexts, outcomes

How does math models help?

- Can improve understandings of:
 - underlying mechanisms
 - sources of uncertainty
- Can assess several factors and hypothetically experiment with scenarios that may be difficult to capture in clinical trials:
 - resistance rates
 - specific drug regimens
- Ultimately, can lead to refined designs, hypotheses, and interpretation of clinical research

Antimicrobial De-escalation in Stewardship Programs

- Switch from broad-spectrum anithiotics to alternatives based on laboratory susceptibility results.
- Aim to:
 - reduce costs:
 - stop unnecessary or redundant treatment;
 - switch from IV (intravenous) to oral therapy.

Antimicrobial De-escalation in Current Research¹

	(Kim et al. 2012)	(Leone et al. 2014)	
	ICU stay days	duration of ICU stays	
Harms	hospital mortality	number of ICU-free days	
	mortality relative to initial antimicrobial	Ventilator-free days	
	adequacy		
	time to adequate antimicrobials	Catecholamine-free days	
		number of antibiotic days	
		companion antibiotic days	
Drug use		antibiotic days for initial episode	
		antipseudomonal agent-free days	
		carbapenem-free days	
		anti-MRSA drug-free days	
	time to development of MDR organisms		
Resistance	Methicillin-resistant S. aureus		
	Gram-negative non-Enterobacteriaceae		
	superinfections		
	appropriateness of empiric therapy		
Not measured	drug use frequency (empiric, de-escalated, alternative)		
	infection prevalence		
	resistance prevalence		

¹Tabah A, Cotta M, Garnacho-Montero J, Roborts J, Lipman J, Tacey M, et al. (2016) A systematic review of the definitions, determinants and clinical outcomes of antimicrobial de-escalation in the intensive care unit. Clin Infect Dis.

Antimicrobial De-escalation: Unknowns

From observational studies:

- mortality unclear;
- resistance strain prevalence no assessment;
- MDR and superinfections observed;
- definitions and outcome measurements differ.

Our questions:

- use of the broad-spectrum drugs? effectiveness of empirical therapy?
- MDR prevalence? resistance prevalence? superinfection?
- mortality?

Antibiotic De-escalation: Modelling

Treatment methods

- Continuation: infected patient → empiric → culture results → empiric/correction
- De-escalation: infected patient → empiric → culture results → definitive/correction

P. aeruginosa

- most often acquired in hospital
- high intrinsic and acquired resistance
- stewardship could have a large impact

Antibiotics

- Empiric drug: pip-tazo good coverage;
- Definitive drug: ciprofloxacin poorer but common coverage;
- Last-resort drug: such as a carbapenem or aminoglycoside.

De-escalation

Continuation

--- admission and infection/treatment progression
--- colonization/transmission
--- recovery
--- strain mutation
--- treatment correction

- - - strain mutation - - - tre

Cipro de-escalation

Model parameters.

Symbol	Value	Definition			
Parameters with fixed values					
N	16	Number of patients in ICU			
a	0.6	Fraction of patients admitted with prior exposure to antimicrobials			
τ	$1/3~{ m day}^{-1}$	Rate of finishing empiric therapy			
τ_1	$1/5 \sim 1/3 \ { m day}^{-1}$	Rate of correcting failed definitive treatment			
$ au_2$	$1/4~{ m day}^{-1}$	Rate of finishing an effective definitive treatment			
Parameters with clear ranges					
m	$0 \sim 0.1$	Fraction of patients admitted colonized			
$\sigma_{\scriptscriptstyle X}$	$0.013 \sim 0.0203 \ day^{-1}$	Infection rate of patients colonized by other species			
σ_c	$0.05 \sim 0.14~{ m day}^{-1}$	Infection rate of patients colonized by P.aeruginosa			
$ au_3$	$\frac{1}{15}\sim \frac{1}{4}~{ m day}^{-1}$	Rate of finishing an effective treatment to superinfection			
κ_{μ}	$0.49 \sim 1.0$	Hazard ratio of discharge with nosocomial infection			
$\kappa_{ u}$	$1.0 \sim 2.3$	Hazard ratio of death with nosocomial infection			
δ	4% ~ 40%	Difference in probability of death between effective and ineffective empiric therapy after 10 days			
Uncertain parameters with large ranges					
β	$0.01 \sim 1~{\rm day}^{-1}$	Transmission rate			
<i>r</i> 1	$0.01 \sim 1 \text{ day}$ $0 \sim 0.7$	Fraction of patients admitted colonized with strain 1			
r ₂	$0 \sim r_1$	Fraction of patients admitted colonized with strain 2			
ε ₁	$0 \sim 0.03 \mathrm{day}^{-1}$	Rate of emergence of ciprofloxacin resistance			
ε2	$0 \sim 0.03 \mathrm{day}^{-1}$	Rate of emergence of piperacillin-tazobactam resistance			
μ	$0.025 \sim 0.5 \mathrm{day}^{-1}$	Discharge rate of patients without nosocomial infection			
ν	$0.005 \sim 0.05 \mathrm{day}^{-1}$	Death rate of patients without nosocomial infection			
η	0.005 ~ 0.05 day	Probability of emergence of superinfection			
19	$0 \sim 100\%$	Hazard ratio of finishing an effective treatment to multi-drug resistant strain			
J	3 1 100/0	infection			

Calibration

Response	Value	Notes
Resistance to cipro	0 – 0.29	Among the intensive care units of Ontario teaching hospitals, 0 to 29% of <i>P. aeruginosa</i> isolates are resistant to ciprofloxacin.
Resistance to pip-tazo	0 – 0.28	Among the intensive care units of Ontario teaching hospitals, 0 to 28% of <i>P. aeruginosa</i> isolates are resistant to piperacillintazobactam.
Acquisition prevalence	0.06 - 0.32	Prevalence of <i>P. aeruginosa</i> acquisition in ICUs varies between 6 and 32%

Influence of important parameters on death ratio

Classification tree

Clinical measurements overestimate resistance differences compared with ecological measurements.

Collaborators²

- Josie Hughes, York University/Mount Sinai Hospital.
- Lindsey Falk, Univeristy of Toronto.
- Amy Hurford, Memorial University of Newfoundland.
- Kunquan Lan, Ryerson University.
- Bryan Coburn, Toronto General Hospital/University of Toronto.
- Andrew Morris, Mount Sinai Hospital/University of Toronto.
- Jianhong Wu, York University.

²Hughes J, Huo X, Falk L, Hurford A, Lan K, Coburn B, Morris A, Wu J. (2017) Benefits and unintended consequences of antimicrobial de-escalation: Implications for stewardship programs. PLoS ONE.

- Sensitivity analysis on measurements:
 - ecological and clinical observations are highly correlated
 - clinical observed effects overestimate ecological effects on strain prevalence.
- Sensitivity analysis on parameters: de-escalation is most likely to have a substantial impact when
 - discharge rate is low
 - transmission rate is moderate
 - empiric therapy impact is high
- The need of careful measurements: de-escalation may increase superinfections and multidrug- resistance, while preserving empiric therapy and reducing *C.diff* infections.