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1 Introduction

 Asymptomatic carriers: For certain infectious diseases, there are individuals
who have been infected and are able to transmit their illness but do not display
any symptoms.

 They are potential sources for trans-
mission of some diseases:

• Typhoid Fever

• HIV

• Epstein-Barr Virus (EBV)

• Chlamydia

.........

Typhoid Mary in a 1909 newspaper illustration (Wikipedia)

Mary Mallon is the first person in the United States

identified as an asymptomatic carrier of typhoid fever.
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1 INTRODUCTION

 Asymptomatic carriers are common and invisible, can have serious long term
health consequences.

The hidden epidemic

Chlamydia is the most common treatable STD; Three-quarters of all women
and half of all men with chlamydia have no STD symptoms

Meningococcal disease

According to WHO report, up to 5− 10% of population may be
asymptomatic carriers in Meningococcal disease, which is spread by

person-to-person contact through respiratory droplets of infected people.
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1 INTRODUCTION

 Carriers have been incorporated in a variety of epidemic models:

• Hepatitis B virus with carriers

– G. F. Medley, N. A. Lindop, W. J. Edmunds and D. J. Nokes, Hepatitis-B virus

endemicity: Heterogeneity, catastrophic dynamics and control, Nature Medicine, 7(5)

(2001), 619-624.

– S. Zhao, Z. Xu and Y. Lu, A mathematical model of hepatitis B virus transmission

and its application for vaccination strategy in China, Int. J. Epidemiol., 29(4) (2000),

744-752.

• Meningococcal meningitis

– T.J. Irving, K.B. Blyuss, C. Colijn and C.L. Trotter, Modelling meningococcal

meningitis in the African meningitis belt, Epidemiol. Infect., 140(5) (2012), 897-905.

– C. L. Trotter, N. J. Gay and W. J. Edmunds, Dynamic models of meningococcal

carriage, disease, and the impact of serogroup C conjugate vaccination, American J.

Epidemiology, 162(1) (2005), 89-100.
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1 INTRODUCTION

• General mathematical models that incorporates disease carriers

– M. Ghosh, P. Chandra, P. Sinha and J. B. Shukla, Modelling the spread of carrier-

dependent infectious diseases with environmental effect, Appl. Math. Comput.,

152(2) (2004), 385-402.

– D. Kalajdzievska and M. Y. Li, Modeling the effects of carriers on transmission

dynamics of infectious disease, Math. Bio. & Eng., 8(3) (2011), 711-722.

– J. T. Kemper, The effects of asymptotic attacks on the spread of infectious disease:

A deterministic model, Bull. Math. Biology, 40(6) (1978), 707-718.

– R. Naresh, S. Pandey and A. K. Misra, Analysis of a vaccination model for carrier de-

pendent infectious diseases with environmental effects, Nonlinear Analysis: Modelling

and Control, 13(3) (2008), 331-350.
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1 INTRODUCTION

Why periodic coefficients?

 In the real world, periodicity and other oscillatory behaviors have been observed
in the incidence of many infectious diseases, including measles, influenza and
chickenpox, etc.

 The appearance of such oscillatory behaviors is mostly due to seasonally
variations in environmental factors such as temperature and humidity.

 Works on seasonal fluctuations in epidemic models:

- X. Liu and X.-Q. Zhao, A Periodic Epidemic Model with Age Structure in a Patchy

Environment, SIAM J. Appl. Math., 71(6) (2011), 1896-1917.

- Y. Lou and X.-Q. Zhao, A climate-based malaria transmission model with structured vector

population, SIAM J. Appl. Math., 70(6) (2010), 2023-2044.

- T. Zhang and Z. Teng, On a nonautonomous SEIRS model in epidemiology, Bull. Math.

Biology, 69(8) (2007), 2537-2559.
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1 INTRODUCTION

Why latent periods?

 In the real world, when adequate contact with an infectious happen, a susceptible
individual becomes infected but is not yet infectious .

latent 
period

exposed
 class

susceptible infectious
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1 INTRODUCTION

 Time delays have been included in a variety of epidemic models:

- Y. Yuan and J. Belair, Threshold dynamics in an SEIRS model with latency and temporary

immunity, J. Math. Biol., 69 (2014), 875-904.

- K. Cooke and P. van den Driessche, Analysis of an SEIRS epidemic model with two delays,

J. Math. Bioscience, 35 (1996), 240-260.

- Y. Lou and X.-Q. Zhao, Threshold dynamics in a time-delayed periodic SIS epidemic model,

Discrete and Continuous Dynamical Systems-B, 12(1) (2009), 169-186.

- S. Ruan, D. Xiao and J. C. Beier, On the delayed RossMacdonald model for malaria

transmission, Bull. Math. Biology, 70(4) (2008), 1098-1114.

 The latent period has a profound effect on the generation time, epidemic
growth/transmission.

 We introduce a time delay to represent the time-lag that asymptomatic carriers
take to develop the disease symptoms ( the asymptomatic carriage letency period ).
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2 Model Derivation

 Total population N(t) is divided into six categories:

(i) Two disease-free classes: susceptible (S(t)) and recovered (R(t));

(ii) Four disease-related classes:

• Exposed class (E(t)): individuals are infected but not yet infectious.

• Asymptomatic carrier class (C(t)): individuals are infectious but not showing
any disease symptoms.

• Carrier-latent class (Ec(t)): individuals are developing the disease symptoms.

• Ill class (I(t)): individuals are infectious and showing disease signs and
symptoms.
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2 MODEL DERIVATION
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carriers take
to develop the disease symptoms
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2 MODEL DERIVATION

 Let e(t, a) be the density of individuals in the exposed class, at time t with

infection age a, then E(t) =
∫ τ1

0 e(t, a)da

 To address the variation w.r.t. E(t),

∂e(t, a)

∂t
+
∂e(t, a)

∂a
= −µ(t)e(t, a),

 e(t, 0) = f (t, S(t), C(t), I(t)). =⇒

dE(t)

dt
= −µ(t)E(t)− e(t, τ1) + e(t, 0) = f (t, S(t), C(t), I(t))− µ(t)E(t)− e(t, τ1).
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2 MODEL DERIVATION

 
e(t, τ1) = f (t− τ1, S(t− τ1), C(t− τ1), I(t− τ1))e

−
∫ t
t−τ1 µ(η)dη

.

 Consequently,

dE(t)

dt
= f (t, S(t), C(t), I(t))− f (S(t− τ1), C(t− τ1), I(t− τ1))e

−
∫ t
t−τ1 µ(η)dη − µ(t)E(t).

 =⇒

E(t) =

t∫
t−τ1

f (s, S(s), C(s), I(s)) e−
∫ t
s µ(η)dηds.
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2 MODEL DERIVATION

 Similarly denote ê(t, a) as the density of individuals in the asymptomatic carrier
class =⇒

∂ê(t, a)

∂t
+
∂ê(t, a)

∂a
= −(µ(t) + γ(t))ê(t, a),

 C(t) =
∫ â
τ1
ê(t, a)da. =⇒

 
dC(t)

dt
= −(µ(t) + γ(t))C(t)− ê(t, â) + ê(t, τ1)

 ê(t, τ1) = pe(t, τ1) and ê(t, â) = q(t)C(t).

 

dC(t)

dt
= pf (t− τ1, S(t− τ1), C(t− τ1), I(t− τ1))e

−
∫ t
t−τ1 µ(η)dη

−(µ(t) + q(t) + γ(t))C(t).
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2 MODEL DERIVATION

 Parallelly, Ec(t) =
∫ â+τ2
â ec(t, a)da. Thus,

dEc(t)

dt
= q(t)C(t)− q(t− τ2)C(t− τ2)e

−
∫ t
t−τ2 µ(η)dη − µ(t)Ec(t).

 =⇒

Ec(t) =

t∫
t−τ2

q(s)C(s)e−
∫ t
s µ(η)dηds.

 Disease-related classes with their infection age
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2 MODEL DERIVATION

 Let ẽ(t, a) be the density of individuals in the ill class. Then

I(t) =

∫ ∞
τ1

ẽ(t, a)da.

 
∂ẽ(t, a)

∂t
+
∂ẽ(t, a)

∂a
= −(µ(t) + r(t) + δ(t))ẽ(t, a).

 

ẽ(t, a) =

{
(1− p)e(t, a) τ1 < a ≤ â + τ2

(1− p)e(t, a) + ec(t, a) â + τ2 < a.

 

dI

dt
= (1− p)f (t− τ1, S(t− τ1), C(t− τ1), I(t− τ1))e

−
∫ t
t−τ1 µ(η)dη

+q(t− τ2)C(t− τ2)e
−
∫ t
t−τ2 µ(η)dη − (µ(t) + r(t) + δ(t)) I(t).
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2 MODEL DERIVATION

dS(t)

dt
=Λ(t)− µ(t)S(t)− f (t, S(t), C(t), I(t)) + γ(t)C(t),

dE(t)

dt
=f (t, S(t), C(t), I(t))− f (t− τ1, S(t− τ1), C(t− τ1), I(t− τ1))e

−
t∫

t−τ1
µ(η)dη

− µ(t)E(t),

dC(t)

dt
=pf (t− τ1, S(t− τ1), C(t− τ1), I(t− τ1))e

−
t∫

t−τ1
µ(η)dη

− (µ(t) + q(t) + γ(t))C(t),

dEc(t)

dt
=q(t)C(t)− q(t− τ2)C(t− τ2)e

−
t∫

t−τ2
µ(η)dη

− µ(t)Ec(t),

dI(t)

dt
=(1− p)f (t− τ1, S(t− τ1), C(t− τ1), I(t− τ1))e

−
t∫

t−τ1
µ(η)dη

+ q(t− τ2)C(t− τ2)e
−

t∫
t−τ2

µ(η)dη

− (µ(t) + r(t) + δ(t))I(t),

dR(t)

dt
=r(t)I(t)− µ(t)R(t).
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2 MODEL DERIVATION

 

(H1) Λ(t), µ(t), δ(t), r(t), q(t) and γ(t) are all continuous periodic and positive
functions with period T .

and

(H2) f (t, S, C, I) is a nonnegative C1-function with the following properties:

(i) f (t, 0, C, I) = 0 and f (t, S, 0, 0) = 0 for all t ∈ R, S > 0, C > 0
and I > 0;

(ii) ∂f(t,S,C,I)
∂S > 0, ∂f(t,S,C,I)

∂C > 0, ∂f(t,S,C,I)
∂I > 0 for all (t, S, C, I) ∈

R× R3
+.
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2 MODEL DERIVATION

 Let τ = max{τ1, τ2} = τ2, X := C([−τ, 0],R6) and X+ = C([−τ, 0],R6
+).

For φ = (φ1, φ2, φ3, φ4, φ5, φ6) ∈ X, denote ‖φ‖ =
∑6

i=1 ‖φi‖∞ with ‖φi‖∞ =

max−τ≤θ≤0 |φi(θ)|. Then, (X,X+) is an ordered Banach space and X+ is a

normal cone of X with nonempty interior in X . For any given continuous function

u : [−τ, σφ)→ R6 with σφ > 0, we define ut ∈ X for t ≥ 0 by ut(θ) = u(t+ θ)

for all θ ∈ [−τ, 0].

 We choose the initial data in the following set:

DX =

{
φ ∈ X+ : φ2(0)=

∫ 0

−τ1
f(ϑ, φ1(ϑ), φ3(ϑ), φ4(ϑ))e−

∫ 0

ϑ
µ(η)dηdϑ, φ4(0)=

∫ 0

−τ2
q(ϑ)φ3(ϑ)e−

∫ 0

ϑ
µ(η)dηdϑ

}
.
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2 MODEL DERIVATION

Well-posedness Property

Theorem 2.1. For any φ ∈ DX , under the hypotheses (H1) and (H2), the
system has a unique nonnegative solution u(t, φ) with the initial condition
u0 = φ, and all solutions are ultimately bounded and uniformly bounded.
In addition, the solution semiflow Φ(t) = ut(·) : DX → R6 has a compact
global attractor and

Γ =

{
(S,E,C,Ec, I, R) ∈ R6

+ : 0 ≤ S + E + C + Ec + I + R ≤ Λu

µl

}
is positively invariant.
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3 Basic Reproduction Ratio

 To find the disease-free state , letting E = I = C = Ec = 0, then
R = 0 and

dS(t)

dt
= Λ(t)− µ(t)S(t).

Hence, there is only one disease-free T− periodic stateE1(t) = (S∗(t), 0, 0, 0, 0, 0)
where

S∗(t) = e−
∫ t

0 µ(η)dη

S(0) +

t∫
0

e
∫ s

0 µ(η)dηΛ(s)ds


with

S(0) =
e−

∫ T
0 µ(η)dη

1− e−
∫ T

0 µ(η)dη

T∫
0

e
∫ s

0 µ(η)dηΛ(s)ds.
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3 BASIC REPRODUCTION RATIO

 In the linearized system at E1(t), the following disease-related subsystem is
decoupled from others:

dC(t)

dt
= pa1(t)C(t− τ1) + pa2(t)I(t− τ1)− b1(t)C(t)

dI(t)

dt
= (1− p)a1(t)C(t− τ1) + (1− p)a2(t)I(t− τ1) + a3(t)C(t− τ2)− b2(t)I(t)

where

a1(t) = h(t, τ1)
∂f (t− τ1, S

∗(t− τ1), 0, 0)

∂C
,

a2(t) = h(t, τ1)
∂f (t− τ1, S

∗(t− τ1), 0, 0)

∂I
,

a3(t) = h(t, τ2)q(t− τ2),

b1(t) = µ(t) + q(t) + γ(t)

b2(t) = µ(t) + r(t) + δ(t).

Here h(t, τ ) := e−
∫ t
t−τ µ(η)dη.
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3 BASIC REPRODUCTION RATIO

 We use the theory developed in [Zhao1] to introduce the basic reproduction
ratio.

 Let

F1(t) =

[
pa1(t) pa2(t)

(1− p)a1(t) (1− p)a2(t)

]
,F2(t) =

[
0 0

a3(t) 0

]
,V(t) =

[
b1(t) 0

0 b2(t)

]
.

Rewrite the linearized and decoupled model as

du(t)

dt
= F1(t)u(t− τ1) + F2(t)u(t− τ2)− V(t)u(t),

where u(t) = (C(t), I(t))T .

 −V is cooperative;

1X.-Q. Zhao, Basic reproduction ratios for periodic compartmental models with time delay, J. Dynam.
Differential Equations (2017), 29: 67-82
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3 BASIC REPRODUCTION RATIO

 Define F(t) : X2 = C([−τ, 0],R2)→ R2 by

F(t)

(
φ̃1

φ̃2

)
=

(
p a1(t)φ̃1(−τ1) + p a2(t)φ̃2(−τ1)

(1− p) a1(t)φ̃1(−τ1) + (1− p) a2(t)φ̃2(−τ1) + a3(t)φ̃1(−τ2)

)
.

 From the hypotheses (H1)-(H2) =⇒
F(t) is positive in the sense that F(t)X+

2 ⊆ R2
+ where X+

2 = C([−τ, 0],R2
+).

 Let CT be the ordered Banach space of all T−periodic functions from R to
R2, which is equipped with the maximum norm and the positive cone C+

T = {v ∈
CT : v(t) ≥ 0,∀t ∈ R}. Then we can define a linear operator on CT by

[Lv](t) =

∞∫
0

Z(t, t− s)F(t− s)v(t− s + ·)ds, v ∈ CT .

where Z(t, s) = e−
∫ t
s V(η)dη is the evolution operator.

 Basic reproduction ratio R0 = ρ(L) , the spectral radius of L.
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3 BASIC REPRODUCTION RATIO

In periodic environments, the definition of R0 can be biologically interpreted

as the asymptotic per generation growth rate [N. Bacaër and E. Dadsa]

aN. Bacaër and E. H. A. Dads, On the biological interpretation of a definition for the parameter R 0 in
periodic population models, J. Math. Biology, 65(4) (2012), 601-621.

 We cannot find the explicit form of R0 = ρ(L) in general, we can provide a
numerical algorithm to obtain an approximation value of R0
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4 Threshold Dynamics

 Since the S, C and I equations are decoupled in the model, it suffices to
study the following T−periodic system:

dS(t)

dt
=Λ(t)− µ(t)S(t)− f (t, S(t), C(t), I(t)) + γ(t)C(t),

dC(t)

dt
=pf (t− τ1, S(t− τ1), C(t− τ1), I(t− τ1))e

−
t∫

t−τ1
µ(η)dη

− (µ(t) + q(t) + γ(t))C(t),

dI(t)

dt
=(1− p)f (t− τ1, S(t− τ1), C(t− τ1), I(t− τ1))e

−
t∫

t−τ1
µ(η)dη

+ q(t− τ2)C(t− τ2)e
−

t∫
t−τ2

µ(η)dη

− (µ(t) + r(t) + δ(t))I(t).

 Additional assumption:

(H3)
∂2f(t, S, C, I)

∂C2
≤ 0,

∂2f(t, S, C, I)

∂C∂I
≤ 0,

∂2f(t, S, C, I)

∂I2
≤ 0, ∀t ∈ R, S > 0, C > 0 , I > 0,
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4 THRESHOLD DYNAMICS

Disease Persistence

Theorem 4.1. When R0 > 1 and (H1) − (H3) hold, then the sub-system
admits at least one positive periodic solution E2(t) = (S∗(t), C∗(t), I∗(t)),
and there exists a positive constant η1 > 0 such that any solution
(S(t, ψ), C(t, ψ), I(t, ψ)) satisfies

lim
t−→∞

inf(C(t, ψ), I(t, ψ)) ≥ (η1, η1)

Global Attractivity of the Disease-free State

Theorem 4.2. When R0 < 1 and (H1)− (H3) hold, (S∗(t), 0, 0) is globally
attractive.
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4 THRESHOLD DYNAMICS

 Ideas in the proof:

- Monotonicity

- The comparison theorem [H. Smith]2)

- Results in [X.-Q. Zhao]3, and [P. Magal & X.-Q. Zhao]4

- Limiting system

- The theory of internally chain transitive sets

2H. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative
Systems, American Mathematical Society, 1995.

3X.-Q. Zhao, Dynamical Systems in Population Biology, Springer-Verlag, New York, 2017.
4P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems,

SIAM J. Math. Analysis, 37 (2005), 251-275.
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4 THRESHOLD DYNAMICS

For Original Model

Theorem 4.3. Assume (H1)− (H3) hold

(i) when R0 < 1, then

lim
t→∞

[(S(t), E(t), C(t), Ec(t), I(t), R(t))− (S∗(t), 0, 0, 0, 0, 0)] = 0

in DY ;

(ii) when R0 > 1, then model admits at least one positive periodic solution

(S∗(t), E∗(t), C∗(t), Ec∗(t), I∗(t), R∗(t))

and there exists a positive constant η2 > 0 such that any solution
(S(t, ψ̂), E(t, ψ̂), C(t, ψ̂), Ec(t, ψ̂), I(t, ψ̂), R(t, ψ̂)) satisfies

lim
t−→∞

inf(C(t, ψ̂), I(t, ψ̂)) ≥ (η2, η2)

where

30



4 THRESHOLD DYNAMICS

E∗(t) =

τ1∫
0

f (t− s, S∗(t− s), C∗(t− s), I∗(t− s))e−
∫ s
t−s µ(η)dηds > 0,

Ec∗(t) =

τ2∫
0

q(t− s)C∗(t− s)e−
∫ s
t−s µ(η)dηds > 0,

R∗(t) = R(0)e
∫ t

0 µ(s)ds +

t∫
0

e
∫ s
t µ(η)dη (r(s) + δ(s)) I∗(s)ds > 0.
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5 Uniqueness of the Epidemic State with Constants Co-

efficients

 With constant coefficients , the basic reproduction ratio R0 becomes explicit

[R0] = ρ((F1 + F2)V −1) =
T +
√
T 2 + 4D

2

with

T =
pe−µτ1 ∂f∂C (Λ

µ , 0, 0)

q + γ + µ
+

(1− p)e−µτ1 ∂f∂I (Λ
µ , 0, 0)

r + δ + µ
> 0, D =

pq∂f∂I (Λ
µ , 0, 0)e−µ(τ1+τ2)

(q + γ + µ)(r + δ + µ)
> 0

where Λ
µ is the global asymptotic stable equilibrium of dN(t)

dt = Λ− µN(t).

 To examine the existence of the positive equilibrium point E2 = (S∗, C∗, I∗),
we have to solve

f (S,C, I) = Λ− µS + γC,

pe−µτ1f (S,C, I) = qC + (γ + µ)C,

(1− p)e−µτ1f (S,C, I) = (r + δ + µ)I − qe−µτ2C.
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5 UNIQUENESS OF THE EPIDEMIC STATE WITH CONSTANTS
COEFFICIENTS

Proposition 5.1. Under the hypothesis (H2) − (H3), if the endemic equi-
librium point E2 exists, we have

∂f (S∗, C∗, I∗)

∂C
+
A1 + A2

A3

∂f (S∗, C∗, I∗)

∂I
≤ A1,

where the strict equality holds only if

∂2f (S, A1+A2
A3

C,C)

∂C2
=
∂2f (S, A1+A2

A3
C,C)

∂C∂I
=
∂2f (S, A1+A2

A3
C,C)

∂I2
= 0

for all S > 0, C > 0 with

A1 =
q + γ + µ

pe−µτ1
, A2 =

qe−µτ2

(1− p)e−µτ1
, A3 =

r + δ + µ

(1− p)e−µτ1
.
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5 UNIQUENESS OF THE EPIDEMIC STATE WITH CONSTANTS
COEFFICIENTS

Existences and Uniqueness of Endemic Equilibrium

Theorem 5.1. Given the assumptions (H2) − (H3). If [R0] > 1, then
the positive equilibrium point E2 = (S∗, C∗, I∗) exists in the sub-system
and is uniquely determined. Consequently, a unique endemic equilibrium
point (S∗, E∗, C∗, Ec∗, I∗, R∗) exists in the model with E∗ = 1

µ(1 −
e−µτ1)f (S∗, C∗, I∗), Ec∗ = q

µ(1− e−µτ2)C∗ and R∗ = r+δ
µ I
∗.
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6 Numerical Computation and Simulation

A: Calculation of R0.
 The infection linear operator

[Lv](t) =

∞∫
0

K(t, s)v(t− s)ds =
∞∑
m=0

T∫
0

K(t, s+mT )v(t− s)ds =

T∫
0

GK(t, s)v(t− s)ds

GK(t, s) =
∞∑
m=0

K(t, s+mT ), K(t, s) =

(
K11(t, s) K12(t, s)
K21(t, s) K22(t, s)

)
.

for s ≥ τ1,

K11(t, s) = pa1(t− s+ τ1)e
−

t∫
t−s+τ1

b1(η)dη

,

K12(t, s) = pa2(t− s+ τ1)e
−

t∫
t−s+τ1

b1(η)dη

,

K21(t, s) =

 (1− p) a1(t− s+ τ1)e
−

t∫
t−s+τ1

b2(η)dη

+ a3(t− s+ τ2)e
−

t∫
t−s+τ2

b2(η)dη

if s ≥ τ2,

(1− p) a1(t− s+ τ1)e
−

t∫
t−s+τ1

b2(η)dη

if τ1 ≤ s < τ2,

K22(t, s) = (1− p) a2(t− s+ τ1)e
−

t∫
t−s+τ1

b2(η)dη

,

for s < τ1, Kij(t, s) = 0 i, j ∈ {1, 2} .
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6 NUMERICAL COMPUTATION AND SIMULATION

 When (H1) − (H2) hold, =⇒ approximate GK by a finite sum GK(s, t) ≈
MK∑
m=0
K(t, s+mT ) [Posny & Wang5]

 Partition the interval [0, T ] uniformly into n subintervals [ti, ti+1] with ti = i T
n

for i = 0, . . . , n− 1

 Then R0 ≈ T
nρ(A) where A is 2n× 2n matrix

A =



G̃K(t0, t0) GK(t0, tn−1) · · · · · · · · · GK(t0, t2) GK(t0, t1)

GK(t1, t1) G̃K(t1, t0) · · · · · · · · · GK(t1, t3) GK(t1, t2)
...

... . . . . . . . . . ...
...

GK(tj, tj) GK(tj, tj−1) · · · G̃K(tj, t0) · · · GK(tj, tj+2) GK(tj, tj+1)
...

... . . . . . . . . . ...
...

GK(tn−2, tn−2) GK(tn−2, tn−3) · · · · · · · · · G̃K(tn−2, t0) GK(tn−2, tn−1)
GK(tn−1, tn−1) GK(tn−2, tn−2) · · · · · · · · · G̃K(tn−1, t1) G̃K(tn−1, t0)


with G̃K(tj, t0) = 1

2(GK(tj, t0) +GK(tj, tn)) and j = 0, . . . , n− 1.

5D. Posny and J. Wang, Computing the basic reproductive numbers for epidemiological models in nonhomo-
geneous environments, Appl. Math. Comput., 242 (2014), 473-490.
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6 NUMERICAL COMPUTATION AND SIMULATION

B: Case study.
 We study the transmission of meningococcal meningitis disease in Dori, Burk-
ina Faso.

∗Image credit: www.africaguide.com & wikimedia.org.
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6 NUMERICAL COMPUTATION AND SIMULATION

 Meningococcal meningitis disease is a major public health problem in a large
area of sub-Saharan Africa, known as the meningitis belt.

∗Image credit: www.humanosphere.org.
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6 NUMERICAL COMPUTATION AND SIMULATION

 According to WHO, meningococcal meningitis is a bacterial form of meningitis
caused by the bacterium Neisseria meningitidis.

 It is a serious infection of the thin lining that surrounds the brain and spinal
cord.

∗Image credit:wikipedia & spinalmeningitis.org.
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6 NUMERICAL COMPUTATION AND SIMULATION

 The bacteria are transmitted from person-to-person through droplets of respi-
ratory or throat secretions from carriers such as sneezing or coughing on someone.
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6 NUMERICAL COMPUTATION AND SIMULATION

 In Burkina Faso, the annual number of meningitis cases exhibits an oscillatory
behavior , although with irregular patterns of epidemics varying in size and dura-
tion.
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Figure 1: Annual number of reported suspected meningitis

cases in Burkina Faso, 1940-2014.
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6 NUMERICAL COMPUTATION AND SIMULATION

 This can be related to environmental factors , particularly the Harmattan (a
dry and dusty trade wind that blows across the region during the dry season).

The Harmattan in Burkina’s capital of Ouagadougou Satellite image of the Harmattan’s dust covering Burkina

∗Image credit:Life in Burkina Faso, https://polifaso.wordpress.com.
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6 NUMERICAL COMPUTATION AND SIMULATION

 According to the 2012 World Bank report, the life expectancy in Burkina Faso
is 55.86 year. So we choose the natural death rate µ(t) ≡ µ = 1/55.86 = 0.018
year−1.

 The total population in Dori is 21078 (2006), that is, the recruitment rate
Λ(t) ≡ Λ = 21078× µ ≈ 379 people per year.

 We take the incidence rate function form as f (t, S, C, I) = f1(t, S, C, I) +
f2(t, S, C, I), where

f1(t, S, C) =
lβ(t)S(t)C(t)

1 + α1C(t)
and f2(t, S, I) =

β(t)S(t)I(t)

1 + α2I(t)

with l = 0.8, α1 = 0.07 and α2 = 0.05
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6 NUMERICAL COMPUTATION AND SIMULATION

Estimation of a periodic β(t)

 The disease transmission rate (β(t)) is between 50− 200 year−1.

 The meningitis incidence is the lowest during rainfall season and it increases
to reach the highest during the dry season in most districts of the meningitis
belt.

 We assume that there is a higher transmission rate in the most dry period and
it decreases as the average precipitation increases.
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Figure 2: Average precipitation per month in Dori from 2000 to 2012.
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Figure 3: β1(t) = 128.333 + 52.0374 cos(2πt) + 50.3707 sin(2πt)

45



6 NUMERICAL COMPUTATION AND SIMULATION

20 40 60 80 100
0

5

10

15

20

25

(a) C(t)

20 40 60 80 100
0

20

40

60

80

100

(b) I(t)

Figure 4: Time series C(t) and I(t). S(0) = 15000, E(0) = 30, C(0) = 20, EC(0) = 5,

I(0) = 20 and R(0) = 5.

Parameters: We choose τ1 = 0.008 year, τ2 = 0.083 year, q(t) = 30(1 +
0.5 cos(2πt)), r(t) ≡ r = 52 year−1, δ(t) ≡ δ = 5.2 year−1, and γ(t) ≡ γ = 20
year−1; and assume that 20% of infected susceptible individuals become carriers
(i.e. p = 0.2).

R0 ≈ 2.6601
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6 NUMERICAL COMPUTATION AND SIMULATION

C: Sensitivity of R0 and [R0].
 With constant coefficients ,

∂[R0]

∂τ1
= −µ

2

(
T +

T 2 + 2D√
T 2 + 4D

)
< 0,

∂[R0]

∂τ2
= − −µD√

T 2 + 4D
< 0,

∂[R0]

∂fC
=

1

2

(
1 +

T√
T 2 + 4D

)
pe−µτ1

q + γ + µ
=

[R0]√
T 2 + 4D

pe−µτ1

q + γ + µ
> 0,

and for s ∈ {γ, p, q} ,

∂[R0]

∂s
=

1√
T 2 + 4D

(
[R0]

∂T

∂s
+
∂D

∂s

)
with

∂T

∂γ
=
−pe−µτ1fC

(q + γ + µ)2 < 0,
∂D

∂γ
=

−pqe−µ(τ1+τ2)fI

(r + δ + µ) (q + γ + µ)2 < 0

∂T

∂p
= e−µτ1

(
fC

q + γ + µ
− fI
r + δ + µ

)
,

∂D

∂p
=

qfIe
−µ(τ1+τ2)

(q + γ + µ)(r + δ + µ)
> 0,

∂T

∂q
= − pfCe

−µτ1

(q + γ + µ)2
< 0,

∂D

∂q
=
pfIe

−µ(τ1+τ2)

r + δ + µ

γ + µ

(q + γ + µ)2
> 0.

where ∂f
∂C

(
Λ
µ , 0, 0

)
= fC and ∂f

∂I

(
Λ
µ , 0, 0

)
= fI .
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6 NUMERICAL COMPUTATION AND SIMULATION

Parameter Condition

τ1, τ2 Reduce τ1 or τ2

fC Increase fC

γ Reduce γ

p
Increase p and one of the following conditions holds

(i) fC
q+γ+µ >

fI
r+δ+µ or (ii) [R0] < qfIe

−µτ2
fI(q+γ+µ)−fC(r+δ+µ)

q Increase q and the condition (iii) [R0] < e−µτ2 fIfC
γ+µ
r+δ+µ holds

Table 1: Conditions for increasing [R0].
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6 NUMERICAL COMPUTATION AND SIMULATION

 Comparison between [R0] in the autonomous system and R0 in the periodic
system.

 We take the average value of [β1] = 1
T

∫ T
0 β1(t)dt = 128.333 and [q] = 30 in

Figure 4 over the interval [0, T ].
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(a) Fixed τ2 = 0.8 and τ1 varies.

1 2 3 4 5 6
0.80

0.85

0.90

0.95

1.00

1.05

[R0]

R0

∗τ2
τ2
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Figure 5: The graph of R0 and [R0] when τ1, τ2 varies. µ = 0.0525, p = 0.4 and the other

parameters as in Figure 4.
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The time-average basic reproduction number [R0]

 Underestimates the disease transmission risk when the asymptomatic carriage
period is short;

 Overestimates it when asymptomatic carriage duration is long enough.

 While [R0] overestimates R0 when τ1 varies

In general, [R0] may coincide with the basic reproduction ratio R0 or underes-
timate/overestimate infection risks
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